

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

SOLUTION OF TRIANGLES

Level I

- 1. If the angles of a triangle are in the ratio
- 1:2:3, then the sides are in the ratio:

A.
$$1:\sqrt{3}:2$$

B.
$$\sqrt{3}:1:2$$

C.
$$\sqrt{3}$$
: $\sqrt{2}$: 1

D. 1:
$$\sqrt{3}$$
: $\sqrt{2}$

Answer: A

Watch Video Solution

2. Let the angles A,B,C of ΔABC be in

 $A.\ P.$ and let b: $c=\sqrt{3}$: $\sqrt{2}$, then angle A is :

A. 45°

B. $60\,^\circ$

C. 75°

D. None of these

Answer: C

Watch Video Solution

3. If b=3, c=4, $B=60^{\circ}$, then the number of triangles that can be constructed is

A. nil
B. 1
C. 2
D. infinitely many
Answer: A
Watch Video Solution

4. If the angles of a triangle are in the ratio

2:3:7, then sides are in the ratio of

A.
$$\pi$$
 : 2 : $\left(\sqrt{3}+1\right)$

B.
$$\sqrt{2}$$
: 2 : $\left(\sqrt{3}+1\right)$

C.
$$\sqrt{2}$$
: $\left(\sqrt{3}+1\right)$: 2

D.
$$2$$
: $\left(\sqrt{3}+1\right)$: $\sqrt{2}$

Answer: B

Watch Video Solution

5. If in a triangle ABC, $2\cos A = \sin B\cos ecC$, then:

$$A. a = b$$

$$B.\,b=c$$

$$\mathsf{C}.\,c=a$$

D.
$$2a = bc$$

Answer: C

Watch Video Solution

6. If $\Delta=a^2-\left(b-c\right)^2$, where Δ is area of

 ΔABC , then $\tan A$ is

A. 15/16

B. 8/17

C.8/15

 $\mathsf{D}.\,1/2$

Answer: C

Watch Video Solution

7. In a triangle ABC, angle $B=60^{\circ}$, then

A. $(a-b)^2+ab=c^2$

$$\mathsf{B.}\left(b-c\right)^{2}+bc=c^{2}$$

$$\mathsf{C.}\left(c-a\right)^{2}+ca=b^{2}$$

D.
$$a^2 + b^2 + c^2 = 2b^2 + ac$$

Answer: C

Watch Video Solution

8. In a ΔABC , if a+b=3c, then the value of $\cot. \ \frac{A}{2}\cot. \ \frac{B}{2}$ is

A. 1

- B.2
- **C**. 3
- D. 4

Answer: B

Watch Video Solution

9. If the sides a,b,c of a triangle are in A.P., then the value of \cot . $\frac{A}{2}\cot$. $\frac{C}{2}$ is

A. 1

B.2

C. 3

D. 4

Answer: C

Watch Video Solution

10. In a triangle ABC, if $\angle B = 60^{\circ}$, then the expression (a+b+c)(a-b+c) is

A. 3ab

 $B.\,3bc$

 $\mathsf{C}.\,3ca$

D. 3abc

Answer: C

Watch Video Solution

11. Ther perimeter of a triangle is 6 times the A.M of the sines of its angles . If sides a=1, then angle A is

A.
$$\pi/6$$

B.
$$\pi/4$$

$$\mathsf{C}.\,\pi/3$$

D.
$$\pi/2$$

Answer: A

Watch Video Solution

12. In a triangle ABC, if $a\cos A=b\cos B$, then the triangle is

- A. isosceles
- B. equilateral
- C. right-angled isosceles
- D. None of these

Answer: C

- 13. If the lengths of the sides of a triangle are
- $3,\,4\,\mathrm{and}\,5\,\mathrm{units}$ then R (the circumradius) is

- A. 2.0
- B. 3.0
- $\mathsf{C.}\ 2.5$
- D. 3.5

Answer: C

Watch Video Solution

14. The expression:

$$\underline{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}$$

is:

A. $\cos^2 A$

 $\mathsf{B.}\sin^2A$

 $\mathsf{C}.\cos2A$

 $D.1 - \cos A$

Answer: B

15. In ΔABC , a=4, b=12, $B=60^{\circ}$, then

the value of $\sin A$ is :

A.
$$\frac{\sqrt{3}}{2}$$

$$B. \frac{1}{3\sqrt{2}}$$

$$\mathsf{C.} \; \frac{1}{2\sqrt{3}}$$

D.
$$\frac{2}{\sqrt{3}}$$

Answer: C

16. If H is the orthocentre of ΔABC , then

AH is

A. $b \cot A$

B. ot A

 $\mathsf{C}.\ a\cot A$

D. $a \cot B$

Answer: C

17. In
$$\triangle ABC$$
, $a=2$, $b=3$ and $\sin A=\frac{2}{3}$,

then B is

- A. 60°
- B. 120°
- C. 30°
- D. 90°

Answer: D

18. Two sides of a triangle are $\sqrt{3}+1$ and $\sqrt{3}-1$ and the included angle is 60° . The difference of the remaining angles is

- A. 90°
- B. 60°
- C. 45°
- D. 30°

Answer: A

19. In a triangle, the length of two larger sides are 10 and 9 respectively. If the angles are in A.P., then the lengths of the third side can be

A.
$$5\pm\sqrt{6}$$

B.
$$5-\sqrt{6}$$

$$C. 3\sqrt{3}$$

Answer: A

20. If the sides of a triangle are 3cm, 2cm and 4cm then the cosine of the greatest angle is equal to

A.
$$\frac{7}{8}$$

B.
$$\frac{11}{16}$$

$$C. - \frac{1}{4}$$

D.
$$\frac{1}{4}$$

Answer: C

View Text Solution

21. In any ΔABC , $\sum a^3\sin(B-C)$ is equal to

A.
$$ab + bc + ca$$

B.
$$3(a + b + c)$$

 $\mathsf{C}.\,3abc$

D. 0

Answer: D

22. If D is the mid-point of side BC of a triangle ABC and AD is perpendicular to AC, then

A.
$$a^2 + b^2 = 5c^2$$

B.
$$3a^2 = b^2 - 3c^2$$

C.
$$b^2 = a^2 - c^2$$

D.
$$3b^2 = a^2 - c^2$$

Answer: D

23. If in a ΔABC , $a\sin A=b\sin B$, then the triangle is

- A. Equilateral
- B. Right-angled
- C. Isosceles
- D. None of these

Answer: C

24. If in a triangle ABC,AD,BE and CF are altitudes and R is the circum-radius, then then radius of the circle DEF is

A.
$$\frac{R}{2}$$

 $\mathsf{B}.\,R$

 $\mathsf{C}.\,2R$

D. None of these

Answer: A

25. If in a triangle , $\angle B=45^\circ$, $a=2\big(\sqrt{3}+1\big)$ units and the area is $6+2\sqrt{3}$ sq.units then the side b is equal to :

A.
$$\sqrt{2} ig(\sqrt{3}+1ig)$$
 units

B.
$$\frac{\sqrt{3}+1}{\sqrt{2}}$$
 units

D. None of these

Answer: C

26. If the lengths of the sides of a triangle are

 $3,\,5,\,7$, then the largest angle of the triangle is

A.
$$3\pi/4$$

B.
$$2\pi/3$$

C.
$$5\pi/6$$

D.
$$\pi/2$$

Answer: B

27. In a ΔABC , $a(b\cos C - \mathrm{o}sB)$ is equal to

A. 0

B. b^2-c^2

 $\mathsf{C}.\,a^2$

D. None of these

Answer: B

28. If A is the area and 2s the sum of three sides of a triangle, then

A.
$$A \leq rac{s^2}{2}$$

$$\mathsf{B.}\,A>rac{s^2}{\sqrt{3}}$$

A.
$$A \leq \dfrac{s^2}{2}$$
B. $A > \dfrac{s^2}{\sqrt{3}}$
C. $A \leq \dfrac{s^2}{3\sqrt{3}}$

D. None of these

Answer: C

29. In a triangle ABC,

 $(a+b+c)(b+c-a)=\lambda bc$ if :

A. $o < \lambda < 4$

B. $\lambda > 4$

 $\mathsf{C}.\,\lambda < 0$

D. $\lambda > 0$

Answer: A

30. Let R be the circumradius of ΔABC . Then

$$\frac{b^2-c^2}{2aR}$$
 equals

A.
$$\cos B - \cos C$$

$$B.\cos(B-c)$$

$$\mathsf{C}.\sin(B-C)$$

D. None of these

Answer: C

31. In a $\triangle ABC$, $\tan \frac{A}{2}$ and $\tan \frac{B}{2}$ satisfy

 $6x^2 - 5x + 1 = 0$. Then:

A.
$$a^2-b^2=c^2$$

$$\mathtt{B.}\,a^2+b^2=c^2$$

C.
$$a^2 + b^2 > c^2$$

D. None of these

Answer: B

32. Two sides of a triangle are $2\sqrt{2}cm$ and $2\sqrt{3}cm$. The angle opposite to the shorter side is $\frac{\pi}{4}$. The largest possible length of the third side is

A.
$$\left(6+\sqrt{2}\right)cm$$

B.
$$(\sqrt{6}-\sqrt{2})cm$$

C.
$$\left(\sqrt{6}+rac{1}{\sqrt{2}}
ight)\!cm$$

D. None of these

Answer: C

watch video Solution

33. In a
$$\Delta ABC$$
, $a=2b$ and $|A-B|=rac{\pi}{3}.$

Then $\angle C$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D. None of these

Answer: C

34. If in a ΔABC ,

$$\sin^3 A + \sin^3 B + \sin^3 C = 3\sin A\sin B\sin C$$

, then
$$\begin{vmatrix} a & b & c \ b & c & a \ c & a & b \end{vmatrix}$$
 equals

A. 0

$$\mathsf{B.}\,(a+b+c)(ab+bc+ca)$$

$$\mathsf{C.}\left(a+b+c\right)^3$$

D. None of these

Answer: A

35. If in a
$$\Delta ABC$$
, $\frac{a}{\cos A}=\frac{b}{\cos B}$, then :

A.
$$2\sin A\cos B=\sin C$$

B.
$$2\sin A\sin B\sin C=1$$

$$\mathsf{C.} \sin^2 A + \sin^2 B = \sin^2 C$$

D. None of these

Answer: A

View Text Solution

1. If in ΔABC , $\cot A$, $\cot B$, $\cot C$ are in A.P., then

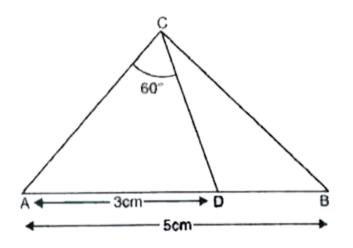
A. a, b, c are in A.P.

B. a^{2}, b^{2}, c^{2} are in A.P.

C. $\cos A$, $\cos B$, $\cos C$ are in A.P.

D. None of these

Answer: B


2. The sides of a triangle are in A.P and its area is $\frac{3}{5}$ × (area of equilateral triangle of same perimeter). Then the ratio of the sides to :

- A. 1:2:3
- B. 1:3:5
- C.3:5:7
- D. None of these

Answer: C

3. In the figure, ABC is a triangle in which $\angle C=90^\circ$ and AB=5cm. D is a point on AB such that AD=3cm and $\angle ACD=60^\circ$. Then the length of AC is

A.
$$\frac{3}{\sqrt{7}}cm$$

B.
$$\sqrt{\frac{7}{3}}cm$$

$$\mathsf{C.}\,5\sqrt{\frac{3}{7}}cm$$

D. None of these

Answer: C

Watch Video Solution

4. In
$$\Delta ABC$$
, $\frac{a\cos A + b\cos B + osC}{a+b+c}$

equals: where R and r are circum-radius and in

-radius respectively

$$\frac{I}{r}$$

$$\mathsf{B.}\,\frac{r}{R}$$

C.
$$\frac{R}{2r}$$

$$\mathrm{D.}\; \frac{2r}{R}$$

Answer: B

View Text Solution

5. The ratio of R: r of an equilateral triangle is : where R and r are circumradius and inradius respectively

- A. 1:1
- B. 2:1
- C. 3:1
- D. $2:\sqrt{3}$

Answer: B

View Text Solution

6. H.M of exradii of a triangle is

A. 2R

B.3r

 $\mathsf{C}.\,R+r$

D. None of these

Answer: B

Watch Video Solution

7. In ΔABC , the inradius and exradii are $r,\,r_1,\,r_2$ and r_3 respectively. Then $r.\,r_1r_2r_3$ equals

A.
$$\Delta^2$$

B. 2Δ

C. $\frac{abc}{4R}$

D. None of these

Answer: A

Watch Video Solution

8. In any triangle ABC, $\sin \frac{A}{2}$ is

A. less than $\dfrac{b+c}{2}$

B. greater than
$$\frac{2a}{a+b+c}$$

C. less than or equal to
$$\frac{a}{b+c}$$

D. None of these

Answer: C

Watch Video Solution

9. In ΔABC , $\cos A + \cos B + \cos C > 1$ only if the triangle is

A. acute-angled

B. right-angled

C. obtuse-angled

D. Nothing can be said about the nature of the triangle.

Answer: D

10. Let A_0, A_1, A_2, A_3, A_4 and A_5 be the consecutive vertices of a regular hexagon inscribed in a circle of radius 1 unit. Then the

product of the lengths of A_0A_1 , A_0A_2 and

 A_0A_4 is

A. 3

 $\mathsf{B.}\;\frac{3}{4}$

 $\mathsf{C.}\ \frac{3\sqrt{3}}{2}$

D. $3\sqrt{3}$

Answer: A

11. In a ΔABC , if D is the middle point of BC and AD is perpendicular to AC, then $\cos C$ equals

$$A. - \frac{b}{c}$$

$$\mathsf{B.}\;\frac{2b}{a}$$

C.
$$\frac{c^2 + a^2}{ca}$$

D.
$$\frac{b^2+c^2}{ca}$$

Answer: D

12. If the angles of a triangle ABC satisfy the equation :

 $81^{\sin^2 x} + 81^{\cos^2 x} = 30$, then the triangle can't be

A. right-angled

B. isosceles

C. equilateral

D. obtuse-angled

Answer: A

13. If n, n+1, n+2 where $n \in N$, represent the sides of a triangle ABC, in which the largest angle is twice the smallest, then n is equal to

A. 1

B. 2

 $\mathsf{C.}\,3$

D. 4

Answer: C

View Text Solution

14. If in
$$\triangle ABC$$
, $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25} = k$, then: $\begin{vmatrix} -\frac{1}{k} & 25 & 19 \\ 25 & -\frac{1}{k} & 7 \end{vmatrix}$ equals

A. 0

 $\mathsf{B.}\,26-\sec^3C$

 $\mathsf{C.}\,32-\sec^2 B$

$$\mathsf{D.}\,42-\sec^3A$$

Answer: A

Watch Video Solution

15. In a
$$\Delta ABC$$
, if $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$, then :

 $\sin A \sin B + \sin B \sin C + \sin C \sin A$ equals

A. 0

B. 1

c.
$$\frac{9}{4}$$

$$D.\cos^2 A + \cos^2 B + \cos^2 C$$

Answer: C

View Text Solution

16. In a ΔABC , if $A=18^{\circ}$, b-a=2, ab=4,

then the triangle is

A. right-angled

B. isosceles

C. acute-angled

D. obtuse-angled

Answer: D

Watch Video Solution

17. The perimeter of a triangle, right-angled at C, 70, and the in-radius is 6, then |a-b|

equals

A. 1

B. 3

C. 7

D. 9

Answer: A

Watch Video Solution

18. If in a ΔABC , sines of angles A and B

satisfy:

 $4x^2-2\sqrt{6}x+1=0$,then $\cos(A-B)$

equals

$$\mathsf{B.}\;\frac{1}{2}$$

c.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{1}{\sqrt{2}}$$

Answer: B

Watch Video Solution

19. In ΔABC , if the median AD makes an angle

heta with AC, and AB=2AD, then $\sin heta$ equals

A. $\sin C$

B. $\sin B$

 $C. \sin A$

D. None of these

Answer: C

Watch Video Solution

20. ΔABC , if In а $Re(\sin A + \sin B + \sin C) = 96$, then the area of the triangle in square units, equals

B. 48

 $\mathsf{C.}\,72$

D. 96

Answer: D

21. In a
$$\Delta ABC$$
, if $\cot \frac{A}{2}\cot \frac{B}{2}=c$, $\cot \frac{B}{2}\cot \frac{C}{2}=a$ and $\cot \frac{C}{2}\cot \frac{A}{2}=b$, then $\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}$ equals

- **A.** 0
- B. 1
- $\mathsf{C.}\,2$
- D. 3

Answer: C

Watch Video Solution

22. The distance of the incentre of ΔABC from A is

A.
$$4R \sin \frac{A}{2}$$

B.
$$4R \sin \frac{B}{2}$$

C.
$$4R \sin \frac{B}{2} \sin \frac{C}{2}$$

D. None of these

Answer: C

23. In a
$$\Delta ABC$$
, if $\cot A=\left(x^3+x^2+x\right)^{1/2}$, $\cot B=\left(x+x^{-1}+1\right)^{1/2}$ and

 $\cot C = \left(x^{-3} + x^{-2} + x^{-1}
ight)^{-1/2}$, then the triangle is

A. isosceles

B. Right-angled

C. acute-angled

D. obtuse-angled

Answer: B

24. If in $\triangle ABC$, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$,

then $\cos A$ equals :

A.
$$\frac{1}{5}$$

$$\mathsf{B.}\;\frac{5}{9}$$

c.
$$\frac{17}{35}$$

D. None of these

Answer: A

25. If p_1, p_2, p_3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then $p_1p_2p_3$ equals

A.
$$\displaystyle \frac{a^2b^2c^2}{2R^3}$$

B.
$$\frac{a^2b^2c^2}{4D^3}$$

C.
$$\frac{a^2b^2c^2}{$$
8 R^3}

D.
$$\frac{a^2b^2c^2}{16R^3}$$

Answer: C

26. If $\frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C}$, then triangle is

A. isosceles

B. Right-angled

C. equilateral

D. obtuse-angled

Answer: C

27. If
$$c^2 = a^2 + b^2$$
,

then

4s(s-a)(s-b)(s-c) equals

A. s^2

B. $a^{2}b^{2}$

 $\mathsf{C}.\,b^2c^2$

D. $c^{2}a^{2}$

Answer: B

28. If the lengths of the sides of a ΔABC are

 $3,\,4$ and 5cm , then the distance between its incentre and circumcentre is

A.
$$\frac{1}{2}cm$$

B.
$$\frac{\sqrt{3}}{2}cm$$

C.
$$\frac{\sqrt{5}}{2}cm$$

D. None of these

Answer: C

29. If the lengths of the sides of a ΔABC are

 $3,\,4$ and 5cm , then the distance between its orthocentre and circumcentre is

- A. 2cm
- B. 2.5cm
- $\mathsf{C}.\ 1.5cm$
- D. None of these

Answer: B

30. If A,B,C are the angles of a triangle, then the value of \cot . $\frac{A}{2} + \cot$. $\frac{B}{2} + \cot$. $\frac{C}{2}$ is

A.
$$\frac{R}{s}$$

B.
$$\frac{s}{R}$$

C.
$$\frac{\Delta}{s^2}$$

D.
$$\frac{s^2}{\Lambda}$$

Answer: D

View Text Solution

31. The area of a circle is A_1 and the area of a regular pentagon inscribed in the circle is A_2 .

Then A_1/A_2 is

A.
$$\frac{2\pi}{5}$$
 sec. $\frac{\pi}{10}$

B.
$$\frac{2\pi}{5}$$
cos. $\frac{\pi}{10}$

C.
$$\frac{2\pi}{5}$$
cot. $\frac{\pi}{10}$

D. None of these

Answer: A

32. In a triangle ABC , $2ac\sin$. $\frac{1}{2}(A-B+C)$

is equal to:

A.
$$a^2 + b^2 - c^2$$

$$\mathtt{B.}\,c^2+a^2-b^2$$

C.
$$b^2 - c^2 - a^2$$

D.
$$c^2 - a^2 - b^2$$

Answer: B

33. In a triangle ABC, let $\angle C=\pi/2$. If r is the inradius and R is the circum-radius of the triangle, then 2(r+R) is equal to :

$$A. a + b$$

$$B.b+c$$

$$\mathsf{C}.\,c+a$$

$$D. a + b + c$$

Answer: A

34. The number of distinct real roots of

$$\frac{-\pi}{4} \leq x \leq \frac{\pi}{4}$$
 is :

A. 0

B. 1

C. 2

D. 3

Answer: C

35. In a triangle ABC, $2ca\sin$. $\frac{A-B+C}{2}=$

A.
$$a^2 + b^2 - c^2$$

B.
$$c^2 + a^2 - b^2$$

C.
$$b^2 - c^2 - a^2$$

D.
$$c^2 - a^2 - b^2$$

Answer: B

36. In a $\triangle ABC$, $\tan \frac{A}{2} = \frac{5}{6}$, $\tan \frac{C}{2} = \frac{2}{5}$, then

A. a, c, b are in A.P.

B. a, b, c are in A.P.

C. b, a, c are in A.P.

D. *a*, *b*, *c* are in G.P.

Answer: B

37. In a triangle ABC, a=4, b=3, $\angle A=60^{\circ}$,

then c is the root of the equation

A.
$$c^2 - 3c - 7 = 0$$

B.
$$c^2 + 3c + 7 = 0$$

C.
$$c^2 - 3c + 7 = 0$$

D.
$$c^2 + 3c - 7 = 0$$

Answer: A

38. In a triangle with sides

 $a,b,c,r_1>r_2>r_3$ (which are extradii), then

A.
$$a > b > c$$

B. a < b < c

C. a>b and b< c

D. a < b and b > c

Answer: A

39. The sides of a triangle are 3x+4y, 4x+3y and 5x+5y , where x,y>0, then the triangle is

A. right-angled

B. obtuse angled

C. equilateral

D. None of these

Answer: B

40. Which of the following pieces of data does NOT uniequely determine an acute angled triangle ABC (R being the radius of the circumcircle)?

A. a, $\sin A \sin B$

B. a, b, c

 $C. a, \sin B, R$

D. a, $\sin A$, R

Answer: D

41. If in a triangle ABC, $a\cos^2.\frac{C}{2}+\cos^2.\frac{A}{2}=\frac{3b}{2}$, then the sides a,b,c

A. are in G. P.

B. are in H. P.

C. satsify a+b=c

D. are in A. P.

Answer: D

42. In a triangle ABC, medians AD and BE are

drawn . If AD=4, $\angle DAB=rac{\pi}{6}$ and

$$\angle ABE=rac{\pi}{3}$$
 , then the area of the ΔABC is

A.
$$\frac{16}{3}$$

$$\text{B.}\ \frac{32}{3\sqrt{3}}$$

c.
$$\frac{64}{3}$$

D.
$$\frac{8}{3}$$

Answer: B

43. The sum of the radii of inscribed and circumscribed circles for an n-sided regular polygon of side 'a' is

A.
$$\frac{a}{4}\cot\left(\frac{\pi}{2n}\right)$$

B.
$$a \cot \left(\frac{\pi}{n}\right)$$

$$\mathsf{C.}\,\frac{a}{2}\!\cot\!\left(\frac{\pi}{2n}\right)$$

D.
$$a \cot \left(\frac{\pi}{2n}\right)$$

Answer: C

44. The angles of a triangle are in the ratio 4:1:1, then the ratio of the largest side to the perimeter is

A.
$$1:1+\sqrt{3}$$

C.
$$\sqrt{4}$$
: $2+\sqrt{3}$

D. 1:
$$2 + \sqrt{3}$$

45. The sides of a triangle are $\sin lpha, \cos lpha$ and

$$\sqrt{1+\sin lpha \cos lpha}$$
 for some $0 The the greatest angle of the triangle is$

A. 60°

B. 90°

C. 120°

D. 150°

46. The sides of a triangle are in the ratio $1:\sqrt{3}:2$, then angles of the triangle are in the ratio

A. 1:3:5

B. 2:3:4

C. 3:2:1

D. 1:2:3

47. If in a ΔABC , the altitudes from the vertices A,B,C on opposite sides are in H.P., then $\sin A, \sin B, \sin C$ are in

A. A. P.

 $\mathsf{B}.\,G.\,P.$

 $\mathsf{C}.\,H.\,P.$

D. Arithmetic-Geometric progression

Answer: A

48. If a,b,c are sides opposite to the angles

A,B,C, then which of the following is correct?

A.
$$(b+c)\cos$$
. $\frac{A}{2}=a\sin\Bigl(rac{B+C}{2}\Bigr)$

B.
$$(b+c)\cos\left(rac{B+C}{2}
ight)=a\sin.rac{A}{2}$$

$$\mathsf{C}.\,(b-c)\mathrm{cos}\!\left(rac{B-C}{2}
ight)=a\,\mathrm{cos.}\,rac{A}{2}$$

D.
$$(b-c)\cos \frac{A}{2} = a\sin \left(\frac{B-C}{2}\right)$$

Answer: D

Watch Video Solution

49. A triangular park is enclosed on two sides by a fence and on the third side of straight river bank. The two sides having fence of same length x. The maximum area enclosed by the park is

A.
$$\frac{3}{2}x^2$$

B.
$$\sqrt{\frac{x^3}{8}}$$
C. $\frac{1}{2}x^2$

C.
$$\frac{1}{2}x^2$$

D.
$$\pi x^2$$

Answer: C

Watch Video Solution

50. Internal bisector of $\angle A$ of triangle ABC meets side BC at D. A. line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent the sides of $\triangle ABC$, then :

A. Ae is H.M. Between b and c

$$B. AD = \frac{2bc}{b+c} \cos. \frac{A}{2}$$

C.
$$AF=rac{4bc}{b+c}{
m sin.}~rac{A}{2}$$

D. the triangle AEF is isosceles

Answer: A::B::C::D

View Text Solution

Latest Questions From Aiee Jee Examinations

1. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed

circles. A false statement among the following

is

A. There is a reagular polygon with $\frac{r}{R} = \frac{1}{2}$

B. There is a reagular polygon with

$$\frac{r}{R} = \frac{1}{\sqrt{2}}$$

C. There is a reagular polygon with

$$\frac{r}{R} = \frac{2}{3}$$

D. There is a reagular polygon with

$$\frac{r}{R} = \frac{\sqrt{3}}{2}$$

Answer: C

Watch Video Solution

2. If the angles A, B and C of a triangle are in an arithmetic progression and if a,b and cdenote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$ is :

A.
$$\frac{1}{2}$$

A.
$$\frac{1}{2}$$
B. $\frac{\sqrt{3}}{2}$

C. 1

D. $\sqrt{3}$

Answer: D

Watch Video Solution

3. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a,b and c denote the lengths of the sides opposite to A,B and C respectively. The value (s) of x for which

 $a = x^2 + x + 1$, $b = x^2 - 1$ and c = 2x + 1

is (are)

A.
$$-\left(2+\sqrt{3}
ight)$$

B.
$$1+\sqrt{3}$$

C.
$$2+\sqrt{3}$$

D.
$$4\sqrt{3}$$

Answer: B

4. Let PQR be a triangle of area Δ with a=2

, $b=rac{7}{2}$ and $c=rac{5}{2}$, where a,b and c are the

lengths of the sides of the triangle opposite

to the angles at P,Q and R respectively. Then

$$rac{2\sin P - \sin 2P}{2\sin P + \sin 2P}$$
 equals

A.
$$\frac{3}{4\Delta}$$

B.
$$\frac{45}{4\Delta}$$

C.
$$\left(\frac{3}{4\Delta}\right)^2$$

D.
$$\left(\frac{45}{4\Delta}\right)^2$$

Answer: C

5. ABCD is a trapezium such that AB and CD are parallel and $BC \perp CD$. If $\angle ADB = \theta$, BC = p and CD = q, then AB is equal to

A.
$$rac{p^2+q^2\cos heta}{p\cos heta+q\sin heta}$$

B.
$$rac{p^2+q^2}{p^2\cos heta+q^2\sin heta}$$

C.
$$rac{\left(p^2+q^2
ight){\sin heta}}{\left(p\cos heta+q\sin heta
ight)^2}$$

D.
$$\dfrac{\left(p^2+q^2
ight)\sin heta}{p\cos heta+q\sin heta}$$

Answer: D

