

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

UNIT TEST PAPER NO. 2 (GEOMETRIES)

Select The Correct Answer

1. The point (4, 1) undergoes the following two successive transformations

(i) Reflection about the line y=x

(ii) Translation through a distance 2 units along the positive X-axis.

Then the final coordinate of the point are

A. (4, 3)

B. (3, 4)

C. (1, 4)

D. (7/2, 2/7)

Answer: B

Watch Video Solution

2. The number of integral values of m for which the x-coordinate of the point of intersection of the lines 3x + 4y = 9 and y = mx + 1is also an integer is 2 (b) 0 (c) 4 (d) 1

A. 2

B. 0

C. 4

D. 1

Answer: A

3. A variable circle passes through the fixed point A(p, q) and touches x-axis. The locus of the other end of the diameter through A is :

A.
$$(x - p)^2 = 4qy$$

B. $(x - q)^2 = 4py$
C. $(y - p)^2 = 4qx$
D. $(y - q)^2 = 4px$

Answer: A

4. On the ellipse $4x^2 + 9y^2 = 1$, the points at which the tangent are parallel to the line 8x = 9y are

A. (2/5, 1/5)B. (-2/5, 1/5)

C. (-2/5, -1/5)

D. None of these.

Answer: B

Watch Video Solution

5. Which one of the following is independent of lpha in the hyperbola

$$\Big(0$$

A. eccentricity

B. abscissa of foci

C. directrix

D. vertex.

Answer: B

Watch Video Solution

6. Volume of a tetrahedron is k (area of one face) (length of perpendicular from the opposite vertex upon it), where k is :

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$

Answer: B

7. Area of the triangle with vertices (a, b), (x_1, y_1) and (x_2, y_2) , where a, x_1, x_2 are in G.P. with common ratio r and b, y_1, y_2 are in G.P. with common ratio s is :

A.
$$ab(r-1)(s-1)(s-r)$$

B. $\frac{1}{2}ab(r+1)(s+1)(s-r)$
C. $\frac{1}{2}ab(r-1)(s-1)(s-r)$
D. $ab(r+1)(s+1)(r-s)$

Answer: C

8. $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two parallel

straight lines if

A.
$$\sqrt{\frac{g^2 - ac}{h^2 + a^2}}$$

B.
$$2\sqrt{\frac{g^2 - ac}{h^2 + a^2}}$$

C.
$$2\sqrt{\frac{g^2 - ac}{a(a + b)}}$$

D.
$$\sqrt{\frac{g^2 - ac}{a(a + b)}}$$

Answer: C

9. The lines joining the origin to the points of intersection of the curves :

 $ax^2+2hxy+by^2+2gx=0 ext{ and } a\,'x^2+2h\,'xy+b\,'y^2+2g\,'x=0$ are ate right angles if :

A.
$$a(h' + g') = a'(h + g)$$

B. $h(a' + b') = h'(a + b)$

$$\mathsf{C}.\,g(a\,{}'+b\,{}')=g\,{}'(a+b)$$

D.
$$g(a + b) = g'(a' + b')$$
.

Answer: C

Watch Video Solution

10. Range of volues of m for which the st. line y = mx + 2 cuts the circle $x^2 + y^2 = 1$ in distinct or coincident points is:

A.
$$\left[-\sqrt{3},\sqrt{3}
ight]$$

B. $\left[\sqrt{3},\infty
ight)$
C. $\left(-\infty,\,-\sqrt{3}
ight]\cup\left[\sqrt{3},\infty
ight)$

D. None of these.

Answer: C

11. The abscissae of two points P and Q are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2a'x - b'^2 = 0$. Then the radius of the circle having PQ as diameter is:

A.
$$\sqrt{a^2 + a'^2}$$

B. $\sqrt{b^2 + b'^2}$
C. $\sqrt{a^2 + b^2 + a'^2 + b'^2}$

D. None of these.

Answer: C

12. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is :

A.
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

B. $x^2 + y^2 - 2x - 2y - 23 = 0$
C. $x^2 + y^2 + 2x + 2y - 23 = 0$
D. $x^2 + y^2 + 2x - 2y - 23 = 0$.

Watch Video Solution

Answer: A

13. If two circle
$$(x-1)^2+(y-3)^2=r^2$$
 and $x^2+y^2-8x+2y+8=0$
intersect in two distinct points, then

A. r < 2

 $\mathsf{B.}\,r=2$

 ${\sf C.}\,r>2$

 $\mathsf{D.}\, 2 < r < 8$

Answer: D

14. The normal at the point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point $(bt_2^2, 2bt_2)$, then :

A.
$$t_2 = -t_1 + rac{2}{t_1}$$

B. $t_2 = t_1 - rac{2}{t_1}$
C. $t_2 = t_1 + rac{2}{t_1}$
D. $t_2 = -t_1 - rac{2}{t_1}$

Answer: D

15. The radius of the circle passing through the foci of the ellipse

$$rac{x^2}{16}+rac{y^2}{9}=$$
 1, and having its centre (0, 3) is :

A. 4

B. 3

 $\mathsf{C}.\,\sqrt{12}$

D.
$$\frac{7}{2}$$

Answer: A

Watch Video Solution

16. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \varphi, b \tan \varphi)$ where $\theta + \varphi = \frac{\pi}{2}$ be two points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If (h, k) is the point of intersection of the normals at P and Q, then k =

A.
$$\frac{a^2 + b^2}{2}$$
B.
$$-\left(\frac{a^2 + b^2}{a}\right)$$
C.
$$\frac{a^2 + b^2}{b}$$
D.
$$-\left(\frac{a^2 + b^2}{b}\right)$$

Answer: D

17. The points representing $\sqrt[3]{5+i\sqrt{3}}$ lie.

A. circle with centre at (0, 0) radius $2\sqrt{2}$

B. straight line

C. circle with centre at (0, 0) and radius $\sqrt{2}$

D. None of these.

Answer: C

Watch Video Solution

18. The number of the tangents that can be drawn from (1, 2) to $x^2 + y^2 = 5$ is :

A. 1

B. 2

C. 3

D. 0

Answer: A

19. The area of the rectangle formed by the perpendiculars from the centre of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ to the tangent and normal at the point whose eccentric angle is $\frac{\pi}{4}$, is :

A.
$$\frac{30}{17}$$
 sq. units
B. $\frac{30}{13}$ sq. units
C. $\frac{27}{17}$ sq. units
D. $\frac{27}{13}$ sq. units.

Answer: B

20. A ray of light coming along the line 3x + 4y - 5 = 0 gets reflected from the line ax + by - 1 = 0 and goes along the line 5x - 12y - 10 = 0, then :

A.
$$a = \frac{64}{115}, b = \frac{112}{15}$$

B. $a = \frac{-64}{115}, b = \frac{8}{115}$
C. $a = \frac{64}{115}, b = \frac{8}{115}$
D. $a = \frac{-64}{115}, b = \frac{-8}{115}$

Answer: C

View Text Solution

21. If P and Q are two points on the circle :

 $x^2 + y^2 - 4x - 4y - 1 = 0$, which are farthest and nearest respectively from the point (6, 5), then :

A.
$$P \equiv \left(\frac{-22}{5}, 3\right)$$

B. $Q \equiv \left(\frac{22}{5}, \frac{19}{5}\right)$
C. $P \equiv \left(\frac{14}{3}, \frac{-11}{5}\right)$
D. $Q \equiv \left(\frac{-14}{3}, -4\right)$

Answer: B

22. A focal chord of $y^2 = 4ax$ meets it in P and Q. If S is the focus, then $\frac{1}{SP} + \frac{1}{SQ} =$ A. $\frac{1}{a}$ B. $\frac{4}{a}$ C. $\frac{2}{a}$

D. None of these.

Answer: A

23. The eccentric angles of the extremities of latus-rectum to the

ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ are given by :

A.
$$\tan^{-1}\left(\pm \frac{ae}{b}\right)$$

B. $\tan^{-1}\left(\pm \frac{be}{a}\right)$
C. $\tan^{-1}\left(\pm \frac{b}{ae}\right)$
D. $\tan^{-1}\left(\pm \frac{a}{be}\right)$

Answer: C

Watch Video Solution

24. The equation of the common tangent of the curves

$$x^{2} + 4y^{2} = 8$$
 and $y^{2} = 4x$ is:
A. $x - 2y - 4 = 0$
B. $x - 2y + 4 = 0$
C. $2x + y = 4$
D. $2x - y + 4 = 0$

Answer: B

Watch Video Solution

25. Tangent at any point 'P' of the ellipse $9x^2 + 16y^2 - 144 = 0$ is drawn. Eccentric angle of 'P' is $= \frac{1}{2}\sin^{-1}\left(\frac{1}{7}\right)$. If 'N' is the foot of perpendicular from the centre O to this tangent, then $\angle PON$ is :

A.
$$\tan^{-1}\left(\frac{1}{12}\right)$$

B.
$$\tan^{-1}\left(\frac{1}{24}\right)$$

C. $\frac{\pi}{12}$
D. $\frac{\pi}{3}$

Answer: B

