© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

VECTOR ALGEBRA

Multiple Choice Question Level I

1. The value of ' λ ' which the vectors:
$3 \hat{i}-6 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+\lambda \hat{k}$ are parallel is:
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

- Watch Video Solution

2. The position vector of the point, which divides the join of the points with position vectors $\vec{a}+\vec{b}$ and $2 \vec{a}-\vec{b}$ in the ratio $1: 2$ is:
A. $\frac{3 \vec{a}+2 \vec{b}}{3}$
B. \vec{a}
C. $\frac{5 \vec{a}-\vec{b}}{3}$
D. $\frac{4 \vec{a}+\vec{b}}{3}$.

Answer: D

- Watch Video Solution

3. The angle between the vector $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is:
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $-\frac{\pi}{3}$
D. $\frac{5 \pi}{6}$.

Answer: B

- Watch Video Solution

4. The area of the parallelogram whose adjacent sides are $\hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ is:
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 3
D. 4 .
5. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, then $\vec{a} \cdot \vec{b}$ is :
A. $6 \sqrt{3}$
B. $8 \sqrt{3}$
C. $12 \sqrt{3}$
D. None of these.

Answer: C

- Watch Video Solution

6. The projection of vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ along $\vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. 2
D. $\sqrt{6}$.

Answer: A

- Watch Video Solution

7. If \vec{a} and \vec{b} are unit vectors, then what is the angle between
\vec{a} and \vec{b} for $\sqrt{3}$ veva $-\vec{b}$ to be a unit vectors?
A. 30°
B. 45°
C. 60°
D. 90°.

Answer: A

- Watch Video Solution

8. The unit vector perpendicular to the vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{j}$ forming a right-handed system is :
A. \hat{k}
B. $-\hat{k}$
C. $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$.

Answer: A

- Watch Video Solution

9. If $|\vec{a}|=3$ and $-1 \leq k \leq 2$, then $|k \vec{a}|$ lies in the interval :
A. $[0,6]$
B. $[-3,6]$
C. $[3,6]$
D. $[1,2]$.

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=5$, then value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is :
A. 0
B. 1
C. -19
D. 38 .

Answer: C

- Watch Video Solution

11. The valur of ' λ ' for which the two vectors:
$2 \hat{i}-a h t j+2 \hat{k}$ and $3 \hat{i}+\lambda \hat{j}+a h t k$ are perpendicular is:
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

12. If P and Q be two given points on the curve $y=x+\frac{1}{x}$, such that $\overrightarrow{O P}$. Hati $=1$ nad $\overrightarrow{O Q}$. Hati $=-1$, where \hat{i} is the unit vector along X axis, then the length of vector $2 \overrightarrow{O P}+\overrightarrow{3 O Q}$ is :
A. $5 \sqrt{5}$
B. $3 \sqrt{5}$
C. $2 \sqrt{5}$
D. $\sqrt{5}$.

D Watch Video Solution

13. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$, then th such that $\vec{a}+t \vec{b}$ is at right angles to \vec{c}, will be equal to :
A. 5
B. 4
C. 6
D. 2

Answer: A

- Watch Video Solution

14. If $\vec{x} \cdot \vec{a}=0, \vec{x} \cdot V e c b=0, \vec{x} \cdot V e=0$ for some non-zero vector, \vec{x}, then $[\vec{a} \vec{b} \vec{c}]=0$ is :
A. True
B. False
C. Cannot say anythins
D. None of these.

Answer: A

- Watch Video Solution

15. If $\vec{A}=(1,1,1), \vec{C}=(0,1,-1)$ are two given equation $\vec{A} \times \vec{B}=\vec{C}, \vec{A} \cdot \vec{B}=3$ is :
A. $(5 / 3,2 / 3,2 / 3)$
B. $(-5 / 3,2 / 3,2 / 3)$
C. $(5 / 3,-2 / 3,2 / 3)$
D. $(5 / 3,2 / 3,-2 / 3)$
16. $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ is:
A. $\left(a^{\vec{a}}-b^{\overrightarrow{2}}\right.$
B. $2(\vec{a} \times \vec{b})$
C. $2(\vec{b} \times \vec{a})$
D. None of these.

Answer: C

- Watch Video Solution

17. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. 1
B. 2
C. 3
D. infinte.

Answer: B

- Watch Video Solution

18. The volume of the parallelopied, whose edge are represented by $-12 \hat{i}+\alpha, \hat{k}, 3 \hat{j}-\hat{k} 2 \hat{i}+\hat{j}-15 \hat{k}$, is 546 , then α is :
A. 3
B. 2
C. -3
D. -2 .

Answer: C

19. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{j}+4 \hat{k}$, then the vector form of the component of \vec{a} along \vec{b} is:
A. $\frac{18}{10 \sqrt{13}}(3 \hat{j}+4 \hat{k})$
B. $\frac{18}{25}(3 \hat{j}+4 \hat{k})$
C. $\frac{18}{\sqrt{113}} /(3 \hat{j}+4 \hat{k})$
D. $3 \hat{j}+4 \hat{k}$.

Answer: B

- Watch Video Solution

20. The vectors $2 \hat{i}-a h t j+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{j}$ and $\sqrt{3} \hat{i}-4 \hat{j}-4 \hat{k}$ are the sides of a triange, which is :
A. equiliateral
B. isosceles only
C. right angled only
D. right angled and isosceles.

Answer: D

- Watch Video Solution

21. The vectors $\hat{i}+2 \hat{j}+3 \hat{k}, \lambda \hat{i}+4 \hat{j}+7 \hat{k},-3 \hat{i}-2 \hat{j}-5 \hat{k}$ are collinear if λ is:
A. 3
B. 4
C. 5
D. 6

Answer: A

22. If \vec{x} and \vec{y} are two unit vectors and θ is the angle between them, then $\frac{1}{2}|\vec{x}-\vec{y}|$ is :
A. 0
B. $x / 2$
C. $\left|\cos \frac{\theta}{2}\right|$
D. $\left|\sin \frac{\theta}{2}\right|$.

Answer: D

- Watch Video Solution

23. If $|\vec{\alpha}+\vec{\beta}|=|\vec{\alpha}-\vec{\beta}|$, then :
A. $\vec{\alpha}$ is parallel to $\vec{\beta}$
B. $\vec{\alpha} \perp \vec{\beta}$
c. $|\vec{\alpha}|=|\vec{\beta}|$
D. None of these.

D Watch Video Solution

24. If $\vec{\alpha}$ and $\vec{\beta}$ are two vectors such atht $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then:
A. \vec{a} is parallel to \vec{b}
B. $\vec{a} \perp \vec{b}$
C. either \vec{a} or \vec{b} is null vector
D. None of these.

Answer: C

- Watch Video Solution

25. The projection of vector $\hat{i}-2 \hat{j}+\hat{k}$ on the vector $4 \hat{i}-4 \hat{j}+7 \hat{k}$ is:
A. $\frac{5}{19} \sqrt{5}$
B. $2 \frac{1}{9}$
C. $\frac{9}{19}$
D. $\frac{1}{19} \sqrt{6}$.

Answer: B

- Watch Video Solution

26. The three vectors $7 \hat{i}-11 \hat{j}+\hat{k}, 5 \hat{i}+3 \hat{j}-2 \hat{k}, 12 \hat{i}-8 \hat{j}-\hat{k}$ from :
A. an equilateral triangle
B. a right-angled triangle
C. an isosceles triangle
D. collinear vectors.

Answer: B

27. If the vectors $2 \hat{i}-\hat{j}+\lambda \hat{k}, \hat{i}-\hat{j}+2 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$ are coplanar, then the value of λ is:
A. -1
B. -2
C. -3
D. -4 .

Answer: A

- View Text Solution

28. Angle between vectors $\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ is:
A. $\frac{\cos ^{-1}(1)}{s q r r 15}$
B. $\frac{\cos ^{-1}(4)}{\sqrt{15}}$
C. $\frac{\cos ^{-1}(4)}{15}$
D. $\frac{\pi}{2}$.

Answer: D

- View Text Solution

29. The unit vector perpendicular to vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{j}$ forming a right-handed system is :
A. \hat{k}
B. $-\hat{k}$
C. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$
D. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$.

Answer: A

- Watch Video Solution

30. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then \vec{c} is:
A. $z \hat{i}-x \hat{k}$
B. $\overrightarrow{0}$
C. $-z \hat{i}+x \hat{k}$
D. $y \hat{j}$.

Answer: C

- Watch Video Solution

31. If \vec{a} and \vec{b} are two unit vectors, then the vector $(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})$ is parallel to the vector :
A. $\vec{a}-\vec{b}$
B. $\vec{a}+\vec{b}$
C. $2 \vec{a}-\vec{b}$
D. $2 \vec{a}+\vec{b}$.

Answer: A

- Watch Video Solution

32.

$\vec{F}=2 \hat{i}+2 \hat{j}+5 \hat{k}$ and $A=(1,2,5), B=(-1,-2,-3)$ and $\overrightarrow{B A} \times \bar{F}$ then the value of λ is:
A. 0
B. 1
C. 2
D. -2 .

Answer: D
33. Value of a for which $2 \hat{i}-\hat{j}+1 \hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar is :
A. 2
B. 4
C. -4
D. 3 .

Answer: C

(D) Watch Video Solution

34. If the vectors a $\hat{i}+2 \hat{j}+3 \hat{k}$ and $-\hat{i}+5 \hat{j}+a \hat{k}$ are perpendicular to each other, then a equals :
A. 6
B. -6
C. 5
D. -5 .

Answer: D

- View Text Solution

35. The area of a parallelogram whose adjacent sides are $\hat{i}-2 \hat{j}+3 \hat{k}$ and $2 \hat{i}+\hat{j}-4 \hat{k}$ is :
A. $5 \sqrt{3}$
B. $10 \sqrt{3}$
C. $5 \sqrt{6}$
D. $10 \sqrt{6}$.

Answer: C

36. $\vec{a} \cdot(\vec{a} \times \vec{b})=$
A. $\vec{a} \cdot V e c b$
B. $a^{2} b$
C. 0
D. $a^{2}+a b$.

Answer: C

- Watch Video Solution

37. The points with positivon vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $a \hat{i}-52 \hat{j}$ are collinarar if :
A. $a=-40$
B. $a=40$
C. $a=20$
D. None of these.

Answer: A

- Watch Video Solution

38. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $\lambda \hat{i}+11 \hat{j}$ are collinear, then λ is :
A. 4
B. 8
C. 12
D. 22

Answer: B

39. The vector $2 \hat{i}+\hat{j}+\hat{k}$ is peerpendicular to $\hat{i}-4 \hat{j}+\lambda \hat{k}$, if λ is:
A. 0
B. -1
C. 2
D. -3 .

Answer: C

- Watch Video Solution

40. Let the vectors \vec{u}, \vec{v} and \vec{w} be coplanar. Then $\vec{u} \cdot(\vec{v} \times \vec{w})$ is:
A. 0
B. $\overrightarrow{0}$
C. a unit vector
D. None of these.

D Watch Video Solution

41. If \vec{a} and \vec{b} are position vectors of A and B respectively, then the position vector of a point C in AB produced such ahat $\overrightarrow{A C}=\overrightarrow{3 A B}$ is :
A. $\overrightarrow{3} a-\vec{b}$
B. $\overrightarrow{3 b}-\vec{a}$
C. $\overrightarrow{3} a-\overrightarrow{2} b$
D. $\overrightarrow{3} b-\overrightarrow{2} a$.

Answer: D

- Watch Video Solution

42. If \vec{a} is non-zero vector and k is a scalar such that $k \vec{a}=1$, then k is:
A. $|\vec{a}|$
B. 1
C. $\frac{1}{|\vec{a}|}$
D. None of these.

Answer: C

- Watch Video Solution

43. Two vectors are said to be equal if :
A. They have the same magnitude and direaction
B. They meet at the same point
C. They originate from the same point
D. None of these.

Answer: A

44. If three coterminous edges of a parallelopiped are represented by $\vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$, then its volume is:
A. $[\vec{a} \vec{b} \vec{c}]$
B. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $[\vec{a} \vec{b} \vec{c}]^{2}$
D. 0 .

Answer: D

- Watch Video Solution

45. If \vec{a} and \vec{b} are position vectors of A and B respectively, then the position vector of a point C in AB produced such ahat $\overrightarrow{A C}=\overrightarrow{3 A B}$ is :
A. $3 \vec{a}-\vec{b}$
B. $3 \vec{a}-2 \vec{b}$
c. $\vec{a}-3 \vec{b}$
D. $3 \vec{b}-2 \vec{a}$.

Answer: D

- Watch Video Solution

46. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, then $\vec{a} \cdot \vec{b}$ equals:
A. 4
B. 6
C. 5
D. None of these.

Answer: B

47. For three vectors $\vec{u}, \vec{v}, \vec{w}$, which of the following expression is not equal to any of the remaining three :
A. $\vec{u} \cdot(\vec{c} \times \vec{w})$
B. $(\vec{v} \times \vec{w}) \cdot \vec{u}$
c. $\vec{a} \cdot(\vec{u} \times \vec{w})$
D. $(\vec{u} \times \vec{v}) \cdot \vec{w}$.

Answer: C

- Watch Video Solution

48. Which of the following expressions are meaningul :
A. $\vec{u} \cdot(\vec{c} \times \vec{w})$
B. $(\vec{u} \times \vec{v}) \cdot \vec{w}$.
c. $(\vec{v} \times \vec{w}) \cdot \vec{u}$
D. $\vec{u} \times(\vec{v} \cdot \vec{w})$.

- View Text Solution

49.

The
vector
$\vec{a}=\hat{i}+\hat{j}+(m+1) \hat{k}, \vec{b}=\hat{i}+\hat{j}+m \hat{k} \cdot \vec{c}=\hat{i}-\hat{j}+m \hat{k}$ are coplanar for :
A. $m=\frac{1}{2}$
B. $m=-\frac{1}{2}$
C. $m=2$
D. no value of m.

Answer: D

50. The projection of the vector $\vec{a}=3 \hat{i}-\hat{j}-2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ is :
A. $\frac{\sqrt{14}}{2}$
B. $\frac{14}{\sqrt{2}}$
C. $\sqrt{14}$
D. 7.

Answer: A

- Watch Video Solution

51. The vectors $\lambda \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar if :
A. $\lambda=-2$
B. $\lambda=2$
C. $\lambda=1$
D. $\lambda=-1$.

Answer: A

- Watch Video Solution

52.

$\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$.
Then $[\vec{a} \vec{b} \vec{c}]$ depends on:
A. only x
B. only y
C. neither x or y
D. both x or y .

Answer: C

53. $\vec{a} \times[\vec{a} \times(\vec{a} \times \vec{b})]$ equals :
A. $(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$
B. $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$
c. $(\vec{b} \cdot \vec{b})(\vec{a} \times \vec{b})$
D. $(\vec{b} \cdot V e c b)(\vec{b} \times \vec{a})$.

Answer: B

- View Text Solution

54. The vector $\hat{i}+\hat{j}+3 \hat{k}$ is rotated through an angle θ and is doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The value of x is :
A. $-\frac{2}{3}, 2$
B. $\frac{1}{3}, 2$
C. $\frac{2}{3}, 0$
D. 2, 7 .

- Watch Video Solution

55. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then \vec{c} is :
A. $z \hat{i}-x \hat{k}$
B. $\overrightarrow{0}$
C. $y \hat{i}$
D. $-z \hat{i}-x \hat{k}$.

Answer: A

- Watch Video Solution

56. Consider A, B, C or D with position vectors : $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \widehat{+} 4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$
respectively. Then $A B C D$ is a:
A. rhombus
B. rectangle
C. parallelogram but not a rhombus
D. None of these

Answer: D

- Watch Video Solution

57. If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $A \vec{C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the side of the triangle $A B C$, then the length of the median through A is :
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{288}$
D. $\sqrt{18}$.

- Watch Video Solution

58. $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$, then :
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to :
A. -7
B. 7
C. 1
D. 0 .

Answer: A

59. The valur of a so that the volume of parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is :
A. $\sqrt{3}$
B. 2
C. $\frac{1}{\sqrt{3}}$
D. 3 .

Answer: C

- Watch Video Solution

60. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-a h t k$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k}$ to the point $5 \hat{i}+4 \hat{j}+\hat{k}$. The total work done by the forces is :
A. 30 units
B. 40 units
C. 50 units
D. 20 units.

Answer: B

- Watch Video Solution

61. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ ar non-coplanar for:
A. all values of λ
B. all expect one value of λ
C. all except two values of λ
D. no value of λ.

Answer: C

62. If C is the mid-point of $A B$ and P is an7y pont outside $A B$, then :
A. $\overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C}$
B. $\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$
c. $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=\overrightarrow{0}$.
D. $\overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0}$.

Answer: B

- Watch Video Solution

63. For any vector \vec{a}, the value of $(\vec{a} \times \hat{i})+(\vec{a} \times \hat{j})^{2}(\vec{a} \times \hat{k})^{2}$ is equal to :
A. \vec{a}^{2}
B. $2 \vec{a}^{2}$
C. $4 \vec{a}^{2}$
D. $2 \vec{a}^{2}$.

Answer: D

- Watch Video Solution

64.

$\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$.
Then $[\vec{a} \vec{b} \vec{c}]$ depends on:
A. only x
B. only y
C. neither x or y
D. both x or y .

Answer: C

65. Let a, b and c be distinct non-negative numbers. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane, then c is :
A. the Arithmetic Mean of a and b
B. the Geometric Mean of a and b
C. the Harmonic Mean of a and b
D. equal to zero.

Answer: B

- Watch Video Solution

Multiple Choice Question Level Ii

1. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{p}, \vec{q} and \vec{r} are vectors defined by $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and

$$
\begin{aligned}
& \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]} \quad \text { then } \\
& (\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}=
\end{aligned}
$$

A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

2. For non zero vectors $\vec{a}, \vec{b}, \vec{c}$
$(\vec{a} \times \vec{b}) \cdot V e=|\vec{a}||\vec{b}||\vec{c}|$ holds inf:
A. $\vec{a} \cdot V e c b=0, \vec{b} \cdot V e=0, \vec{c} \cdot \vec{a} \neq 0$
B. $\vec{b} \cdot \vec{c}=0, \vec{c} \vec{a}=0, \vec{a}, \vec{b} \neq 0$
c. $\vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c} \neq 0$
D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$.

Answer: D

- Watch Video Solution

3. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} is unit vector perpendicular to the vector \vec{a} and coplanar with \vec{a} and \vec{b}, then a unit vector \vec{d} perpendicular to both \vec{a} and \vec{c} is:
A. $\frac{1}{\sqrt{6}}(2 \hat{i}-a h t j+\hat{k})$
B. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
C. $\frac{\hat{j}+\hat{k}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{k}}{\sqrt{2}}$.

Answer: C

4. If $\vec{\alpha}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{\beta}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{\lambda}=\hat{i}+\hat{j}+\hat{k}$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})$ is :
A. 60
B. 64
C. 74
D. -74 .

Answer: D

- Watch Video Solution

5. The scalar $\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ is:
A. 0
B. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
C. $2[\vec{A} \vec{B} \vec{C}]$
D. $[\vec{A} \vec{B} \vec{C}]$.

Answer: A

- Watch Video Solution

6. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then $[\vec{a}+\vec{b}+\vec{c} \vec{a}-\vec{c} \vec{a}-\vec{b}]$ is equal to :
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $-3[\vec{a} \vec{b} \vec{c}]$
D. $2[\vec{a} \vec{b} \vec{c}]$.

Answer: C

7. The position vectors of the points A and B are \vec{a} and \vec{b} respectively. P divided [AB] in the ratio $3: 1, Q$ is mid-point of [AP]. The positin vector of Q is :
A. $\frac{\overrightarrow{5 a}+\overrightarrow{3 b}}{8}$
B. $\frac{\vec{a}+\overrightarrow{3 b}}{4}$
C. $\frac{\overrightarrow{3 a}+\overrightarrow{5 b}}{4}$
D. $\frac{\overrightarrow{3 a}+\vec{b}}{4}$.

Answer: A

- Watch Video Solution

8. If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a}=\vec{b}$ is:
A. $\vec{r}=\overrightarrow{x a}+\frac{1}{\vec{a} \cdot \vec{a}}(\vec{a} \times \vec{c})$
B. $\vec{r}=\vec{x} a+\frac{1}{\vec{a} \cdot \vec{b}}(\vec{a} \times \vec{b})$
C. $\vec{r}=\overrightarrow{x r} \times \vec{b}$
D. $\vec{r}=\overrightarrow{x b} \times \vec{a}$.

Answer: B

- Watch Video Solution

9. If the veactors \vec{a}, \vec{b} and \vec{c} form the sides BC, CA and AB respectively of triangle $A B C$, then :
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
c. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{b} \times \vec{c} \times \vec{a}=\overrightarrow{0}$.

Answer: B

10. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product :

$$
[2 \vec{a}-\vec{b}, \overrightarrow{2} b-\vec{c}, \overrightarrow{2} c-\vec{a}]=
$$

A. 0
B. 1
C. $-\sqrt{53}$
D. $\sqrt{3}$,

Answer: A

- Watch Video Solution

11. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{j}-\hat{k}$, then a unit vector normal to the vectors $\vec{a}+\vec{b}$ and $\vec{b}-\vec{c}$ is :
A. \hat{i}
B. \hat{j}
C. \hat{k}
D. None of these.

Answer: A

- View Text Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then:
$|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ does not exceed :
A. 4
B. 9
C. 8
D. 6

Answer: B

13.

$\vec{a}=a h t i-a h t k, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+1(+x-$ then $[\vec{a} \vec{b} \vec{c}]$ depends on:
A. only x
B. only y
C. neither x or y
D. both x or y.

Answer: C

D Watch Video Solution

14. Given two vectors $\hat{i}+\hat{j}$ and $\hat{i}+2 \hat{j}$, the unit vector coplanar with the two vectors and perpendicular to first is :
A. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
B. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
C. $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$
D. None of these.

Answer: C

- Watch Video Solution

15. If $\vec{a}=3 \hat{i}-5 \hat{j}$ and $\vec{b}=6 \hat{i}+3 \hat{j}$ are two vectors and \vec{c} a vector such that $\vec{c}=\vec{a} \times \vec{b}$, then $|\vec{a}|:|\vec{b}|:|\vec{c}|=$
A. $\sqrt{34}: \sqrt{45}: \sqrt{39}$
B. $\sqrt{34}: \sqrt{45}: 39$
C. 34: 39: 45
D. 39: 35: 34 .

Answer: B

16. Let $\vec{v}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{w}=\hat{i}+3 \hat{k}$. If \vec{u} is a unit vector, then the maximum value of the scalar triple product $[\vec{u} \vec{v} \vec{w}]$ is :
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{6}$.

Answer: C

- Watch Video Solution

17. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is:
A. 45°
B. 60°
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{7}\right)$.

Answer: B

- Watch Video Solution

18. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then:

$$
(\vec{u}+\vec{c}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w}) \text { equals : }
$$

A. $\vec{u} \cdot \vec{v} \times \vec{w}$
B. $\vec{u} \cdot \vec{w} \times \vec{v}$
C. $3 \vec{u} \cdot \vec{u} \times \vec{w}$
D. 0

Answer: A

- Watch Video Solution

19. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{c} \cdot \widehat{n}=0$, then $|\vec{w} \cdot \widehat{n}|$ is equal to :
A. 1
B. 2
C. 3
D. 0

Answer: C

- Watch Video Solution

20. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of these are collinear.If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a} (λ being some non-zero scalar), then $\vec{a}+2 \vec{b}+6 \vec{c}$ equals:
A. $\lambda \vec{a}$
B. $\lambda \vec{b}$
C. $\lambda \vec{c}$
D. $\overrightarrow{0}$.

Answer: D

- Watch Video Solution

21. Let \vec{a}, \vec{b}, and \vec{c} be three non-zero vectors such that no two of them are colinear and
$(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$.
If θ is the angle between the vectors \vec{b} and \vec{c}, then a value of $\sin \theta$ is :
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{2 \sqrt{2}}{3}$.

D Watch Video Solution

22. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$ then \vec{b} is :
A. $\hat{i}-a h t j+\hat{k}$
B. $2 \hat{j}-\hat{k}$
C. \hat{i}
D. $2 \hat{i}$.

Answer: C

- Watch Video Solution

23. If \vec{a}, \vec{b}, ce are non-coplanar vectors and λ is a real number, then
$\left[\lambda(\vec{a}+\vec{b}) \lambda^{2} \vec{b} \lambda \vec{c}\right]=[\vec{a} \vec{b}+\vec{c} \vec{b}]$ for :
A. no value of λ
B. eactly one value of λ
C. ecactly two values of λ
D. exactly three values of λ.

Answer: A

- View Text Solution

24. If \widehat{u} and \hat{v} are unit vactors and θ is the angle between them, the $2 \widehat{u} \times 3 \hat{v}$ is unit veactor for:
A. More than two values of θ.
B. No value of θ.
C. Exactly one value of θ.
D. Exactly two values of θ.

Answer: C

25. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}+\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b}, then x equals:
A. 1
B. -4
C. -2
D. 0

Answer: C

- Watch Video Solution

26. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plance of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=a h t j+\hat{k}$ and bisects the angle between $\vec{b} g$ and \vec{c}. Then which one of the following gives possible values of α and β ?
A. $\alpha=1, \beta=1$
B. $\alpha=2, \beta=2$
C. $\alpha=1, \beta=2$
D. $\alpha=2, \beta=1$.

Answer: A

- View Text Solution

27. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is:
A. π
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$.
28. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1}, P_{2} be planes determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the between P_{1} and P_{2} is:
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$.

Answer: A

- View Text Solution

29. The unit vector which is orthgonal to the vector $\vec{a}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$
is :
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}-3 \hat{j}-3 \hat{k}}{\sqrt{34}}$.

Answer: C

- Watch Video Solution

30. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero, non-coplanar vectors and
$\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|_{2}} \vec{a}, \vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \cdot}{|\vec{c}|}$
$+\frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$,
then the set of orthogonal vectors is :
A. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$
B. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$
c. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
D. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$.

Answer: B

- Watch Video Solution

31. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-a h t j+\hat{k}$ and $\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by:
A. $-2 \hat{i}+5 \hat{j}-2 \hat{k}$
B. $3 \hat{i}+\hat{j}-3 \hat{k}$
C. $2 \hat{i}+\hat{j}-2 \hat{k}$
D. $4 \hat{i}+\hat{j}-4 \hat{k}$.

D Watch Video Solution

32. The number of distinct real values of λ, for which the vectors:
$-\lambda^{2} \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar, is :
A. zero
B. one
C. two
D. three.

Answer: C

- Watch Video Solution

33. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Which one of the following is correct ?
A. $v c a \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\overrightarrow{0}$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0}$
c. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{a} \times \vec{c} \neq \overrightarrow{0}$
D. $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular.

Answer: B

- Watch Video Solution

34. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\widehat{a}, \hat{b}, \hat{c}$ such that $\widehat{a} . \hat{b}=\hat{b} . \hat{c}=\hat{c} . \widehat{a}=1 / 2$. Then the volume of the parallelopiped is :
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{\sqrt{3}}$.

D Watch Video Solution

35. Let two non-collinear unit vectors \widehat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector $\overrightarrow{O P}$ (where O is the origin) is given by $\widehat{a} \cos t+\hat{b} \sin t$. When P is farthest from origin I, let M be the length of $\overrightarrow{O P}$ and \widehat{u} be teh unit vector along $\overrightarrow{O P}$. Then P :
A. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{1 / 2}$
B. $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} \cdot H a t b)^{1 / 2}$
C. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} \cdot \hat{b})^{1 / 2}$
D. $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+2 \widehat{a} \cdot \hat{b})^{1 / 2}$.

Answer: A

- Watch Video Solution

36. If $\vec{u}, \vec{\nu}$, and \vec{w} are non coplanar vectors and p, q are real numbers, then the equality $[3 \vec{u} p \vec{\nu} p \vec{w}]-[p \vec{\nu} \vec{w} q \vec{u}]-[2 \vec{w} q \vec{\nu} q \vec{u}]=0$ holds for
A. exactly one value of (p,q)
B. exactly two values of (p, q)
C. more than two but not all values of (p, q)
D. all values of (p, q).

Answer: A

- Watch Video Solution

37. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot V e=\frac{1}{2}$ then :
A. $\vec{a}, \vec{b}, \vec{c}$ are non - coplanar
B. $\vec{a}, \vec{b}, \vec{d}$ are non-coplanar
c. \vec{b}, \vec{d} are non-parallel
D. \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel.

Answer: C

- Watch Video Solution

38. Let $(P(3,2,6)$ be a point in space and Q be point on the line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\overrightarrow{P Q}$ is parallel to the plane $x-4 y+3 z=1$ is :
A. $\frac{1}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$.

Answer: A

Latest Questions From Aieee Jee Examinations

1. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector \vec{b} satisfying $\vec{a} \times \vec{b}+\vec{c}=\overrightarrow{0}$ and $\vec{a} . V e c b=3$ is :
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-\hat{j}-2 \hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$.

Answer: A

- Watch Video Solution

2.

If
the
vectors
$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}$
A. $(-3,2)$
B. $(2,-3)$
C. $(-2,3)$
D. $(3,-2)$.

Answer: A

- Watch Video Solution

3. Let P, Q, R and S be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. The quadrilateral PQRS must be a:
A. parallelogram, which is neither a rhombus nor a rectangle
B. square
C. reactangle, but not a square
D. rhombus, but not a square

- Watch Video Solution

4. Two adjacent sides of a parallelogram $A B C D$ are given by :
$\overrightarrow{A B}=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\overrightarrow{A D}=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes $A D$ '. If $A D$ ' makes a right angle with the side $A B$, then the cosine of the angle α is given by
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$.

Answer: B

5. If $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b}]$ is :
A. -5
B. -3
C. 5
D. 3 .

Answer: A

- View Text Solution

6. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the vector \vec{d} is equal to :
A. $\vec{b}-\left(\frac{\vec{b} \cdot \vec{c}}{\overrightarrow{a \cdot \vec{b}}}\right) \vec{c}$
B. $\vec{c}+\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
c. $\vec{b}+\left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
D. $\vec{c}-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$.

Answer: D

Watch Video Solution

7. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-a h t j+\hat{k}$ and $\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by:
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}-\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$.

Answer: C

8.

$p \hat{i}+\hat{j}+\hat{k}, \hat{i} i+q \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r \hat{k}(p \neq q \neq r \neq 1)$ are coplanar, then the value of $\operatorname{pqr}-(p+q+r)$ is :
A. 2
B. 0
C. -1
D. -2 .

Answer: D

- Watch Video Solution

9. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors, which are pair-wise noncollinear. If $\vec{a}+3 \vec{b}$ is collinear with cand $\vec{b}+2 \vec{c}$ is collinear with \vec{a}, then $\vec{a}+3 \vec{b}+6 \vec{c}$ is :
A. \vec{a} is parallel to \vec{b}
B. \vec{b}
C. $\overrightarrow{0}$
D. $\vec{a}+\vec{c}$.

Answer: C

- Watch Video Solution

10. Let \vec{a} and \vec{b} be two unit vectors. If the vectors $\vec{c}=\widehat{a}+2 \hat{b}$ and $\vec{d}=5 \widehat{a}-4 \hat{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$.

D Watch Video Solution

11. Let $A B C D$ be a parallelogram such that $\overrightarrow{A B}=\vec{q}, \overrightarrow{A D}=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude direacted from the vertex B to the side AD, then \vec{r} is given by :
A. $\vec{r}=3 \vec{q}-\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$
в. $\left.\vec{r}=-\vec{q}+\frac{\vec{p} \cdot \vec{q}}{\vec{p} \vec{p}}\right) \vec{p}$
C. $\vec{r}=\vec{q}-\left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
D. $\vec{r}=-3 \vec{q}+\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$

Answer: B

12. If \vec{a} and \vec{b} are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$, then a possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is:
A. 0
B. 3
C. 4
D. 8

Answer: C

- Watch Video Solution

13. If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $A \vec{C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the side of the triangle $A B C$, then the length of the median through A is :
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{45}$
D. $\sqrt{18}$.

Answer: B

- Watch Video Solution

14. Let $P \vec{R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $S \vec{Q}=\hat{i}-3 \hat{j}-4 \hat{k}$. Determine diagonals of a parallelogram PQRS and PT $=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. The volume of the parallelopiped determined by the vector $P \vec{T}, P \vec{Q}$ and $P \vec{S}$ is :
A. 5
B. 20
C. 10
D. 30

Answer: C

15. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$, then λ is equal to :
A. 3
B. 0
C. 1
D. 2

Answer: C

Watch Video Solution

16. Let \vec{a}, \vec{b}, and \vec{c} be three non-zero vectors such that no two of them are colinear and
$(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$.
If θ is the angle between the vectors \vec{b} and \vec{c}, then a value of $\sin \theta$ is :
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{-\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{-2 \sqrt{3}}{3}$.

Answer: A

- Watch Video Solution

Recent Competitive Question

1. A space vector makes the angle 150° and 60° with the positive direction of x and y-axes. The angle made by the vector with the positive direction of z-axis is :
A. 120°
B. 180°
C. 60°
D. 90°.

Answer: D

- Watch Video Solution

2. If \vec{a}, \vec{b}, and \vec{c} are unite vectors, such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then $2 \vec{a} \cdot \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=$
A. 3
B. -3
C. 1
D. -1 .

Answer: B

3. If $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along the positive direction of x^{-}, y^{-}and $z-$ axes, then a false statement in the following is :
A. $\sum \hat{i} \cdot(\hat{j}+\hat{k})=0$
B. $\sum \hat{i} \cdot(\hat{j} \times \hat{k})=0$
c. $\sum \hat{i}(\hat{j} \times \hat{k})=\overrightarrow{0}$
D. $\sum \hat{i}(\hat{j}+\hat{k})=\overrightarrow{0}$.

Answer: B

- Watch Video Solution

4. If $\vec{u}=\vec{a}-\vec{b}, \vec{v}=\vec{a}+\vec{b}$ and $|\vec{a}|=|\vec{b}|=2$, then $|\vec{u} \times \vec{c}|$ is:
A. $2 \sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
B. $2 \sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$
C. $\sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
D. $\sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$

Answer: A

- View Text Solution

5. The volume of the tetracedron formed by the points $(1,1,1)(2,1,3),(3,2,2)$ and $(3,3,4)$ in cubic units is :
A. $\frac{5}{6}$
B. $\frac{6}{5}$
C. 5
D. $\frac{2}{3}$

Answer: A

6. Unit vector perpendicular to $\hat{i}-2 \hat{j}+2 \hat{k}$ and lying in the plance containing $\hat{i}+\hat{j}+2 \hat{k}$ and $-\hat{i}+2 \hat{j}+\hat{k}$ is :
A. $8 \hat{i}-7 \hat{j}+11 \hat{k}$
B. $8 \hat{i}+7 \hat{j}-11 \hat{k}$
C. $8 \hat{i}-7 \hat{j}-11 \hat{k}$
D. $\frac{1}{\sqrt{234}}(8 \hat{i}-7 \hat{j}-11 \hat{k})$.

Answer: D

- Watch Video Solution

7. If $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k},|\vec{b}|=5$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{60,}$ then the area of the triangle formed by these two vectors as two side is :
A. $\frac{15}{2}$
B. 15
C. $\frac{15}{4}$
D. $\frac{15 \sqrt{3}}{2}$

Answer: C

- Watch Video Solution

8. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ if \vec{b} is a vector such that $\vec{a} \cdot \vec{b}=|\vec{b}|$ and $|\vec{a}-\vec{b}|=\sqrt{7}$, then $|\vec{b}|=$
A. 7
B. 14
C. $\sqrt{7}$
D. 21.

Answer: C

- Watch Video Solution

9. If direction cosines of a vector of magnitude 3 are $\frac{2}{3},-\frac{9}{3}, \frac{2}{3}$ and $a>0$, then vector is
A. $2 \hat{i}+\hat{j}+2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-2 \hat{j}+2 \hat{k}$
D. $\hat{i}+2 \hat{j}+2 \hat{k}$

Answer: B

- Watch Video Solution

10. Given two vectors $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$. The unit vector, coplanar with the two given vectors and perpendicular to $(\hat{i}-\hat{j})$ is:
A. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
B. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
C. $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$
D. None of these.

Answer: A

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vector such that each one of then is perpendicular to the sum of the other two vectors, then the value of $|\vec{a}+\vec{b}+\vec{c}|^{2}$ is :
A. $|\vec{a}|+|\vec{b}|+|\vec{c}|$
B. $2\left(|\vec{a}|^{2}+|\vec{b}|^{2}|\vec{c}|^{2}\right)$
C. $\frac{1}{2}\left(|\vec{a}|^{2}+|\vec{b}|^{2}|\vec{c}|^{2}\right)$
D. $|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$

Answer: D

