

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

QUADRATIC EQUATIONS

Multiple Choice Questions Level I

1. The number of solutions of the equation :

$$\sin(e^x) = 5^x + 5^{-x}$$
 is :

A. 0

B. 2

C. 1

D. infinitely many

Answer: A

Watch Video Solution

- **2.** Solve $x^2 x + (1 i) = 0$

Watch Video Solution

- 3. The real roots of the equation:
- $7\log_7ig(x^2-4x+5ig)$ = x 1 are :
 - A. 1 and 2
 - B. 2 and 3
 - C. 3 and 4
 - D. 4 and 5

Answer: B

4. The real roots of $\left|x\right|^3-3x^2+3|x|-2=0$ are :

A. 0,2

B. \pm 1

C. \pm 2

D. 1,2

Answer: C

Watch Video Solution

5. The equaton (cos p - 1) x^2+x (cos p) + sin p = 0 in the veriable x, has real roots then p can take any value in the interval :

A. $(0, 2\pi)$

 $\mathrm{B.}\left(0,\pi\right)$

C.
$$(-\pi, 0)$$

D.
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Answer: B

Watch Video Solution

6. The real values of x for which:

$$3^{72}igg(rac{1}{3}igg)^xigg(rac{1}{3}igg)^{\sqrt{x}}>$$
 1 are :

A.
$$x \in [0,64]$$

B.
$$x \in (0,64)$$

$$C. x \in [0,64)$$

D. None of these

Answer: C

7. Both the roots of the equation :

(x - b) (x - c) + (x - c) (x - a) + (x - a) (x - b) = 0 are always :

- A. positive
- B. negative
- C. real
- D. None of these

Answer: C

Watch Video Solution

8. If the roots of the equation $x^2-2ax+a^2+a-3=0$ are real and less then 3, then :

- A. a < 2
- $\texttt{B.}\,2 \leq \;\; \text{and} \;\; \leq 3$
- $\mathsf{C.}\,3 < a \leq 4$

Answer: A

Watch Video Solution

- **9.** The equation (cos p 1) $x^2 + x$ (cos p) + sin p = 0 in the veriable x, has real roots then p can take any value in the interval :
 - A. $(0, 2\pi)$
 - B. $(-\pi, 0)$
 - $\mathsf{C.}\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - D. $(0, \pi)$

Answer: D

10. The sum of the roots of the equation $x^2+px+q=0$ is equal to the sum of their squares, then :

A.
$$p^2-q^2=0$$

B.
$$p^2+q^2$$
 = 2q

C.
$$p^2+p=2q$$

D. None of these

Answer: C

- **11.** The number of real roots of $2^{2x^2-7x+5}=1$ is :
 - A. 0
 - B. 1
 - C. 2

Answer: C

Watch Video Solution

12. If $f(x)=2x^3+mx^2-13x+n$ and 2 and 3 are 2 roots of the equations f(x)=0, then values of m and n are

A.
$$-5, -30$$

$$B. -5, 30$$

C. 5, 30

D. None of these

Answer: B

13. The value of p for which the difference between the roots of the equation $x^2 + px + 8 = 0$ is 2, are

A.
$$\pm$$
 2

Answer: C

14. If
$$lpha, eta$$
 are real and $lpha^2, -eta^2$ are the roots of the equation $a^2x^2+x+\left(1-a^2\right)=0 (a>1),$ then eta^2

A.
$$a^2$$

$$\mathsf{B.}\,1-\frac{1}{a^2}$$

$$\mathsf{C.}\,1-a^2$$

D.
$$1 + a^2$$

Answer: B

Watch Video Solution

15. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then find the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

A.
$$x^2 - 5x - 3 = 0$$

B.
$$3x^2 - 19x + 3 = 0$$

$$\mathsf{C.}\,3x^2 + 12x + 3 = 0$$

D. None of these

Answer: B

16. If x is real , then least value of the expression

$$(ax^2 + bx + c), a < 0$$
 is :

A.
$$-\frac{b}{2a}$$

B.
$$b^2-4ac$$

C.
$$\frac{4ac-b^2}{4a}$$

D.
$$\frac{4ac-b^2}{4a^2}$$

Answer: C

View Text Solution

17. Let α,β the roots of the equation (x - a) (x - b) = c , c \neq 0. Then the roots of the equation $(x-\alpha)x-\beta)+c=0$ are :

A.a,c

B. b, c

C. a, b

$$D.a+c,b+c$$

Answer: C

Watch Video Solution

18. The value of m for which the equation $x^3+x+1=0$. Has two roots equal in magnitude but opposite in sign, is :

- A. $\frac{1}{2}$
- B. $\frac{2}{3}$
- $\mathsf{C.}\ \frac{3}{4}$
- D. $\frac{4}{5}$

Answer: B

19. The value of $x^2 + 2bx + c$ is + ve if :

A.
$$b^2-4ax>~-0$$

B.
$$b^2-4ax<\ -0$$

C.
$$c^2 < b$$

D.
$$b^2 < c$$
.

Answer: D

20. Let a, be the roots of the equation $x^2+x+1=0$. The equation whose roots are α^{19} and β^7 are:

A.
$$x^2 - x - 3 = 0$$

B.
$$x^2 - x + 1 = 0$$

$$\mathsf{C.}\,x^2+x-1=0$$

D.
$$x^2 + x + 1 = 0$$

Answer: D

Watch Video Solution

- **21.** If a,b,c are positive real numbers, then the roots of the equation $ax^2+bx+c=0$
 - A. are real and positive
 - B. are real and negative
 - C. have negative real poarts
 - D. have positive real parts.

Answer: C

22. If one root of the equation $ax^2+bx+c=0$ is reciprocal of the one root of the equation

$$a_1x^2+b_1x+c_1=0$$
 , then :

A.
$$(aa_1-\mathrm{cc}_1)^2=(bc_1-b_1a)(b_1c-a_1b)$$

$$\mathsf{B}. \left(ab_1 - a_1 b \right)^2 = (bc_1 - b_1 c)(ca_1 - c_1 a)$$

$$\mathsf{C.} \left(b c_1 - b_1 c \right)^2 = (c a_1 - c_1 a) (a b_1 - a_1 b)$$

D. None of these

Answer: A

Watch Video Solution

23. If $1,a_1,a_2,...,a_{n-1}$ are n roots of unity, then the value of

$$(1-a_1)(1-a_2)....\,(1-a_{n-1})$$
 is :

A. 0

B. 1

C. n

D. n^2

Answer: C

Watch Video Solution

24. If $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numberical value of a + b is :

A. 1

B. 0

 $\mathsf{C.}-1$

D. None of these

Answer: C

25. If the ratio of the roots of $x^2+bx+x=0$ and $x^2+qx+r=0$ be

A.
$$r^2x=b^2q$$

the same, then:

B.
$$r^2b=c^2q$$

$$\mathsf{C.}\, rb^2 = cq^2$$

D.
$$rc^2=bq^2$$

Answer: C

26. If lpha and eta are the roots of $x^2+qx+1=0$ and γ,δ the roots of

$$x^2+qx+1=0$$
, then the value of

$$(lpha-\gamma)(eta-\gamma)(a+\delta)eta+\delta)$$
 is :

A.
$$p^2-q^2$$

B.
$$q^2-p^2$$

 $\mathsf{C.}\,p^2$

D. q^2 .

Answer: B

Watch Video Solution

27. If $\dfrac{|x-2|}{x-2} \geq 0$, then

A.
$$x, \ \in [2, \infty)$$

B.
$$x, \ \in (2, \infty)$$

C.
$$x, \in (-\infty,2)$$

D.
$$x, \in (\infty,2]$$

Answer: B

28. The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then:

A. beadth > 20 cm

B. length < 20 cm

C. breadth > 20 cm

D. length \leq 20 cm

Answer: C

Watch Video Solution

29. If $|x + 3| \ge 10$, then:

A. $x \in (-13, 7)$

B. $x \in (-13, 7]$

 $\mathsf{C.\,x}\,\in(\,-\infty,\,-13]\cup[7,\infty)$

$$\texttt{D.\,x}\,\in(\,-\infty,\,-13]\cup[3,\infty)$$

Answer: C

Watch Video Solution

30. If -3x + 17 < -13, then:

A.
$$x\in(10,\infty)$$

B. $x \in [10, \infty)$

C.
$$x \in (-\infty, 10]$$

D. $x \in [-10, 10)$.

Answer: A

Watch Video Solution

31. If $|x + 2| \le 9$, then:

B.
$$x\in[\,-4,6]$$
C. $x\in(\,-\infty,\,-4)\cup(6,\infty)$
D. $x\in(\,-\infty,\,-4)\cup(6,\infty)$

32. If |x-1| > 5, then:

A. $x \in (-4, 6)$

A. $x \in (-7, 11)$

B. $x \in (-11, 7]$

Answer: B

 $\mathsf{C.}\,x\in(\,-\infty,\,-7)\cup(11,\infty)$

D. $x \in [-\infty, -7) \cup (11, \infty)$

Watch Video Solution

Answer: C

33. If
$$x^2 + 2x - 3 \ge 0$$
 and $x^2 - 2x - 3 \ge 0$, then :

A.
$$x \geq 3$$
 or $x \leq -3$

$$\mathrm{B.}\,x\leq\,-1$$

$$\mathsf{C.}\,x \leq 1$$

D. x has no value in R.

Answer: A

Watch Video Solution

34. The set of real values of x satisfying $|x-1| \leq 3$ and $|x-1| \geq 1$ is :

B.
$$(-\infty,2]\cup[4,\infty)$$

$$\mathsf{C}.\,[\,-2,0]\cup[2,4]$$

D. None of these

Answer: C

Watch Video Solution

35. If x is real , then the expression $\dfrac{x^2+34x-71}{x^2+2x-7}$ can have no value

between:

- A. 3 and 7
- B. 4 and 8
- C. 5 and 9
- D. 6 and 10 .

Answer: C

36. For real values of x, the expression $\frac{(x-b)(x-c)}{(x-a)}$ will assume all

real values provided:

A. a $\leq c \leq b$

 $\mathsf{B.b} \, \geq a \geq \mathsf{c}$

 $\mathsf{C}.\,b \le c \le a$

D. a > b > c

Answer: B

Watch Video Solution

37. If α , β are the roots of the equation :

 $x^2 + x\sqrt{\alpha} + \beta = 0$, then the values of α and β are :

A. $\alpha = 2$ and $\beta = -2$

B. $\alpha = 2$ and $\beta = 1$

$$\mathsf{C.}\,\alpha=1 \,\,\mathrm{and}\,\,\beta=\,-\,2$$

D.
$$\alpha = 1$$
 and $\beta = -1$.

Answer: C

Watch Video Solution

38. The number of real solutions of:

$$+le^{x}-11=e^{x}(e^{x}-2)$$
 is :

B. 1

C. 2

D. 4

Answer: B

39. The equation $3^{x-1} + 5^{x-1} = 34$ has :

A. no solution

B. one solution

C. two solutions

D. more than two solutions.

Answer: B

Watch Video Solution

40. The solution set of $\log_x 2\log_{2x} 2 = \log_{4x} 2$ is :

A.
$$\left\{2^{-\sqrt{2}},2^{\sqrt{2}}
ight\}$$

$$\operatorname{B.}\left\{\frac{1}{2},2\right\}$$

$$\mathsf{C.}\left\{\frac{1}{4},2^2\right\}$$

D. None of these

Answer: A

Watch Video Solution

- **41.** If $\log_{10} x + \log_{10} y \geq 2$, then the smallest value of x + y is :
 - A. 10
 - B. 30
 - C. 20
 - D. None of these

Answer: C

Watch Video Solution

42. If the equations ax+by=1 and $cx^2+dy^2=1$ have only one solution, prove that $\frac{a^2}{c}+\frac{b^2}{d}=1$ and $x=\frac{a}{c}$, $y=\frac{b}{d}$

B.
$$(2, +\infty)$$

C. $(4, +\infty)$

A. $\displaystyle rac{a^2}{c} + rac{b^2}{d} = 1$

D. None of these

Watch Video Solution

43. If $3^{\frac{x}{2}}+2^x>25$ then the solution set is

 $B. x = -\frac{a}{c}$

 $\mathsf{C}.\,y = \frac{b}{d}$

Answer: A

A. R

Answer: C

44. The solution set of $x^2+2 \leq 3x \leq 2x^2-5$, is

A.
$$\phi$$

B. [1,2]

C.
$$(-\infty, -1] \cup \left[rac{5}{2}, +\infty
ight)$$

D. None of these

Answer: A

Watch Video Solution

45. The real roots of the equation $5^{\log 5\left(x^2-4x+5
ight)}=x-1$ are :

A. 1 and 2

B. 2 and 3

C. 3 and 4

Answer: B

Watch Video Solution

46. If α, β the roots of $8x^2-3x+27=0$, then the value of

$$\left[\left(rac{lpha^2}{eta}
ight)^{1/3}+\left(rac{eta^2}{lpha}
ight)^{1/3}
ight]$$
 is ,

- A. $\frac{1}{3}$
- B. $\frac{1}{4}$
- c. $\frac{1}{5}$
- D. $\frac{1}{6}$

Answer: B

Multiple Choice Questions Level Ii

1. If $lpha \,\,$ and $\,\,eta \,$ are the roots of the equation $x^2-p(x+1)-q=0$, then

the value of :

$$rac{lpha^2+2lpha+1}{lpha^2+2lpha+q}+rac{eta^2+2eta+1}{eta^2+2eta+q}$$
 is :

- A. 2
- В. 3
- C. 0
- D. 1

Answer: D

always:

Watch Video Solution

2. If lpha and eta the roots of $x^2+px+q=0$ and $lpha^4,\,eta^4$ are the roots of $x^2-rx+s=0$, then the equation $x^2-4qx+2q^1-r=0$ has

- A. two real roots
- B. two positive roots
- C. two negative roots
- D. one positive and one negative root.

Answer: A

Watch Video Solution

- **3.** If a, b and c real numbers such that $a^2+b^2+c^2$ = 1, then ab + bc + ca lies in the interval :
 - A. $\left[\frac{1}{2}, 2\right]$
 - B. [1, 2]
 - $\mathsf{C.}\left[\,-\,\frac{1}{2},1\right]$
 - D. $\left[-1, \frac{1}{2}\right]$

Answer: C

4. If the roots of the equation
$$\dfrac{x^2-bx}{ax-c}=\dfrac{\lambda-1}{\lambda+1}$$
 are shuch that $lpha+eta$

A.
$$\frac{a-b}{a+b}$$

$$a + \epsilon$$

= 0, then value of λ is :

C.
$$\frac{1}{c}$$
D. $\frac{a+b}{a-b}$

Answer: A

- **5.** Solution set of $x^{2\log x}=10x^2$ is :
 - A. $\{1-\sqrt{3}, 1+\sqrt{3}\}$
 - B. $\{-1, 1\}$

$$\mathsf{C.}\left\{\frac{1}{10^{1-\sqrt{3}}}, \frac{1}{10^{1+\sqrt{3}}}\right\} \\ \mathsf{D.}\left\{\frac{1}{10^{\frac{1-\sqrt{3}}{2}}}, \frac{1}{10^{\frac{1+\sqrt{3}}{2}}}\right\}$$

Answer: D

View Text Solution

6. If x satisfies $|x-1|+|x-2|+|x-3|\geq 6, ext{ then}:$

A.
$$0 \leq x < 4$$

$$B. x \leq -2 \text{ or } x \geq 4$$

$$\mathsf{C.}\,x \leq 0 \,\, \mathrm{or} \,\, x \geq 4$$

D. None of these

Answer: C

7. The equation

$$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}$$
 = 1 has :

- A. no solution
- B. only one solution
- C. only two solutions
- D. more than two solutions.

Answer: D

View Text Solution

8. The number of real roots of :

$$1+a_1X+a_2x^2....\ +a_nx^n=0, ext{ where } |x|<rac{1}{3} ext{ and } |a_n|<2,$$
 is :

- A. n if n is even
- B. 0 for $n \in N$
 - C. 1 in n is odd

D. None of these

Answer: D

Watch Video Solution

9. The solution of $x - 1 = (x - [x]) (x - \{x\})$, (where [x] and $\{x\}$ are integral and frectional part respectively of x) is :

 $A.\,x\,\in\,R$

 $\mathrm{B.}\,x\in\ \mathrm{R}\sim \mathrm{[\ 1,\ 2)}.$

 $\mathsf{C.\,x}\,\in[1,2)$

D. $x \in \mathsf{R} \sim [\mathsf{\ 1,2]}$.

Answer: C

View Text Solution

10. Let a, b,c \in R and a \neq 0. If α is a root of a^2x^2 + bx + c = 0 , β is a root of a^2x^2 - bx - x = 0 and 0 $< \alpha < \beta$. Then the equation $a^2x^2 + 2bx$ +

2c = 0 has a root γ that always satisfies :

A.
$$\gamma=lpha$$

B.
$$lpha < \gamma < eta$$

C.
$$\gamma=rac{lpha+eta}{2}$$

D.
$$\gamma=eta$$
.

Answer: B

Watch Video Solution

11. The equation :

 $x^{3/4(\log_2 x)rac{2}{4}+\log_2 x-5/4}=\sqrt{2}$ has :

A. only one real solution

B. exactly three real solutions

C. exactly one rational solution

D. non-real roots.

Answer: B

Watch Video Solution

12. The product of the roots of the equation $x^2 - 4mx + 3e^{2 \log \, \mathrm{m}} - 4 = 0$, then its roots will be real when m equals:

A. 1

B. $\sqrt{2}$

 $C. \pm 2$

D. $\pm\sqrt{2}$

Answer: C

13. The value of 'a' for which the equation
$$x^3+ax+1=0$$
 and x^4+ax^2+1 =0 has a common root is :

$$B.-2$$

D. None of these

Answer: B

Watch Video Solution

14. The number of real solutions of $\left(\frac{9}{10}\right)^x = -3 + x - x^2$ is :

- A. none
- B. one
- C. two

D. more than two

Answer: A

Watch Video Solution

15. If a + b + c = 0, then the equation equation :

 $3ax^2+2bx+c=0$ has :

A. at least on root in (0,1)

B. one root in (2,3) and the other in (-2,-1)

C. imaginary roots

D. None of these

Answer: A

16. If $lpha,\,eta$ are the roots of $ax^2-26x+c=0$, then

$$lpha^3eta^3+lpha^2eta^3+lpha^3eta^2$$
 equals :

A.
$$\displaystyle \frac{c^2}{a^3}(c+26)$$

B.
$$rac{c^2}{a^3}(c-26)$$

c.
$$\frac{bc^3}{c^3}$$

D. None of these

Answer: A

Watch Video Solution

17. If $lpha,\,eta$ are roots of 375 $x^2-25x-2=0\,$ and $\,s_n=lpha^n+eta^n$,

then $\lim_{n o \infty} \; \sum_{1}^n s_r$ is :

A.
$$\frac{7}{116}$$

B.
$$\frac{1}{12}$$

c.
$$\frac{29}{358}$$

D. None of these

Answer: B

Watch Video Solution

18. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where

$$lpha,eta,\gamma$$
 are roots of $x^3+27=0$, is :

A.
$$x^2 - x + 1 = 0$$

B.
$$x^2 + 3x + 9 = 0$$

C.
$$x^2 + x + 1 = 0$$

D.
$$x^2 - 3x + 9 = 0$$

Answer: C

19. If α , beta $arethe\sqrt[s]{o}f$ lambda(x^(2)+x)+x+5=0 and lambda_(1),

lambda (2) are the two values of lambda

 $f \text{ or } which \alpha, \beta areco \cap ected by the relation (alpha)/(beta)+$

 $\label{lem:condition} \mbox{(beta)/(alpha)=4, } then the value of \mbox{(lambda_(1))/(lambda_(2))+}$

(lambda_(2))/(lambda_(1))=`

A. 150

B. 1022

C. 180

D. 100

Answer: B

Watch Video Solution

20. The least integer satisfying:

$$49.4 - \left(rac{27-x}{10}
ight) < 47.4 - \left(rac{27-9x}{10}
ight)$$
 is :

B. 3

C. 4

D. None of these

Answer: B

Watch Video Solution

- **21.** If the equation $ax^2 + 2bx 3c = 0$ has non-real roots and $\left(rac{3c}{4}
 ight)<(a+b)$, then c is always :
 - A. < 0
 - B. > 0
 - $C. \geq 0$
 - D. 0

Answer: A

22. Let
$$a, b, c$$
 be positive real numbers. The following system of equations in x, y and z
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \frac{-x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ has }$$

B. unique solution

C. finitely many solutions

D. infinitely many solutions

Answer: D

Watch Video Solution

23. If f (x) = x - [x], x (\neq 0) \in R, where [x] is the greatest integer less than or equal to x, then the number of solutions of f(x) + f $\left(\frac{1}{x}\right)$ = 1 is :

A. 0

B. 1

C. infinite

D. 2

Answer: C

Watch Video Solution

24. The real values of x for which $3^{72} \left(\frac{1}{3}\right)^x \left(\frac{1}{3}\right)^{\sqrt{x}}$ It 1, are :

A. $x \in [0, 64]$

B. $x \in (0, 64)$

C. $x \in [0, 64)$

D. None of these

Answer: A

watch video Solution

25. If the ratio of the roots of $a_1x^2+b_1x+c_1=0$ be equal to the ratio of the roots of $a_2x^2+b_2x+c_2=0$,

then $\frac{a_1}{a_2}, \frac{b_1}{b_2}, \frac{c_1}{c_2}$ are in :

A. A.P.

B. G.P.

C. H.P.

D. None of these

Answer: B

Watch Video Solution

26. If the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k}$ - 1 = 0

is 7, then the roots of the equation are real for k equal to:

A. 1

- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

27. If a + b + c = 0, then $x^{\frac{a^2}{bc}}, x^{\frac{b^2}{ca}}, x\left(\frac{c^2}{ab}\right)$ equals :

- **A.** 1
- B. x
- $\mathsf{C.}\,x^2$
- D. x^3

Answer: D

28. The equation $ax^2 + bx + c = 0$, where a, b,c are real number connected by the relation 4a + 2b + c = 0 and ab < 0 and ab < 0 has:

A. real roots

B. complex roots

C. exactly one root

D. None of these

Answer: A

29.
$$If 3p^2=5p+2$$
 and $3q^2=5q+2$, where p \neq q , then the equation whose roots are 3p - 2q and 3q - 2p is :

A.
$$3x^2 - 5x - 100 = 0$$

$$\mathsf{B.}\,5x^2 + 3x + 100 = 0$$

$$\mathsf{C.}\ 3x^2 - 5x + 100 = 0$$

D.
$$3x^2 + 5x - 100 = 0$$

Answer: A

Watch Video Solution

- **30.** If P(x) = ax^2+bx+c and Q(x) = $-ax^2+dx+c$, where ac \neq 0 , then P(x) . Q(x)=0 has at least :
 - A. four real roots
 - B. two real roots
 - C. four imaginary roots
 - D. None of these

Answer: B

31. If one root of the $ax^2 + bx + c = 0$ is equal to nth power of the other root, then the value of $(ac^n)^{rac{1}{n+1}}+(a^nc)^{rac{1}{n+1}}$ equal :

$$\mathsf{B.}-b$$

C.
$$b^{\frac{1}{n+1}}$$

D.
$$-b^{rac{1}{n+1}}$$

Answer: B

Watch Video Solution

32. The number of real solutions of the equation :

$$|x^2 + 4x + 3| + 2x + 5 = 0$$
 is :

- A. 1
- B. 2
- C. 3

Answer: B

Watch Video Solution

- **33.** Let p, p \neq {1, 2, 3, 4}. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots is :
 - A. 15
 - B. 9
 - C. 7
 - D. 8

Answer: C

34. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α,β,γ are roots of $x^3+27=0$, is :

A.
$$x^2 - x + 1 = 0$$

B.
$$x^2 + 3x + 9 = 0$$

C.
$$x^2 + x + 1 = 0$$

D.
$$x^2 - 3x + 9 = 0$$

Answer: C

Watch Video Solution

35. If α and β be the roots of the equation $x^2+7x+12=0$. Then equation whose roots are $(\alpha+\beta)^2$ and $(\alpha-\beta)^2$ is :

A.
$$x^2 + 50x + 49 = 0$$

$$B. x^2 - 50x + 49 = 0$$

$$\mathsf{C.}\,x^2 - 50x - 49 = 0$$

D.
$$x^2 + 12x + 7 = 0$$

Answer: B

Watch Video Solution

36. If the ratio of the equation $x^2+qx+r=0$, is the same as that of

$$x^2+qx+r=0$$
, then :

A.
$$r^2b=qc^2$$

B.
$$r^2c=qb^2$$

C.
$$c^2r=q^2b$$

D.
$$b^2 r = q^2$$
c.

Answer: D

37. If (1+2i) is a root of the equation $x^2+bx+c=0$. Where b and c are real, then (b,c) is given by :

- A. (2 -5)
- B. (-3,1)
- C. (-2, 5)
- D. (3,1)

Answer: C

 $x^2 + ax + b = 0$ are equal to a and b are :

- **38.** The non-trival values of (a,b) such that roots of the equation
 - A. (2, -1)
 - B. (1, -2)
 - 3. (1, -2)
 - C. (3,2)

D. (2,1)

Answer: B

Watch Video Solution

- **39.** The number of values of 'k' for which the equation $x^2-3x+k=0$ has two distinct roots lying in the interval (0,1) is :
 - A. three
 - B. two
 - C. infinitely many
 - D. no value of k satisfies the requirement.

Answer: D

 $\alpha + \beta = 0$, then the value of λ is :

40. If the roots of the equation
$$\dfrac{x^2-bx}{ax-c}=\dfrac{\lambda-1}{\lambda+1}$$
 are such that

A.
$$\frac{a-b}{a+b}$$

$$\mathsf{C.}\,\frac{1}{c}$$

D.
$$\frac{a+b}{a-b}$$

Answer: A

- **41.** If b > a, then the equation (x a)(x b) 1 = 0 has :
 - A. both roots in [a,b]
 - B. both roots in $[-\infty,b)$
 - C. both roots in $(b, +\infty)$

D. one root in $(\,-\infty,a)$ and other in $(b,\,+\infty)$.

Answer: D

View Text Solution

42. Let f (x) = $(1+b)^2x^2 + 2bx + 1$ and let m(b) be the minimum value of f (x). As b varies, the range of m(b) is :

A. [0,1]

 $\mathsf{B.}\left(0,\frac{1}{2}\right]$

 $\mathsf{C.}\left[\frac{1}{2},1\right]$

D. (0, 1]

Answer: D

43. The number of solutions of:

$$\log_4(x-1) = \log_2(x-3)$$
 is :

Answer: C

Watch Video Solution

$$\alpha/\beta$$
 and $\frac{\beta}{\alpha}$ as its roots, is :

A.
$$3x^2 + 19x + 3 = 0$$

$$B. \, 3x^2 - 19x + 3 = 0$$

44. If $\alpha \neq \beta$ and $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation having

$$\mathsf{C.}\,3x^2 - 19x - 3 = 0$$

D.
$$x^2 - 16x + 1 = 0$$

Answer: B

Watch Video Solution

- **45.** The number of real roots of $3^2x^2-7x+7=9$ is (A) O (B) 2 (C) 1 (D)
- A. zero

4

- B. 2
- C. 1
- D. 4

Answer: B

46. The number of values of k, for which the system of eauations:

$$(k+1)x + 8y = 4k$$

$$kx + (k+3)y = 3k - 1$$

has no solution is,

- A. 0
- B. 1
- C. 2
- D. infinite.

Answer: B

Watch Video Solution

47. The set of all real numbers x for which $x^2 - |x+2| + x > 0$ is

A.
$$(\,-\infty,\,-2)\cup(2,\infty)$$

B.
$$\big(-\infty,\ -\sqrt{2}\big)\cup \big(\sqrt{2},\infty\big)$$

$$\mathsf{C}.\,(\,-\infty,\,-1)\cup(1,\infty)$$

D.
$$(\sqrt{2}, \infty)$$

Answer: B

Watch Video Solution

48. Find the value of a for which one root of the quadratic equation $(a^2-5a+3)x^2+(3a-1)x+2=0$ is twice as large as the other.

A.
$$-\frac{1}{3}$$

B.
$$\frac{2}{3}$$

$$C. - \frac{2}{3}$$

D.
$$\frac{1}{3}$$

Answer: B

49. If minimum value of $f(x)=\left(x^2+2bx+2c^2\right)$ is greater than the maximum value of $g(x)=-x^2-2cx+b^2$, then $(x\in R)$

A.
$$|c|>rac{|b|}{\sqrt{3}}$$

B.
$$\frac{|b|}{\sqrt{2}}>|b|$$

C.
$$-1 < c < \sqrt{2}$$
 b

D. no real values of b and c exist.

Answer: B

Watch Video Solution

50. If (1 - p) is a root of quadratic equation $x^2 + px + (1-p) = 0$, then its roots are :

B.
$$-1, 1$$

$$C.0, -1$$

D. -1, 2

Answer: C

Watch Video Solution

51. If one root of the equation $x^2+px+q=0$ is square of the other root, then :

A.
$$p^3 - q(3p-1) + q^2 = 0$$

B.
$$p^3 - q(3p+1) + q^2 = 0$$

C.
$$p^3 + q(3p-1) - q^2 = 0$$

D.
$$p^3 + q(3p+1) - q^2 = 0$$
 .

Answer: A

52. If the roots the quadratic equation $x^2+px+q=0$ are tan 30° and $\tan 15^\circ$, respectively, then the value of 2 + q - p is :

- A. 2
- B. 3
- C. 0
- D. 1

Answer: B

Watch Video Solution

53. All the values of m for whilch both the roots of the equation $x^2-2mx+m^2-1=0$ are greater than -2 but less than 4 lie in the interval `-23c. -1

- $\mathsf{A.}-2 < m < 0$
- $\mathrm{B.}\,m<3$

C. -1 < m < 3

D. 1 < m < 4.

Answer: C

Watch Video Solution

54. If the difference between the roots of the equation $x^2+ax+1=0$ is less then $\sqrt{5}$, then find the set of possible value of $a\cdot$

A. $(-3,\infty)$

B. $(3, \infty)$

 $\mathsf{C.}\,(\,-\infty,\,-3)$

D. (-3, 3).

Answer: D

55. The quadratic equations:

$$x^2 - 6x + a = 0$$
 and $x^2 - cx + 6 = 0$

have one root in common. The other roots of the first and second equations are integers in the ratio 4:3.

then the common root is:

- A. 2
- B. 1
- C. 4
- D. 3

Answer: A

$$\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \dots + \left[\frac{1}{4} + \frac{199}{200}\right]$$

,

where [x] denotes the greatest integer $\leq x$, is equal to :

- A. 49
- B. 50
- C. 51
- D. None of these.

Answer: B

Watch Video Solution

57. If $lpha,\,eta$ are roots of $375x^2-25x-2=0$ and

$$s_n=lpha^n+eta^n, then{\displaystyle\sum_{n o\infty}}_{r=1}^n S_r$$
 is :

- A. $\frac{7}{116}$
- B. $\frac{1}{12}$
- c. $\frac{29}{358}$

D. Non of these.

Answer: B

Watch Video Solution

58. If the equation $a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x=0, a_1\neq 0, n\geq 2$, has a positive root x = α , then the equation n $a_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\ldots\ldots,a_1=0$ has a positive root, which is:

A. smaller then α

B. geater then α

C. equal to α

D. greater than or equal to α .

Answer: A

59. Let a, b,c be sides of a triangle. No two of them are equal and $\lambda \in \$ R.

If the roots of the equation

$$x^2+2(a+b+c)x+3\lambda(ab+bc+ca)=0$$
 are real , then :

A.
$$\lambda < \frac{4}{3}$$

B.
$$\lambda > rac{5}{3}$$

C.
$$\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$$

D. $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$.

Answer: A

Watch Video Solution

60. Let $lpha,\,eta$ be the roots of the equation $x^2-px+r=0$ and $rac{lpha}{2},\,2eta$ be the roots of the equation x^2-qx+r = 0 . Then the value of r is :

A.
$$\frac{2}{0}(p-q)(2q-p)$$

B.
$$\frac{2}{9}(q-p)(2p-q)$$

$$\mathsf{C.}\ \frac{2}{9}(q-2p)(2q-p)$$

D.
$$rac{2}{9}(2p-q)(2q-p)$$
 .

Answer: D

Watch Video Solution

61. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2+6bcx+2c^2$ is (1) greater than

4ab (2) less than 4ab (3) greater than 4ab (4) less than 4ab

A. greater than 4ab

B. less then 4ab

C. greater than - 4 ab

D. less than - 4ab

Answer: C

Latest Questions From Aieee Jee Examinations

1. Let p and q be real numbers such that p \neq 0 , $p^3 \neq$ q and $p^3 \neq -q$. if α and β are non-zero complex numbers satisfying $\alpha+\beta=-p$ and $\alpha^3+\beta^3=q$,

then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is :

A.
$$(p^3+q)x^2-(p^3+2q)x+(p^3+q)=0$$

B.
$$(p^3+q)x^2-(p^3-2q)x+(p^3+q)=0$$

C.
$$(p^3-q)x^2-(p^3-2q)x+(p^3-q)=0$$

D.
$$(p^3-q)x^2-(p^3+2q)x+(p^3-q)=0$$

Answer: B

2. Let
$$lpha$$
 and eta be the roots of $x^2-6x-2=0$, with $lpha>eta$. If $a_n=lpha^n-eta^n$ for n $\ \ge$ 1, then value of $\dfrac{a_{10}-2a_8}{2a_0}$ is :

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

$x^2 + bx - 1 = 0, x^2 + x + b = 0$

3. A value of b for which the equations:

Have one root in common is:

A.
$$-\sqrt{2}$$

B. $-i\sqrt{3}$

C.
$$-i\sqrt{5}$$

D.
$$\sqrt{2}$$
.

Answer: B

Watch Video Solution

- **4.** Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4,3). Rahul made a mistake in writing down coefficient of x to get roots (3,2). The correct roots of equation are:
 - A. 6, 1
 - B. 4, 3
 - C. -6, -1
 - D. -4, -3

Answer: A

5. If the equations:

$$x^2 + 2x + 3 = 0$$
 and $ax^2 + bx + c = 0a, b, c \in R$,

Have a common root, then a: b : c is :

Answer: D

Watch Video Solution

6. Let lpha and eta be the roots of equation $px^2+qx+r=0, p\neq 0$. If p, q ,r are in A.P. and $\frac{1}{lpha}+\frac{1}{eta}$ = 4, then the value of |lpha-eta| is :

B. - 6

D. $\frac{\sqrt{61}}{9}$

A. $\frac{2\sqrt{17}}{9}$

B. $\frac{\sqrt{34}}{9}$

c. $\frac{2\sqrt{13}}{0}$

Answer: C

Watch Video Solution

7. Let α and β be the roots of equation $x^2 - 6x - 2 = 0$. If

- $a_n=a^n-eta^n, f \,\, {
 m or} \,\,\, n\geq \mathit{l},$ then the value of $rac{a_{10}-2a_8}{2a_9}$ is equal to :
 - A. 6

 - C. 3

D. - 3

$$x^4 + 2x^3 + 3x^2 + 4x + 5 = 0$$
,

then
$$1+a^2+b^2+c^2+d^2$$
 is equal to :

$$\mathsf{A.}-2$$

$$B. - 1$$

D. 1

Answer: B

Watch Video Solution

9. The expression :

$$\frac{1}{\sqrt{(3x+1)}}\left(\left\{\left(\frac{1+\sqrt{3x+1}}{2}\right)^7-\left(\frac{1-\sqrt{3x+1}}{2}\right)^7\right\}\right)$$

is a polynomial in x of degree is :

A. 7

B. 5

C. 4

D. 3

Answer: D

Watch Video Solution

10. The solution of $\frac{6x}{4x-1}<\frac{1}{2}$ is :

A.
$$x < -\frac{1}{8}$$

B.
$$-\frac{1}{8} < x < \frac{1}{4}$$

$${\rm C.}\,x<\,-\,\frac{1}{8}\&x>\frac{1}{4}$$

D.
$$x > \frac{1}{8}$$
.

Answer: A

Watch Video Solution

11. If α and β are the roots of x^2-ax+b^2 = 0, then $\alpha^2+\beta^2$ is equal to :

A.
$$a^2-2b^2$$

B.
$$2a^2-b^2$$

$$\mathsf{C.}\,a^2-b^2$$

D.
$$a^2 + b^2$$

Answer: A

Watch Video Solution

12. The shaded region shown in fig. is given by the inequations:

A.
$$14x + 5y \le 70, y \le 14 \text{ and } x - y \le 5$$

B. $14x + 5y \ge 70, y \le 14$ and $x - y \ge 5$

C.
$$14x + 5y \le 70, y \le 14 \text{ and } x - y \ge 5$$

D.
$$14x+5y\geq 70, y\leq 14$$
 and $x-y\geq 5$

Answer: C

13. The solution set of the ineequation $rac{x^2+6x-7}{|x+4|} < 0$ is

A.
$$(-7, 1)$$

B. (-7, -4)

Answer: B

