©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

RELATIONS

Mcq Level I

1. Let $n(A)=m$ and $n(B)=n$. Then the
total number of non-empty relations that can

be defined from A to B is :

A. m^{n}
B. $n^{m}-1$
C. $m n-1$
D. $2^{m n}-1$

Answer: D

2. Let $A=\{1,2,3\}$. The total number of
distinct relations which can be defined over A
is:
A. 6
B. 8
C. 2^{9}
D. None of these

Answer: C

D Watch Video Solution

3. Let $A=\{1,2,3,4\}$ and $R=\{(2,2),(3,3),(4,4),(1,2)\}$ be

 relation on A. Then A is :A. reflexive
B. symmetric
C. transitive
D. None of these

Answer: C
(D) Watch Video Solution
4. The void relation on a set A is :
A. reflexive
B. symmetric and transitive
C. reflexive and symmetric

D. reflexive and transitive

Answer: B
(D) Watch Video Solution
5. The relation 'is subset of' on the power set $P(A)$ of a set A is :
A. symmetric
B. anti-symmetric
C. equivalence relation
D. None of these

Answer: B

D Watch Video Solution

6. The relation 'congruence modulo m ' is :

A. reflexive only
B. symmetric only
C. transitive only

D. an equivalence relation

Answer: D
(Watch Video Solution
7. Let R be the relation over the set $N \times N$
and is defined
$(a, b) R(c, d) \Rightarrow a+d=b+c$. Then R is :
A. reflexive only
B. symmetric only
C. transitive only
D. an equivalence relation

Answer: D

D Watch Video Solution
8. Let $P=\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$.

Then P is :
A. reflexive
B. symmetric
C. transitive
D. anti-symmetric

Answer: B
(Watch Video Solution
9. Let R be a relation on a set A such that $R=R^{-1}$. Then R is :
A. reflexive
B. symmetric
C. transitive
D. None of these

Answer: B

D Watch Video Solution
10. Let a relation R in the set of natural
number
be
defined
$(x, y) \in R \Leftrightarrow x^{2}-4 x y+3 y^{2}=0 \quad$ for \quad all
$x, y \in N$. Then the relation R is :
A. reflexive
B. symmetric
C. transitive
D. an equivalence relation

Answer: A
11. Let $A=\{1,2,3\}$. Then the relation $R=\{(2,3)\}$ in A
is :
A. symmetric only
B. transitive only
C. symmetric and transitive only
D. None of these

Answer: B
12. Two points A and B in a plane are related if
$O A=O B$, where O is a fixed point. This relation
is :
A. reflexive but only symmetric
B. reflexive but not transitive
C. equivalence relation
D. partial order relation

Answer: C

Mcq Level li

1. The relation R defined in $A=\{1,2,3\}$ by a $R b$ if
$\left|a^{2}-b^{2}\right| \leq 5$. Which of the following is not true?
A. Domain of $R=\{1,2,3\}$
B. Range of $\mathrm{R}=\{5\}$
C. $R^{-1}=R$
D. $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)\}$

Answer: B

D Watch Video Solution

2. Let R be a relation in the set of natural numbers defined
$R=\left\{\left(1+x, 1+x^{2}\right): x \leq 5, x \in N\right\}$.
Which of the following in false :
A. Domain of $R=\{2,3,4,5,6\}$
B. Range of $R=\{2,5,10,17,26\}$
C. $R=\{(2,2),(3,5),(4,10),(5,17),(6,26)\}$

D. At least one is false

Answer: C

D Watch Video Solution

3. R is a relation over the set of real numbers
and it is given by $m n \geq 0$. Then R is :
A. reflexive and symmetric
B. symmetric and transitive
C. an equivalence relation

D. partial order relation

Answer: C

D Watch Video Solution

4. R is a relation over the set of integers and it
is given by $(x, y) \in R \Leftrightarrow|x-y| \leq 1$. Then R is :
A. reflexive and symmetric
B. reflexive but not transitive

C. symmetric and transitive

D. an equivalence relation

Answer: A

D Watch Video Solution

5. Let L be the set of all straight lines in the

Euclidean plane. Two lines l_{1} and l_{2} are said to be related by the relation R iff $l_{1}| | l_{2}$. Then the relation R is :
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: D

D Watch Video Solution

6. Let R be the relation over the set of straight
lines in a plane such that $l R m \Leftrightarrow l \perp m$.

Then R is :
A. reflexive
B. symmetric
C. transitive
D. an equivalence relation

Answer: B

D Watch Video Solution

7. Let R be the relation over the set of integers

such that $l R m \Leftrightarrow l$ is a multiple of m. Then R
A. reflexive
B. symmetric
C. an equivalence relation
D. None of these

Answer: A

D Watch Video Solution
8. Which one of the following relations on R is an equivalence relation?
A. $a R_{1} b \Leftrightarrow|a|=|b|$
B. $a R_{2} b \Leftrightarrow a \geq b$
C. $a R_{3} b \Leftrightarrow a$ divides b
D. $R_{4} b \Leftrightarrow a<b$

Answer: A

D View Text Solution

9. Let $R=\{(x, y): x, y \in A, x+y=5\}$,
where $A=\{1,2,3,4,5\}$. Then :
A. R is reflexive, symmetric but not transitive
B. R is not reflexive, not symmetric but
transitive
C. R is not reflexive, symmetric and not
transitive
D. R is an equivalence relation

Answer: C

10. For $x, y \in R$, define a relation R by x R y if and only if $x-y+\sqrt{2}$ is an irrational number. Then R is :
A. symmetric
B. transitive
C. an equivalence relation
D. None of these

Answer: D

11. Given the relation $R=\{(1,2),(2,3)\}$ is the set $A=$ $\{1,2,3\}$. Then the minimum number of ordered pairs which when added to R make it an equivalence relation is :
A. 5
B. 6
C. 7
D. 8

Answer: C
12. Let $A=\{a, b, c\}$. Which of the following is not an equivalence relation in A ?

$$
\begin{aligned}
& \text { А. } R_{1}=\{(a, b),(b, c),(a, c),(a, a)\} \\
& \text { В. } R_{2}=\{(c, b),(c, a),(c, c),(b, b)\} \\
& \text { С. } R_{3}=\{(a, b),(b, b),(c, c),(a, b)\}
\end{aligned}
$$

D. None of these

Answer: D
13. Let R_{1} and R_{2} be two equivalence relations in the set A . Then:
A. $R_{1} \cup R_{2}$ is an equivalence relation
B. $R_{1} \cap R_{2}$ is an equivalence relation
C. $R_{1}-R_{2}$ is an equivalence relation
D.

Answer: B

- Watch Video Solution

14. If A is the set of even natural numbers less
than 8 and B is the set of prime numbers less
than 7, then the number of relations from A to B is :
A. 2^{9}
B. 9^{2}
C. 3^{2}
D. $2^{9}-1$

Answer: A
15. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a
relation on the set $A=\{1,2,3,4\}$. The relation R
is :
A. A function
B. transitive
C. not symmetric
D. reflexive.

Answer: C
16. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12)$,
$(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{$
$3,6,9,12\}$.

The relation is :
A. reflexive only
B. reflexive and transitive only
C. reflexive and symmetric only
D. an equivalence relation.

Answer: B

D Watch Video Solution

17. Let $x, y \in I$ and suppose that a relation R
on I is defined by x R y if and only if $x \leq y$.

Then :
A. R is reflexive and symmetric
B. R is symmetric and transitive
C. R is an equivalence relation
D. R is partial order.

Answer: D

D Watch Video Solution

18. The relation R defined on the set $A=\{1,2,3$,

4\} by :
$R=\left\{(x, y):\left|x^{2}-y^{2}\right| \leq 10, x, y \in A\right\} \quad$ is
given by :
A. $\{(1,1),(1.2),(1,3),(1,4),(2,1),(2,2),(2,3)$,
$(2,4)\}$

$$
\text { B. }\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),(3,4),
$$

$(4,4)\}$
C. $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3$,
$2),(3,3),(3,4),(4,3),(4,4)\}$
D. None of these

Answer: C

D Watch Video Solution

19. Let S be the set of all real numbers. Then the relation $R=\{(a, b): 1+a b>0\}$ on S is:
A. Reflexive and symmetric but not transitive.
B. reflexive and transitive but not
symmetric
C. symmctric and transitive but not reflexive
D. reflexive, transitive and symmctric.

Answer: A

- Watch Video Solution

20. Let W denote the words in the English
dictionary. Define the relation R by:
$R=\{(x, y) \in W \times W$, the words x and y have at least one letter in common \}

Then R is :
A. Not reflexive, symmetric and transitive
B. reflexive, symmetric and not transitive
C. relexive, symmetric and transitive
D. reflexive, not symmetric and transitive.

Answer: B

D Watch Video Solution

21. Let R be the real line, Consider the following subsets of the plane $R \times R$:
$S=\{(x, y): y=x+1$ and $0<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$.
Which one of the following is true?
A. T is an equivalence relation on R but S is
not
B. Neither S nor T is an equivalence
relation on R
C. Both S and T are equivalence relations
on R
D. S is an equivalence relation on R but T is
not.

Answer: A

D Watch Video Solution

Aieee Jee Examinations

1. Consider the following relations :
$R=\{(x, y) \mid x, y$ are real numbers and $\mathrm{x}=\mathrm{wy}$
for some rational number $w\}$:
$S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right)\right\}, \mathrm{m}, \mathrm{n}, \mathrm{p}$ and q are integers
such that $n, q \neq 0$ and $q m=p n\}$. Then :
A. R is an equivalence relation but S is not an equivalence relation
B. neither R nor S is an equivalence relation
C. S is an equivalence relation but R is not
an equivalence relation
D. R and S both are equivalence relations

Answer:

- Watch Video Solution

Rcqs

1. Let R be an equivalence relation defined on a set containing 6 elements. The minimum number of orderded pairs that R should contain is :
A. 36
B. 64
C. 6
D. 12

Answer: C
2. Define a relation R on $A=\{1,2,3,4\}$ as $x R y$ iff x divides y . Then R is :
A. reflexive and transitive
B. reflexive and symmetric
C. symmetric and transitive
D. equivalence

Answer: A
3. Let S be the set of all real numbers. A relation R has been defined on S by $a \operatorname{Rb}$ $\Rightarrow|a-b| \leq 1$, then R is
A. reflexive and transitive but not
symmetric
B. an equivalence relation
C. symmetric and transitive but not reflexive

D. reflexive and symmetric but not

transitive

Answer: D

D Watch Video Solution

4. For any two real numbers, an operation * defined by $a * b=1+a b$ is
A. commutative but not associative

B. associative but not commutative

C. neither commutative nor associative

D. both commutative and associative

Answer: A

D Watch Video Solution

5. In a group $Q-\{-1\}$ under binary operation ' + ' defined by $a^{*} b=a+b+a b$, then inverse of 10 is :
A. $\frac{1}{10}$

> B. $\frac{11}{10}$
> C. $-\frac{11}{10}$
> D. $\frac{-10}{11}$

Answer: D

D Watch Video Solution

6. If the operation \oplus is defined by
$a \oplus b=a^{2}+b^{2}$ for all real numbers 'a' and 'b'
then $(2 \oplus 3) \oplus 4=$
A. 181
B. 182
C. 184
D. 185

Answer: D

- Watch Video Solution

