

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

UNIT TEST PAPER NO. 6 (THREE - DIMENSIONAL GEOMETRY, VECTORS & PROBABILITY)

Select The Correct Answer

1. If the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form the sides BC,CA and AB respectively of a triangle ABC then (A) \overrightarrow{a} . $(\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{0}$ (B) $\overrightarrow{a} \times (\overrightarrow{b} x \overrightarrow{c}) = \overrightarrow{0}$ (C) \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{c} = \overrightarrow{c} = \overrightarrow{a}$. $a \neq 0$ (D) $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \overrightarrow{0}$ A. \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. $\overrightarrow{a} = 0$ B. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ C. \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{b}$. $\overrightarrow{c} = \overrightarrow{c}$. \overrightarrow{a}

$$\mathsf{D}.\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}\times\overrightarrow{a}=\overrightarrow{0}$$

Answer: B

2. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} areunit \longrightarrow rs, then |veca-vecb|^2+|vecb-vec|^2+|vecc^2-vecb|^2+|vecc^2-vecb|^2+|vecc^2-vecb|^2+|vecb-vecb-vecb|^2+|vecb-vecb-vecb|^2+|vecb-vecb|^2+|vecb-vecb|^2+|vecb-vecb-vecb|^2+|vecb-vecb-vecb|^2+|vecb-vecb-vecb|^2+|vecb-vecb|^2+|vecb-vecb$

veca²|² does not exceed (A) 4 (B) 9 (C) 8 (D) 6

A. 4

B. 8

C. 9

D. 6

Answer: B

Watch Video Solution

3. If a variable takes the discrete values lpha-4,

$$lpha-rac{7}{2},lpha-rac{5}{2},lpha-2,lpha+rac{1}{2},lpha-rac{1}{2},lpha+5(lpha>0)$$
 , then the median is

A.
$$\alpha - \frac{5}{4}$$

B. $\alpha - \frac{1}{2}$
C. $\alpha - 2$
D. $\alpha + \frac{5}{4}$

Answer: A

Watch Video Solution

4. If different words are found from letters of the word 'UNIVERSITY', then the probability that two of I's do not come together is :

A.
$$\frac{4}{5}$$

B. $\frac{6}{5}$

C.
$$\frac{2}{5}$$

D. $\frac{3}{2}$

Answer: A

Watch Video Solution

5. A problem in mathematics is given to three students A, B, C and their respective probability of solving the problem is 1/2, 1/3 and 1/4. Probability that the problem is solved is 3/4 b. 1/2 c. 2/3 d. 1/3

Answer: A

6.
$$P(B) = \frac{3}{4}, P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3}, P(A \cap B \cap \overline{C}) = \frac{1}{3}$$
 then $P(B \cap \overline{C})$:

A.
$$\frac{1}{12}$$

B. $\frac{3}{4}$
C. $\frac{5}{12}$
D. $\frac{23}{36}$

Answer: A

7. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then, the probability of 2 successes is

A.
$$\frac{37}{256}$$

B. $\frac{219}{256}$

C.
$$\frac{128}{256}$$

D. $\frac{28}{256}$

Answer: D

8. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j}$. If \overrightarrow{c} is a vector such that
 $\overrightarrow{a} = \overrightarrow{c} |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{a} \times \overrightarrow{b}$ and \overrightarrow{c} is
 30° , then $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{c} \right| = .$
A. 2/3
B. 3/2
C. 2
D. 3

Answer: B

9. s. Given two vectors are i-j and i+2j the unit,vector coplanar with the two vectors and perpendicular to first is

A.
$$rac{1}{\sqrt{2}}ig(\hat{i}+\hat{j}ig)$$

B. $rac{1}{\sqrt{5}}ig(2\hat{i}+\hat{j}ig)$
C. $\pm rac{1}{\sqrt{2}}ig(\hat{i}+\hat{j}ig)$

D. None of these

Answer: C

10. The unit vector which is orthgonal to the vector $\vec{a} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with the vectors $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is :

A.
$$rac{2\hat{i}-6\hat{j}+\hat{k}}{\sqrt{41}}$$

B.
$$rac{2\hat{i} - 6\hat{j}}{\sqrt{13}}$$

C. $rac{3\hat{j} - \hat{k}}{\sqrt{10}}$
D. $rac{4\hat{i} - 3\hat{j} - 3\hat{k}}{\sqrt{34}}$

Answer: C

11. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be the three vectors such that
 $\overrightarrow{a}. (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b}. (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c}. (\overrightarrow{a} + \overrightarrow{b}) = 0$ and $|\overrightarrow{a}| = 1, |\overrightarrow{b}|$
then $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$ equals :

A. 13

B. 81

C. 9

D. 5

Answer: B

12. The pair of lines whose direction cosines are given by :

 $3l+m+5n=0,\,6mn-mn-2nl+5l=0$ are :

A. parallel

B. perpendicular

C. inclined at
$$\cos^{-1} igg(rac{1}{6} igg)$$

D. None of these

Answer: C

View Text Solution

13. The length of the perpendicular from P(1,0,2) on the line $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1}$ is A. (1,2,-3)

B.
$$\left(rac{1}{2}, 1, -rac{3}{2}
ight)$$

C. $(2, 4, -6)$
D. $(2, 3, 6)$

Answer: B

Watch Video Solution

14. The lines whose vector equations are :

$$\overrightarrow{r}=\overrightarrow{a}+t\overrightarrow{b},\,\overrightarrow{r}=\overrightarrow{c}+t'\overrightarrow{d}$$
 are coplanar if :

$$\begin{aligned} \mathsf{A}. & \left(\overrightarrow{a} - \overrightarrow{b}\right). \left(\overrightarrow{c} \times \overrightarrow{d}\right) = 0\\ \mathsf{B}. & \left(\overrightarrow{a} - \overrightarrow{c}\right). \left(\overrightarrow{b} \times \overrightarrow{d}\right) = 0\\ \mathsf{C}. & \left(\overrightarrow{b} - \overrightarrow{c}\right). \left(\overrightarrow{a} \times \overrightarrow{d}\right) = 0\\ \mathsf{D}. & \left(\overrightarrow{b} - \overrightarrow{d}\right). \left(\overrightarrow{a} \times \overrightarrow{d}\right) = 0\end{aligned}$$

Answer: B

15. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black balls will be drawn, is

A. 13/32

B.1/4

C.1/32

D. 3/16

Answer: A

Watch Video Solution

16. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is 3/5 b. 1/5 c. 2/5 d. 4/5

A.
$$\frac{3}{5}$$

B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. $\frac{4}{5}$

Answer: C

17. The probability of India winning a test match against West Indies is 1/2. Assuming independence from match to match, find the probability that in a match series Indias second win occurs at the third test.

A.
$$\frac{1}{8}$$

B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: B

18. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is

Answer: C

Watch Video Solution

19. If E and F are events with $P(E) \leq P(F)$ and $P(E \cap F) > 0$, then :

A. occurrence of E \Rightarrow occurrence of F

B. occurrence of $F \Rightarrow \text{ occurrence of E}$

C. non - occurrence of E \Rightarrow non occurrence of F

D. None of the above implication holds.

Answer: D

Watch Video Solution

20. If \overrightarrow{E} and \overrightarrow{F} are complementary events of events E and F respectively and 0 < P(F) < 1 , then :

A.
$$P(E/F) + P\left(\overrightarrow{E}/F\right) = 1$$
 or $P\left(E/\overrightarrow{F}\right) + P\left(\overrightarrow{E}/\overrightarrow{F}\right) = 1$
B. $P(E/F) + P\left(E/\overrightarrow{F}\right) = 1$
C. $P\left(\overrightarrow{E}/F\right) + P\left(E/\overrightarrow{F}\right) = 1$

D. None of these

Answer: A

21. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are vectors such that \overrightarrow{a} . $\overrightarrow{b} = 0$ and $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$ then:

A.
$$\left|\overrightarrow{a}\right|^{2} + \left|\overrightarrow{b}\right|^{2} = \left|\overrightarrow{c}\right|^{2}$$

B. $\left|\overrightarrow{a}\right|^{2} = \left|\overrightarrow{b}\right|^{2} + \left|\overrightarrow{c}\right|^{2}$
C. $\left|\overrightarrow{b}\right|^{2} = \left|\overrightarrow{a}\right|^{2} + \left|\overrightarrow{c}\right|^{2}$

Watch Video Solution

D. None of these

Answer: A

22. If
$$\overrightarrow{a}$$
 satisfies $\overrightarrow{a} \times \left(\hat{i} + 2\hat{j} + \hat{k}\right) = \hat{i} - \hat{k}$ then \overrightarrow{a} is equal to
A. $-\frac{1}{3}\left(2\hat{i} + \hat{j} + 2\hat{k}\right)$
B. \hat{j}
C. $\frac{1}{3}\left(\hat{i} + 2\hat{j} + 2\hat{k}\right)$

Answer: A

Watch Video Solution

23. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are non-coplanar unit vectors such that
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\overrightarrow{b} + \overrightarrow{c}}{\sqrt{2}}$ then the angle between \overrightarrow{a} and \overrightarrow{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. $\frac{3\pi}{4}$

Answer: D

Watch Video Solution

24. Two system of rectangular axes have the same origin. If a plane cuts them at distance a,b,c and a', b', c' from the origin , then :

A.
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$$

B. $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$
C. $\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$
D. $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} - \frac{1}{c'^2} = 0$

Answer: C

> Watch Video Solution

25. Dialing a telephone number, a man forgot the last two digits and remembering only that they are different . He dialled the number at random. The probability of the number dialled correctly is :

A.
$$\frac{1}{2}$$

B. $\frac{1}{45}$

C.
$$\frac{1}{72}$$

D. $\frac{1}{90}$

Answer: D

Watch Video Solution