©゙" doubtnut

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

UNIT TEST PAPER NO. 6 (THREE - DIMENSIONAL GEOMETRY, VECTORS \& PROBABILITY)

Select The Correct Answer

1. If the vectors $\vec{a}, \vec{b}, \vec{c}$ form the sides BC, CA and AB respectively of a triangle ABC then (A) $\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$ (B) $\vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=\vec{c}=\vec{c}=\vec{a} \cdot a \neq 0 \text { (D) } \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \overrightarrow{0} \tag{C}
\end{equation*}
$$

A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c} \times \vec{a}=\overrightarrow{0}$

Answer: B

- Watch Video Solution

2. If $\vec{a}, \vec{b}, \vec{c}$ areunit $\longrightarrow r s$, then \mid veca-vecb|$\left.\right|^{\wedge} 2+\mid$ vecb-vec $\left.\right|^{\wedge} 2+\mid$ vecc ${ }^{\wedge} 2-$ veca^2|^2` does not exceed (A) 4 (B) 9 (C) 8 (D) 6
A. 4
B. 8
C. 9
D. 6

Answer: B

3. If a variable takes the discrete values $\alpha-4$,
$\alpha-\frac{7}{2}, \alpha-\frac{5}{2}, \alpha-2, \alpha+\frac{1}{2}, \alpha-\frac{1}{2}, \alpha+5(\alpha>0)$, then the median is
A. $\alpha-\frac{5}{4}$
B. $\alpha-\frac{1}{2}$
C. $\alpha-2$
D. $\alpha+\frac{5}{4}$

Answer: A

- Watch Video Solution

4. If different words are found from letters of the word 'UNIVERSITY', then the probability that two of I's do not come together is:
A. $\frac{4}{5}$
B. $\frac{6}{5}$
C. $\frac{2}{5}$
D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

5. A problem in mathematics is given to three students A, B, C and their respective probability of solving the problem is $1 / 2,1 / 3$ and $1 / 4$. Probability that the problem is solved is $3 / 4 \mathrm{~b} .1 / 2 \mathrm{c} .2 / 3 \mathrm{~d} .1 / 3$
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: A

6. $\quad P(B)=\frac{3}{4}, P(\bar{A} \cap B \cap \bar{C})=\frac{1}{3}, P(A \cap B \cap \bar{C})=\frac{1}{3} \quad$ then $P(B \cap \bar{C}):$
A. $\frac{1}{12}$
B. $\frac{3}{4}$
C. $\frac{5}{12}$
D. $\frac{23}{36}$

Answer: A

- Watch Video Solution

7. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then, the probability of 2 successes is
A. $\frac{37}{256}$
B. $\frac{219}{256}$
C. $\frac{128}{256}$
D. $\frac{28}{256}$

Answer: D

- Watch Video Solution

8. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a} . \equiv|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|=$.
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: B

9. s. Given two vectors are $i-j$ and $i+2 j$ the unit,vector coplanar with the two vectors and perpendicular to first is
A. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
B. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
C. $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. None of these

Answer: C

- Watch Video Solution

10. The unit vector which is orthgonal to the vector $\vec{a}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is :
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-6 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}-3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Answer: C

- Watch Video Solution

11. Let $\vec{a}, \vec{b}, \vec{c}$ be the three vectors such that $\vec{a} \cdot(\vec{b}+\vec{c})+\vec{b} \cdot(\vec{c}+\vec{a})+\vec{c} \cdot(\vec{a}+\vec{b})=0$ and $|\vec{a}|=1,|\vec{b}|$ then $|\vec{a}+\vec{b}+\vec{c}|$ equals :
A. 13
B. 81
C. 9
D. 5
12. The pair of lines whose direction cosines are given by:
$3 l+m+5 n=0,6 m n-m n-2 n l+5 l=0$ are :
A. parallel
B. perpendicular
C. inclined at $\cos ^{-1}\left(\frac{1}{6}\right)$
D. None of these

Answer: C

- View Text Solution

13. The length of the perpendicular from $P(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is
A. $(1,2,-3)$
B. $\left(\frac{1}{2}, 1,-\frac{3}{2}\right)$
C. $(2,4,-6)$
D. $(2,3,6)$

Answer: B

- Watch Video Solution

14. The lines whose vector equations are:
$\vec{r}=\vec{a}+t \vec{b}, \vec{r}=\vec{c}+t^{\prime} \vec{d}$ are coplanar if :
A. $(\vec{a}-\vec{b}) \cdot(\vec{c} \times \vec{d})=0$
B. $(\vec{a}-\vec{c}) \cdot(\vec{b} \times \vec{d})=0$
c. $(\vec{b}-\vec{c}) \cdot(\vec{a} \times \vec{d})=0$
D. $(\vec{b}-\vec{d}) \cdot(\vec{a} \times \vec{d})=0$

Answer: B

15. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black balls will be drawn, is
A. $13 / 32$
B. $1 / 4$
C. $1 / 32$
D. $3 / 16$

Answer: A

Watch Video Solution

16. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is $3 / 5 \mathrm{~b} .1 / 5 \mathrm{c} .2 / 5 \mathrm{~d} .4 / 5$
A. $\frac{3}{5}$
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. $\frac{4}{5}$

Answer: C

- Watch Video Solution

17. The probability of India winning a test match against West Indies is
$1 / 2$. Assuming independence from match to match, find the probability that in a match series Indias second win occurs at the third test.
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: B

- Watch Video Solution

18. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is
A. $\frac{3}{20}$
B. $\frac{1}{5}$
C. $\frac{7}{20}$
D. $\frac{4}{5}$

Answer: C

- Watch Video Solution

19. If E and F are events with $P(E) \leq P(F)$ and $P(E \cap F)>0$, then :
A. occurrence of $E \Rightarrow$ occurrence of F
B. occurrence of $F \Rightarrow$ occurrence of E
C. non - occurrence of $E \Rightarrow$ non occurrence of F
D. None of the above implication holds.

Answer: D

- Watch Video Solution

20. If \vec{E} and \vec{F} are complementary events of events E and F respectively and $0<P(F)<1$, then :
A. $P(E / F)+P(\vec{E} / F)=1$ or $P(E / \vec{F})+P(\vec{E} / \vec{F})=1$
B. $P(E / F)+P(E / \vec{F})=1$
C. $P(\vec{E} / F)+P(E / \vec{F})=1$
D. None of these
21. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a}+\vec{b}=\vec{c}$ then:
A. $|\vec{a}|^{2}+|\vec{b}|^{2}=|\vec{c}|^{2}$
B. $|\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}$
C. $|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{c}|^{2}$
D. None of these

Answer: A

- Watch Video Solution

22. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to
A. $-\frac{1}{3}(2 \hat{i}+\hat{j}+2 \hat{k})$
B. \hat{j}
C. $\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
D. \hat{i}

Answer: A

- Watch Video Solution

23. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$ then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. $\frac{3 \pi}{4}$

Answer: D

- Watch Video Solution

24. Two system of rectangular axes have the same origin. If a plane cuts them at distance a,b,c and $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}$, c^{\prime} from the origin , then :
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{2}}+\frac{1}{c^{\prime 2}}=0$
B. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{b^{2}}}-\frac{1}{c^{{ }^{2}}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{{ }^{2}}}=0$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{{ }^{2}}}+\frac{1}{b^{b^{2}}}-\frac{1}{c^{{ }^{2}}}=0$

Answer: C

- Watch Video Solution

25. Dialing a telephone number, a man forgot the last two digits and remembering only that they are different. He dialled the number at random. The probability of the number dialled correctly is :
A. $\frac{1}{2}$
B. $\frac{1}{45}$
C. $\frac{1}{72}$
D. $\frac{1}{90}$

Answer: D

- Watch Video Solution

