©゙" doubtnut India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA

ENGLISH)

UNIT TEST PAPER NO. 2 (GEOMETRIES)

Select The Correct Answer

1. The point $(4,1)$ undergoes the following two successive transformations
(i) Reflection about the line $y=x$
(ii) Translation through a distance 2 units along the positive X -axis.

Then the final coordinate of the point are
B. $(3,4)$
C. $(1,4)$
D. $(7 / 2,2 / 7)$

Answer: B

- Watch Video Solution

2. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1

- Watch Video Solution

3. A variable circle passes through the fixed point $A(p, q)$ and touches x-axis. The locus of the other end of the diameter through A is :
A. $(x-p)^{2}=4 q y$
B. $(x-q)^{2}=4 p y$
C. $(y-p)^{2}=4 q x$
D. $(y-q)^{2}=4 p x$

Answer: A

- Watch Video Solution

4. On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which the tangent are parallel to the line $8 x=9 y$ are
A. $(2 / 5,1 / 5)$
B. $(-2 / 5,1 / 5)$
C. $(-2 / 5,-1 / 5)$
D. None of these.

Answer: B

- Watch Video Solution

5. Which one of the following is independent of α in the hyperbola
$\left(0<\alpha<\frac{\pi}{2}\right) \frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
A. eccentricity
B. abscissa of foci
C. directrix
D. vertex.

Answer: B

- Watch Video Solution

6. Volume of a tetrahedron is k (area of one face) (length of perpendicular from the opposite vertex upon it), where k is :
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$

Answer: B

7. Area of the triangle with vertices (a, b), (x_{1}, y_{1}) and (x_{2}, y_{2}), where a, x_{1}, x_{2} are in G.P. with common ratio r and b, y_{1}, y_{2} are in G.P. with common ratio s is :
A. $a b(r-1)(s-1)(s-r)$
B. $\frac{1}{2} a b(r+1)(s+1)(s-r)$
C. $\frac{1}{2} a b(r-1)(s-1)(s-r)$
D. $a b(r+1)(s+1)(r-s)$

Answer: C

- Watch Video Solution

8. $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel straight lines if
A. $\sqrt{\frac{g^{2}-a c}{h^{2}+a^{2}}}$
B. $2 \sqrt{\frac{g^{2}-a c}{h^{2}+a^{2}}}$
C. $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$
D. $\sqrt{\frac{g^{2}-a c}{a(a+b)}}$

Answer: C

- Watch Video Solution

9. The lines joining the origin to the points of intersection of the
curves :
$a x^{2}+2 h x y+b y^{2}+2 g x=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$
are ate right angles if :
A. $a\left(h^{\prime}+g^{\prime}\right)=a^{\prime}(h+g)$
B. $h\left(a^{\prime}+b^{\prime}\right)=h^{\prime}(a+b)$
C. $g\left(a^{\prime}+b^{\prime}\right)=g^{\prime}(a+b)$
D. $g(a+b)=g^{\prime}\left(a^{\prime}+b^{\prime}\right)$.

Answer: C

- Watch Video Solution

10. Range of volues of m for which the st. line $y=m x+2$ cuts the circle $x^{2}+y^{2}=1$ in distinct or coincident points is:
A. $[-\sqrt{3}, \sqrt{3}]$
B. $[\sqrt{3}, \infty)$
C. $(-\infty,-\sqrt{3}] \cup[\sqrt{3}, \infty)$
D. None of these.

Answer: C

11. The abscissae of two points P and Q are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 a^{\prime} x-b^{\prime 2}=0$. Then the radius of the circle having PQ as diameter is:
A. $\sqrt{a^{2}+a^{\prime 2}}$
B. $\sqrt{b^{2}+b^{\prime 2}}$
C. $\sqrt{a^{2}+b^{2}+a^{\prime 2}+b^{\prime 2}}$
D. None of these.

Answer: C

D View Text Solution

12. If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circumference 10π, then the equation of the circle is :
A. $x^{2}+y^{2}-2 x+2 y-23=0$
B. $x^{2}+y^{2}-2 x-2 y-23=0$
C. $x^{2}+y^{2}+2 x+2 y-23=0$
D. $x^{2}+y^{2}+2 x-2 y-23=0$.

Answer: A

- Watch Video Solution

13.

If
two
circle
$(x-1)^{2}+(y-3)^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$
intersect in two distinct points, then
A. $r<2$
B. $r=2$
C. $r>2$
D. $2<r<8$

Answer: D

- Watch Video Solution

14. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on a parabola meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2}\right)$, then :
A. $t_{2}=-t_{1}+\frac{2}{t_{1}}$
B. $t_{2}=t_{1}-\frac{2}{t_{1}}$
C. $t_{2}=t_{1}+\frac{2}{t_{1}}$
D. $t_{2}=-t_{1}-\frac{2}{t_{1}}$

D Watch Video Solution

15. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having its centre $(0,3)$ is :
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A

16. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \varphi, b \tan \varphi) \quad$ where $\theta+\varphi=\frac{\pi}{2}$ be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If (h, k) is the point of intersection of the normals at P and Q, then $k=$
A. $\frac{a^{2}+b^{2}}{2}$
B. $-\left(\frac{a^{2}+b^{2}}{a}\right)$
C. $\frac{a^{2}+b^{2}}{b}$
D. $-\left(\frac{a^{2}+b^{2}}{b}\right)$

Answer: D

- Watch Video Solution

17. The points representing $\sqrt[3]{5+i \sqrt{3}}$ lie.
A. circle with centre at $(0,0)$ radius $2 \sqrt{2}$
B. straight line
C. circle with centre at (0,0) and radius $\sqrt{2}$
D. None of these.

Answer: C

- Watch Video Solution

18. The number of the tangents that can be drawn from $(1,2)$ to $x^{2}+y^{2}=5$ is :
A. 1
B. 2
C. 3
D. 0
19. The area of the rectangle formed by the perpendiculars from the centre of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ to the tangent and normal at the point whose eccentric angle is $\frac{\pi}{4}$, is :
A. $\frac{30}{17}$ sq. units
B. $\frac{30}{13}$ sq. units
C. $\frac{27}{17}$ sq. units
D. $\frac{27}{13}$ sq. units.

Answer: B
20. A ray of light coming along the line $3 x+4 y-5=0$ gets reflected from the line $a x+b y-1=0$ and goes along the line $5 x-12 y-10=0$, then :
A. $a=\frac{64}{115}, b=\frac{112}{15}$
B. $a=\frac{-64}{115}, b=\frac{8}{115}$
C. $a=\frac{64}{115}, b=\frac{8}{115}$
D. $a=\frac{-64}{115}, b=\frac{-8}{115}$.

Answer: C

- View Text Solution

21. If P and Q are two points on the circle:
$x^{2}+y^{2}-4 x-4 y-1=0$, which are farthest and nearest respectively from the point $(6,5)$, then :
A. $P \equiv\left(\frac{-22}{5}, 3\right)$
B. $Q \equiv\left(\frac{22}{5}, \frac{19}{5}\right)$
C. $P \equiv\left(\frac{14}{3}, \frac{-11}{5}\right)$
D. $Q \equiv\left(\frac{-14}{3},-4\right)$

Answer: B

- View Text Solution

22. A focal chord of $y^{2}=4 a x$ meets it in P and Q . If S is the focus,
then $\frac{1}{S P}+\frac{1}{S Q}=$
A. $\frac{1}{a}$
B. $\frac{4}{a}$
C. $\frac{2}{a}$
D. None of these.

- Watch Video Solution

23. The eccentric angles of the extremities of latus-rectum to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are given by :
A. $\tan ^{-1}\left(\pm \frac{a e}{b}\right)$
B. $\tan ^{-1}\left(\pm \frac{b e}{a}\right)$
C. $\tan ^{-1}\left(\pm \frac{b}{a e}\right)$
D. $\tan ^{-1}\left(\pm \frac{a}{b e}\right)$

Answer: C

- Watch Video Solution

24. The equation of the common tangent of the curves $x^{2}+4 y^{2}=8$ and $y^{2}=4 x$ is:
A. $x-2 y-4=0$
B. $x-2 y+4=0$
C. $2 x+y=4$
D. $2 x-y+4=0$

Answer: B

- Watch Video Solution

25. Tangent at any point ' P ' of the ellipse $9 x^{2}+16 y^{2}-144=0$ is drawn. Eccentric angle of ' P ' is $=\frac{1}{2} \sin ^{-1}\left(\frac{1}{7}\right)$. If ' N ' is the foot of perpendicular from the centre O to this tangent, then $\angle P O N$ is :

$$
\text { A. } \tan ^{-1}\left(\frac{1}{12}\right)
$$

B. $\tan ^{-1}\left(\frac{1}{24}\right)$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{3}$

Answer: B

D View Text Solution

