©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

GRAVITATION

Multiple Choice Questions Level I

1. If the earth shrinks in its radius by 6% mass
remaining constant, the value of ' g ' on its

surface will:

A. decrease
B. increase
C. remains the same
D. reduced to zero

Answer: B
2. A man weighs 50 kg at earth's surface. At what height above the earth's surface his weight becomes half (Radius of earth $=6400$ km) :
A. 2526 km
B. 6400 km
C. 2650 km
D. 3200 km .

Answer: C
3. Intensity of gravitational field inside the hollow spherical shell is :
A. variable
B. zero
C. minimum
D. maximum.

Answer: B
4. The weight of the body at earth's surface is
W. At a depth half way to the centre of earth
its weight will be (Density of earth is uniform) :
A. W
B. $\frac{W}{2}$
c. $\frac{W}{4}$
D. $\frac{W}{8}$

Answer: B
5. A satellite is moving in a circular orbit around the earth. If gravitational pull suddenly disappears, then it:
A. continues to move with same speed along the same path
B. moves with same velocity tangential to
original orbit
C. falls down with increasing velocity
D. none of these.

Answer: B

D Watch Video Solution

6. A packet is released from a satellite by simply detaching it from the outer wall of the satellite. What will happen to the packet:
A. it will continue moving along with the
satellite in the same orbit with same
velocity.
B. it will fall to earth.
C. the packet goes to the space and is lost.

D. it continues moving along the satellite

with half the velocity.

Answer: A

D Watch Video Solution

7. If the gravitational force is assumed to vary as the nth power of the distance, then the time period of a planet round the sun will be proportional to :
A. R^{n}
B. R^{-n}
C. $R^{\frac{n+1}{2}}$
D. $(R)^{\frac{n-1}{2}}$

Answer: C

D Watch Video Solution

8. Kepler's second law regarding constancy of areal velocity of a planet is a consequence of the law of conservation of:
A. energy
B. linear momentum
C. angular momentum
D. none of these.

Answer: C

D Watch Video Solution

9.

Two
satellites
of
masses
m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are revolving around
the earth in circular orbits of radius
r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively, which of the
following is true regarding their speeds
V_{1} and V_{2} ?
A. $V_{1}=V_{2}$
B. $V_{1}<V_{2}$
C. $V_{1}>V_{2}$
D. $\frac{V_{1}}{r_{1}}=\frac{V_{2}}{r_{2}}$

Answer: B

D Watch Video Solution
10. The ratio of K.E. regd. to be given to satellite to escape earth's gravitational field to
K.E. regd. to be given to satellite to move in a circular orbit just above earth's atmosphere is
A. 1
B. 2
C. 0.5
D. infinity.

Watch Video Solution

11. If the earth suddenly stops rotating about its axis the value of g at the equator will:
A. remains same
B. decrease by $\omega^{2} \mathrm{R}$ factor
C. Increase by $\omega^{2} R$ factor
D. Increase by $\omega \mathrm{R}$ factor.

Answer: C

12. The ratio of the radius of the earth to that of moon is 10 . The ratio of acceleration due to gravity on earth and on moon is 6 . The ratio of their escape velocity from earth to that from the moon is:
A. 10
B. 5
C. about 8
D. 1.66

Answer: C

D Watch Video Solution

13. If radius of earth is reduced by 1%, the escape velocity will (If mass of earth remains
same):
A. increase by 0.5%
B. decrease by 11%
C. no change
D. decrease by 5\%

D Watch Video Solution

14. The variation of gravitational field intensity
(E) due to the earth is represented by curve in

Fig. (R is radius of earth):
A.
B.
C.
D.

Answer: D

D View Text Solution

15. The period of a satellite in a circular orbit of radius R is T.The period of another satellite in circular orbit of radius $4 R$ is:
A. 4 T
B. $\frac{T}{4}$
C. 8 T
D. $\frac{T}{8}$

Answer: C

- Watch Video Solution

16. The two planets have radius r_{1} and r_{2},
densities d_{1} and d_{2}. The ratio of acceleration due to gravity on them is:
A. $r_{1} d_{2}: r_{2} d_{1}$
B. $r_{1}^{2} d_{1}: r_{2}^{2} d_{2}$
C. $r_{1} d_{1}^{2}: r_{2} d_{2}^{2}$
D. $r_{1} d_{1}: r_{2} d_{2}$.

Answer: D

D Watch Video Solution

17. Mass of mars is $\frac{1}{9}$ and radius $\frac{1}{2}$ that of earth. A body weighs 54 kg on surface of the earth. Its wt. on the surface of mars will be:
A. 50 kg
B. 24 kg
C. 30 kg
D. 0 kg .

Answer: B

- Watch Video Solution

18. There are two bodies of mass $100 \mathrm{~kg}, 10000$
kg separated by a distance of 1 m . At what
distance from the smaller body the intensity of gravitational field is zero:
A. $\frac{1}{9} m$
B. $\frac{1}{10} m$
C. $\frac{1}{11} m$

D. none of the above.

Answer: C

D Watch Video Solution

19. A satellite is moving round the earth. In
order to make it move to infinity, it velocity must be increased by:
A. 82.8%
B. 41.4%
C. 20.7%
D. It is not possible to do so.

Answer: B

- Watch Video Solution

20. The minimum speed with which a body must be thrown to reach a height of $\frac{R}{4}$ above the surface of earth is :

$$
\text { A. } \sqrt{\frac{g(R)}{2}}
$$

B. $\sqrt{g R}$
C. $\sqrt{\frac{2}{5} g R}$
D. $\sqrt{\frac{g(R)}{5}}$.

Answer: C

D Watch Video Solution

21. A satellite of mass m is revolving round the earth at a height R above surface of earth. If g is gravitational intensity at earth's surface and R is radius of the earth, the K.E. of satellite is :
A. $m g \frac{R}{4}$
B. $\operatorname{mg} \frac{R}{2}$
C. $\mathrm{mg} R$
D. $2 \mathrm{mg} R$

Answer: A

D Watch Video Solution

22. Weightlessness experienced while
orbitting the earth in spaceship is the result of :
A. acceleration
B. no gravity
C. inertia
D. centre of gravity

Answer: A

- Watch Video Solution

23. Two satellites of masses in the ratio of

1:16 are put in the same orbit round the sun.

The ratio of their periods of revolution is :
A. $1: 4$
B. $4: 1$
C. 1:1
D. 1:2

Answer: C

D Watch Video Solution

24. A satellite revolving close to earth has a
K.E., E. What energy should be given to it so make it escape the gravitational pull of earth?
A. $\frac{E}{2}$
B. E
C. $\frac{E}{\sqrt{2}}$
D. $2 E$

Answer: B

D Watch Video Solution

25. Infinite number of masses each of 2 kg are
placed along x-axis at distance $1 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}$
from the origin O , what is the magnitude
of gravitational potential at 'O'? (G =

gravitational constant) :

A. $-G$
B. $-2 G$
C. $-3 G$
D. $-4 G$.

Answer: D

D Watch Video Solution

26. With what speed the earth should rotate about its own axis so that a person should weigh at the equator $\frac{3}{5}$ th of his weight at persent? (Take $\mathrm{R}=6400 \mathrm{~km}$):
A. $7.83 \mathrm{rad} \mathrm{s}^{-1}$
B. $1.25 \times 10^{-4} \mathrm{rad} \mathrm{s}^{-1}$
C. $7.83 \times 10^{-4} \mathrm{rad} \mathrm{s}^{-1}$
D. none of the above.

Answer: C
27. With what velocity should a body be thrown up so that it rises to a height equal to the radius of the earth $\left(g=10 m s^{-2}\right.$ at the surface) ?
A. $8000 m s^{-1}$
B. $6400 \mathrm{~ms}^{-1}$
C. $1600 \mathrm{~ms}^{-1}$
D. $1000 m s^{-1}$

Answer: A

D Watch Video Solution

28. The orbital velocity of a satellite in a circular orbit just above the earth's surface is
v_{0}. The orbital velocity for a satellite orbiting in a circular orbit at an altitude of half of earth's radius is:
A. $\sqrt{\frac{3}{2}} v_{0}$
B. $\sqrt{\frac{2}{3}} v_{0}$

> C. $\frac{3}{2} v_{0}$
> D. $\left(\frac{2}{3}\right) v_{0}$

Answer: B

D Watch Video Solution

29. A man falls 50 m distance in one minute near the earth's surface, how much distance would he cover in one minute near the moon's
surface? $\left(g_{m}=\frac{g_{e}}{6}\right)$
A. $50 \times 6 m$
B. $50 m$
C. $\frac{50}{6} m$
D. $50 \times 50 \mathrm{~m}$.

Answer: C

D Watch Video Solution

30. The distances of two satellites P and Q
from earth are in the ratio $3: 1$. The ratio of
their total energy will be:
A. $1: 1$
B. $\frac{1}{3}: 1$
C. $3: 1$
D. 1:3

Answer: D

D Watch Video Solution

31. If R is the radius of the earth and g the acceleration due to gravity on the earth's surface, the mean density of the earth is:
A. $\frac{4 \pi G}{3 g R}$
B. $\frac{\pi R g}{12 G}$
C. $\frac{3 g}{4 \pi R G}$
D. $\frac{3 \pi R}{4 g G}$

Answer: C

- Watch Video Solution

32. The time period of a satellite in a circular orbit of radius R is T . The radius of the orbit in which time period is 8 T is:
A. $5 R$
B. 2 R
C. 4 R
D. 3R

Answer: C

- Watch Video Solution

33. Mass remaining constant, the radius of the

 earth shrinks by 1%. The acceleration due to gravity on the earth's surface would:A. increase by 2%
B. increase by 1%
C. decrease $\frac{1}{2} \%$
D. decrease by 1%

Answer: A

D Watch Video Solution
34. A planet has twice the density of earth but
the acceleration due to gravity on the surface
is same as on the surface of earth. Its radius in
terms of the radius R of earth is :
A. $\frac{R}{64}$
B. $\frac{R}{8}$
C. $\frac{R}{4}$
D. $\frac{R}{2}$

Answer: D
(Watch Video Solution
35. Two satellites revolve around the earth at distances $3 R$ and $6 R$ from the centre of earth.

Their periods of revolutions will be in the ratio:
A. $1: 2^{0.67}$
B. 2:1
C. $1: 2^{1.5}$
D. 1:2

Answer: C
36. A satellite is revolving in a circular orbit of
radius r around the earth. The angular momentum of the satellite is proportional to :
A. r
B. \sqrt{r}
C. $r^{\frac{3}{2}}$
D. $\frac{1}{\sqrt{r}}$

Answer: B
37. The ratio of the acceleration due to gravity on two planets P_{1} and P_{2} is k_{1}. The ratio of
their respective radii is k_{2}. The ratio of their respective escape velocities is:
A. $\sqrt{\frac{k_{2}}{k_{1}}}$
B. $\sqrt{2 k_{1} k_{2}}$
C. $\sqrt{k_{1} k_{2}}$
D. $\sqrt{\frac{k_{1}}{k_{2}}}$

Answer: C

- Watch Video Solution

38. If the mass of a planet is 10% less than
that of the earth and the radius 20% greater
than that of earth, the acceleration due to gravity on the planet will be:
A. $\frac{1}{2}$ times that on the surface of the earth
B. $\frac{3}{4}$ times that on the surface of the earth
C. $\frac{5}{8}$ times that on the surface of the earth

9
D. $\frac{9}{10}$ times that on the surface of the earth

Answer: C

- Watch Video Solution

39. The time period of revolution of a satellite
is T. The kinetic energy of the satellite is proportional to:
A. $T^{-2 / 3}$
B. T^{3}
C. T^{2}
D. T

Answer: A

D Watch Video Solution

40. The gravitational potential energy of a body of mass m at a distance r from the centre of the earth is U. What is the weight of the body at this distance?
A. $-U$
B. $-U r$
C. $\frac{-U}{r}$
D. $\frac{-U}{2 r}$.

Answer: C

- Watch Video Solution

41. If both the mass and radius of earth decrease by 1% the value of acceleration due to gravity will decrease by nearly:
A. 1%
B. 2%
C. 1.5%
D. 2.5%

Answer: A

D Watch Video Solution

42. If the satellite is stopped suddenly in its orbit and is allowed to fall freely into the
earth's surface with what speed it hits the surface of earth?
A. $7.92 \mathrm{~km} / \mathrm{s}$
B. $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
C. $8.92 \mathrm{~km} \mathrm{~s}^{-1}$
D. $5.6 \mathrm{~km} \mathrm{~s}^{-1}$

Answer: A
(Watch Video Solution
43. Two satellites A and B revolve round a planet in coplanar orbits in the same direction, rheir periods are 1 hour and 8 hours respectively. The orbital radius of A is $10^{4} \mathrm{~km}$ the speed of B relative to A when they are closest is :

> A. $10^{4} \pi k m / h$
> B. $2 \times 10^{4} \pi k m / h$
> C. $\frac{v_{1}}{r_{1}}=\frac{10^{4} \pi}{2} k m / h$
> D. $4 \times 10^{4} \pi k m / h$.

Answer: A

D Watch Video Solution

44. The mean radius of earth is R and its angular speed about its own axis is ω and acceleration due to gravity is ' g '. The cube of the radius of the orbit of geostationary satellite is:
A. $\frac{R^{2} g}{\omega}$
B. $\frac{R^{2} \omega^{2}}{g}$
C. $\frac{R g}{\omega^{2}}$
D. $\frac{R^{2} g}{\omega^{2}}$

Answer: D

D Watch Video Solution

45. The gravitational potential at a height ' h ' above earth's surface is $-5.12 \times 10^{7} \mathrm{~J} / \mathrm{kg}$ and acceleration due to gravity at this point is $6.4 m s^{-2}$. If $\mathrm{R}=6400 \mathrm{~km}$ the value of h is : (Mass of object $\mathrm{m}=1 \mathrm{~kg}$)
A. 1200 km
B. 1600 km
C. 1800 km
D. 2400 km

Answer: B

D Watch Video Solution
46. Force on a 1 kg mass on earth of radius R is

10 N . Then the force on a satellite revolving
around the earth in the mean orbital radius $3 R / 2$ will be (mass of satellite is 100 kg):
A. $4.44 \times 10^{2} N$
B. 500 N
C. $3.33 \times 10^{2} N$
D. $6.66 \times 10^{2} N$

Answer: A

D Watch Video Solution

47. A body is projected vertically upwards from
the surface of a planet of radius R with a
velocity equal to half the escape velocity for
that planet. The maximum height attained by
the body is :
A. $R / 2$
B. $R / 3$
C. $R / 4$
D. $R / 5$

Answer: B
48. The escape velocity for a body projected vertically upwards from the suface of earth is
$11 \mathrm{~km} / \mathrm{s}$. If the body is projected at angle of
45° with the vertical, the escape velocity will be:
A. $11 \sqrt{2} k m / s$
B. $22 \mathrm{~km} / \mathrm{s}$
C. $11 \mathrm{~km} / \mathrm{s}$

D. $\frac{11}{\sqrt{2}} \mathrm{~km} / \mathrm{s}$

Answer: C

D Watch Video Solution

49. A satellite of mass m revolves around the earth of radius R at a height x from its surface.

If g is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is:
A. $g X$
B. $\left(\frac{g R^{2}}{R+X}\right)^{1 / 2}$
C. $\frac{g R^{2}}{R+X}$
D. $\frac{g R}{R-X}$

Answer: B

D Watch Video Solution

50. If the gravitional force between two objects were proportional to $1 / R$ (and not as $1 R^{2}$) where R is separation between them, then a particle in circular orbit under such a
force would have its orbital speed v

proportional to

A. R^{1}
B. $1 / R$
C. R^{0}
D. $1 / R^{2}$

Answer: C
(Watch Video Solution
51. If the radius of earth's orbit is made $1 / 4$, the duration of an year will become :
A. 4 times
B. 8 times
C. $1 / 4$ times
D. $1 / 8$ times.

Answer: D

(D) Watch Video Solution
52. If the potential energy of body on a planet is numerically U and the escape velocity for the same body is v_{e} for same planet then $\frac{U}{v_{e}}$ will be :

$$
\begin{aligned}
& \text { A. } m \sqrt{\frac{G M}{2 R}} \\
& \text { B. } m \sqrt{\frac{G M}{R}} \\
& \text { C. } m \sqrt{\frac{2 G M}{R}} \\
& \text { D. } m \frac{G M}{R}
\end{aligned}
$$

Answer: A
53. The distance of geostationary satellite from centre of earth is nearest to :
A. 5 R
B. 10 R
C. 7 R
D. 18 R

Answer: C

- Watch Video Solution

54. The time period of planet X around sun is 8
times that of Y. The distance of X from the sun
is how many times greater than that of Y ?
A. 4 times
B. 3 times
C. $6 \frac{1}{2}$ times
D. $5 \frac{1}{2}$ times

Answer: A

D Watch Video Solution
55. Feeling of weightlessness in a satellite or spaceship is due to
A. absence of inertia
B. absence of accelerating force
C. acceleration of satellite
D. free fall of spaceship.

Answer: C

- Watch Video Solution

56. If the spinning speed of the earth is increased, then the weight of the body at equator:
A. does not change
B. decreases
C. doubles
D. increases.

Answer: B
57. A body of mass m is placed on earth
surface which is taken from earth's surface to
a height of $h=3 R$, then change in gravitational potential energy is :

$$
\begin{aligned}
& \text { A. } \frac{1}{4} \mathrm{mg} \mathrm{R} \\
& \text { B. } \frac{3}{4} \mathrm{mg} \mathrm{R} \\
& \text { C. } \frac{2}{3} \mathrm{mg} \mathrm{R} \\
& \text { D. } \frac{1}{2} \mathrm{mg} \mathrm{R}
\end{aligned}
$$

Answer: B
58. The change in the value of g at a height h above the surface of earth is the same as at a depth X below its surface then
A. $X=h^{2}$
B. $X=h$
C. $X=2 h$
D. $X=0.2 h$.

Answer: C
59. The duration of day is highest at :
A. earth
B. mercury
C. venus
D. mars.

Answer: C

- Watch Video Solution

60. The velocity with which a projectile must be fired so that it escapes earth's gravitation, does not depend on :
A. mass of the earth
B. radius of the projectile orbit
C. mass of the projectile
D. gravitational constant.

Answer: C

61. In an orbital motion, the angular momentum vector is:
A. along radius vector
B. perpendicular to orbital plane
C. parallel to linear momentum
D. in the orbital plane.

Answer: B
(Watch Video Solution
62. There are two planets. The ratio of radius of the two planets is K, but ratio of acceleration due to gravity of both planets is
g. What will be the ratio of their escape
velocity?

> A. $(K g)^{1 / 2}$
> B. $(K g)^{2}$
> C. $(K g)^{-1 / 2}$
> D. $(K g)^{-2}$

Answer: A
63. The radii of circular orbits of two satellites
A and B of the earth, are 4R and R, respectively.
If the speed of satellite A is $3 V$, then the speed of satellite B will be :
A. 12 V
B. $3 V / 2$
C. $3 V / 4$
D. 6 V

Answer: D

- Watch Video Solution

64. The height at which the weight of a body
becomes $1 / 16^{t h}$, its weight on the surface of earth (radius R), is:
A. 4 R
B. 5 R
C. 15 R
D. 3 R

Answer: D

D Watch Video Solution

Multiple Choice Questions Level li

1. In order that a body of 15 kg weighs zero at
the equator, then the angular speed of earth
is :
$\left(g=10 m s^{-1}\right)$
A. $\frac{1}{80} \mathrm{rad} \mathrm{s}^{-1}$
B. $\frac{1}{400} \mathrm{rad} \mathrm{s}^{-1}$
C. $\frac{1}{800} \mathrm{rad} \mathrm{s}^{-1}$
D. $\frac{1}{1600} \mathrm{rad} \mathrm{s}^{-1}$

Answer: C

D Watch Video Solution

2. Minimum work done to shift a body of mass
m from a circular orbit of $2 R$ to a higher orbit of radius $3 R$ around the earth ($R=$ Radius of earth):

A. $\frac{G M m}{12 R}$
 B. $\frac{G M m}{6 R}$
 C. $\frac{G M m}{4 R}$
 D. $\frac{G M m}{8 R}$

Answer: B

D Watch Video Solution

3. A body of mass m is raised through a distance equal to the radius of the earth from earth's surface. The change in P.E. will be:
A. $m g R$
B. 2 mgR
C. 3 mgR
D. $\frac{1}{2} \mathrm{mgR}$.

Answer: A

D Watch Video Solution
4. A satellite is orbiting round the earth in a circular orbit with speed v. If m is mass of satellite its total energy is:
A. $\frac{1}{2} m v^{2}$
B. $m v^{2}$
C. $-\frac{1}{2} m v^{2}$
D. $\frac{3}{4} m v^{2}$.

Answer: C

D Watch Video Solution

5. A light planet is revolving around a very massive star in a circular orbit of radius R with
a period of revolution T , if the gravitational
force of attraction between the two varies as
$R^{-5 / 2}$, then T^{2} is proportional to :
A. R^{3}
B. $R^{\frac{7}{2}}$
C. $R^{\frac{3}{2}}$
D. $R^{\frac{5}{2}}$

Answer: B
(Watch Video Solution
6. The acceleration due to gravity at a distance x from the centre of earth is $8 m s^{-2}$. The earth shrinks in radius by 5% but its mass remains constant. The acceleration due to gravity at a disatance ' x ' from the centre of earth now is:
A. $7 m s^{-2}$
B. $8 m s^{-2}$
C. $9 m s^{-2}$
D. $4 m s^{-2}$.
7. A satellite is moving in an orbit with half the
speed required to escape the earth's field.
What is the height of the satellite?
A. 64 km
B. 640 km
C. 6400 km
D. none of the above.

- Watch Video Solution

8. Two masses m_{1} and m_{2} are initially at rest at infinite distance. They approach each other due to gravitational attraction. What is the speed of approach at a distance r between them?

$$
\begin{aligned}
& \text { A. } \frac{2 G}{r\left(m_{1}+m_{2}\right)} \\
& \text { B. }\left[\frac{2 G\left(m_{1}+m_{2}\right)}{r}\right]^{\frac{1}{2}} \\
& \text { C. }\left(\frac{2 G r}{m_{1}+m_{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\text { D. }\left(\frac{2 G r}{m_{1}+m_{2}}\right) \text {. }
$$

Answer: B

D Watch Video Solution

9. A body is thrown up with a velocity 10%
more than the escape velocity v_{e}. When the body escapes the gravitational pull of the earth the velocity still left in the body is :
A. $0.1 v_{e}$
B. $0.229 v_{e}$
C. $0.458 v_{e}$
D. $0.20 v_{e}$.

Answer: C

- Watch Video Solution

10. A satellite of mass m is circulating around
the earth with constant angular velocity. If radius of the orbit is r and mass of the earth
M, the angular momentum about the centre of
the earth is :
A. $m \sqrt{\frac{G M}{r}}$
B. $M \sqrt{G m r}$
C. $M \sqrt{\frac{G M}{r}}$
D. $m \sqrt{G M r}$

Answer: D

D Watch Video Solution

11. The earth moves around the sun in an elliptical orbit as shown in fig. The ratio of $O A$ $\frac{O A}{O B}=K$. The ratio of the speed of the earth at B and at A is nearly:
A. \sqrt{K}
B. K
C. K^{2}
D. $K^{\frac{3}{2}}$
12. A body is projected vertically upwards from
the surface of a planet of radius R with a
velocity equal to half the escape velocity for
that planet. The maximum height attained by
the body is :
A. $\frac{R}{3}$
B. $\frac{R}{2}$
C. $\frac{2 R}{3}$
D. $\frac{5 R}{3}$.

Answer: A

D Watch Video Solution

13. A mass m is raised from the surface of
earth to a point which is at a height $n R$ from
the surface of earth. Change in potential energy is :
A. $n m g R$

> B. $\frac{2 m g R}{h}$
> C. $\frac{n}{n+1}(\mathrm{mgR})$
> D. $\frac{m g R}{n}$

Answer: C

D Watch Video Solution

14. The eccentricity of earth's orbit is 0.017 . The
ratio of the maximum speed in its orbit to its
minimum speed is :
A. 1.034
B. 1.051
C. 1.017
D. 1

Answer: A

D Watch Video Solution
15. The energy required to shift a satellite from
orbital radius r to orbital radius $2 r$ is E . What
energy will be required to shift the satellite from orbital radius $2 r$ to orbital radius $3 r$?
A. E
B. $\frac{E}{2}$
C. $\frac{E}{4}$
D. $\frac{E}{3}$.

Answer: D

D Watch Video Solution
16. A man can jump vertically through a height
1.5 m on earth. The maximum radius of the
planet of the same density as that of earth
from whose gravitational field he can escape
by jumping is $\left(R_{e}=6400 \mathrm{~km}\right)$:
A. 6 km
B. 7 km
C. 3.1 km
D. 5 km .

Answer: C
17. A planet of mass m moves around the sun in an elliptical orbit. The maximum and minimum distance of the planet from the sun is r_{1} and r_{2}. The time period is proportional to:
A. $r_{1}^{3 / 2}$
B. $r_{2}^{3 / 2}$
C. $\left(r_{1}+r_{2}\right)^{3 / 2}$

$$
\text { D. }\left(r_{1}-r_{2}\right)^{3 / 2}
$$

Answer: C

D Watch Video Solution

18. A planet is revolving round the sun in elliptical orbit. Its closest distance is r and
farthest distance is R. If the orbital velocity
closest to the sun is v , then velocity v at farthest point is :

$$
\text { A. } \frac{v r}{R}
$$

B. $\frac{v R}{r}$
C. $v\left(\frac{r}{R}\right)^{1 / 2}$
D. $v\left(\frac{R}{r}\right)^{1 / 2}$

Answer: A

D Watch Video Solution

19. A projectile is fired from earth vertically with a velocity $K v_{e}$ where $v_{e}=$ escape velocity and K is a constant less than unity.

What is the maximum height to which it rises as measured from centre of earth?

$$
\begin{aligned}
& \text { A. } \frac{R}{K^{2}} \\
& \text { B. } \frac{R}{1-K^{2}} \\
& \text { C. } \frac{R}{K^{2}-1} \\
& \text { D. } \frac{K^{2} R}{R-1}
\end{aligned}
$$

Answer: B
20. Two metal spheres of equal radius ' r ' are so
placed that their surfaces touch each other
the gravitational force of attraction is
proportional to:
A. r^{2}
B. $\frac{1}{r^{2}}$
C. r^{4}
D. r^{6}

Answer: C
21. A reel of massless thread unrolls itself falling down under gravity. The acceleration of its fall is :
A. g
B. $\frac{g}{2}$
C. $\frac{2}{3} g$
D. $\frac{4}{5} g$.

Answer: D
22. Two bodies of masses 4 kg and 2 kg are moving with velocities $2 \mathrm{~ms}^{-1}$ and $10 \mathrm{~ms}^{-1}$ towards each other due to gravitational attraction, what is the velocity of their centre of mass?
A. $5 m s^{-1}$
B. $6 m s^{-1}$
C. $8 m s^{-1}$
D. zero.

Answer: D

D Watch Video Solution

23. The length of second pendulum is 1 m on earth. If mass and diameter of the planet is doubled than that of earth, then length becomes:
A. 1 m
B. 4 m
C. 0.5 m
D. 2 m .

Answer: C

- Watch Video Solution

24. The earth is assumed to be a sphere of radius R. A platform is arranged at a height R
from the surface of earth. The escape velocity of a body from this platform is $f v$, where v is its escape velocity from surface of the earth. The value of f is :
A. $1 / 2$
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $1 / 3$.

Answer: C

D Watch Video Solution

25. Statement I. Escape velocity of a body is independent of mass of a body.

Statement II. Escape velocity of an elephant
from the surface of planet is same as that of escape velocity of a mouse.
A. Statement-I is true, Statement-II is true and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true
and Statement-II is not correct
explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

26. Statement I. An Astronaut feels weightlessness while inside the satellite.

Statement II. The value of acceleration due to gravity is zero inside the satellite.
A. Statement-I is true, Statement-II is true
and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true and Statement-II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: C

D Watch Video Solution

27. Statement I. Gravitational potential at any
point is equal to gravitational potential
energy of a body of unit mass.

Statement II. The gravitational potential of a body of mass m is $U=-\frac{G M m}{r}$, where symbols have their usual meanings.
A. Statement-I is true, Statement-II is true and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true and Statement-II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

28. Statement I. Escape velocity of body is $\sqrt{2}$
times the orbital velocity of the body revolving
very close toe surface of the earth.

Statement II. Moon would depart for ever if its
velocity is increased by 42%.
A. Statement-I is true, Statement-II is true and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true
and Statement-II is not correct

explanation of Statement-I.

C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

29. Statement I. If ice at the poles melts then
the duration of day will shorten.

Statement II. When ice flows from poles towards equator then moment of inertia
decreases. This increases the frequency of rotation of earth.
A. Statement-I is true, Statement-II is true and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true
and Statement-II is not correct
explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: D

D Watch Video Solution

30. Statement I. The value of acceleration due to gravity does not depend upon the mass of the body on which it acts.

Statement II. Acceleration due to gravity (g) is

a constant quantity.
A. Statement-I is true, Statement-II is true and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true
and Statement-II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.

D. Statement-I is false, Statement-II is false.

Answer: C
(Watch Video Solution
31. Statement I. Time period of revolution of a satellite moving closer to earth is smaller than
that revolving far away from earth.

Statement II. The square of time period (T) is
directly proportional to cube of its orbital radius.
A. Statement-I is true, Statement-II is true
and Statement-II is correct explanation
for Statement-I.
B. Statement-I is true, Statement-II is true and Statement-II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

32. Read the paragraph and answer the following questions.

Paragraph : Two stars P and Q each having mass M constitute a binary system. The stars revolves in circular orbits about their centre of mass under the effect of mutual gravitational force of attraction. The radius of orbit of star P is R. The dimensions of stars are negligible as compared to the separation between the stars.

The orbital speed of star Q is :

> A. $\sqrt{\frac{G M}{R}}$
> B. $\sqrt{\frac{2 G M}{R}}$
> C. $\sqrt{\frac{G M}{2 R}}$
> D. $\sqrt{\frac{G M}{4 R}}$

Answer: D

- Watch Video Solution

33. Read the paragraph and answer the following questions.

Paragraph : Two stars P and Q each having
mass M constitute a binary system. The stars
revolves in circular orbits about their centre of
mass under the effect of mutual gravitational
force of attraction. The radius of orbit of star P
is R. The dimensions of stars are negligible as
compared to the separation between the stars.

The energy required to separate the two stars
P and Q to infinite distance apart is

$$
\begin{aligned}
& \text { A. } \frac{G M^{2}}{4 R} \\
& \text { B. } \frac{G M^{2}}{3 R} \\
& \text { C. } \frac{G M^{2}}{2 R}
\end{aligned}
$$

D. $\frac{2 G M^{2}}{R}$

Answer: A

D Watch Video Solution

34. Read the paragraph and answer the following questions.

Paragraph : Two uniform solid spheres of equal radii ' R ', but mass ' M ' and ' $4 M$ ' have a centre to centre separation $6 r$, as shown in fig.

The spheres are held fixed. A projectile of mass
(m) is projected from surface of sphere of mass (M) directly towards the centre of second sphere.

The value of v_{m} is:
A. $\sqrt{\frac{3 G M}{5 R}}$
B. $\sqrt{\frac{3 G M}{4 R}}$
C. $\left(\frac{2 G M}{5 R}\right)^{1 / 2}$
D. $\left(\frac{2 G M}{3 R}\right)^{1 / 2}$

Answer: A
35. Read the paragraph and answer the following questions.

Paragraph : Orbital velocity is defined as the velocity required to put the satellite into satellite into its orbit around the earth. An artificial satellite is moving in circular orbit around the earth with speed equal to half the value of escape velocity from the earth.

The height of the satellite above the surface of earth is
A. R
B. 2 R
C. 3R
D. 4 R

Answer: A

D Watch Video Solution
36. Read the paragraph and answer the following questions.

Paragraph : Orbital velocity is defined as the
velocity required to put the satellite into satellite into its orbit around the earth. An artificial satellite is moving in circular orbit around the earth with speed equal to half the value of escape velocity from the earth.

The linear momentum of the satellite at the height given in above question is
A. $m \sqrt{2 G M} R$
B. $m \sqrt{\frac{G M}{2 R}}$
C. $m \sqrt{\frac{G M}{3 R}}$
D. $m \sqrt{\frac{G M}{4 R}}$

Answer: A

- Watch Video Solution

37. Read the paragraph and answer the following questions.

Paragraph : Orbital velocity is defined as the velocity required to put the satellite into satellite into its orbit around the earth. An artificial satellite is moving in circular orbit around the earth with speed equal to half the value of escape velocity from the earth.

If the satellite is stopped suddenly in its orbit and allowed to fall freely on the surface of earth then the speed with which it hits the surface of earth is
A. $\sqrt{\frac{g R}{g}}$
B. $\sqrt{g R}$
C. $\sqrt{2 g R}$
D. $\sqrt{3 g R}$

Answer: B
38. The weight of a man in a lift moving upwards is 608 N while the weight of the same
man in the lift moving downwards with the
same acceleration is 368 N . His normal weight in newton is :
A. 488
B. 588
C. 480
D. 240

Answer: A

- Watch Video Solution

39. Taking that earth revolves round Sun in a circular orbit of radius $15 \times 10^{10} \mathrm{~m}$, with a time period of 1 year, the time taken by another planet, which is at a distance of $540 \times 10^{10} \mathrm{~m}$, to revolve round the Sun in circular orbit once, will be:
A. 216 years
B. 144 years
C. 72 years
D. 36 years

Answer: A

D Watch Video Solution

40. A particle of mass 10 g is kept on the surface of uniform sphere of mass 100 kg and radius 10 cm . Find the work done against the
gravitational force between them to take the particle far away from the sphere.

A. $13.44 \times 10^{-10} J$
B. $3.33 \times 10^{-10} J$
C. $6.67 \times 10^{-9} J$
D. $6.67 \times 10^{-10} J$

Answer: D
(Watch Video Solution
41. The escape velocity of a body on an imaginary planet which is thrice the radius of the earth and double the mass of the earth is (v_{e} is the escape velocity of earth) :

$$
\begin{aligned}
& \text { A. } \sqrt{2 / 3} v_{e} \\
& \text { B. } \sqrt{3 / 2} v_{e} \\
& \text { C. } \sqrt{2} / 3 v_{e} \\
& \text { D. } 2 / \sqrt{3} v_{e}
\end{aligned}
$$

Answer: A

42. Two spheres of masses m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with as liquid of specific gravity 3. The gravitational force will now be:
A. 3 F
B. $F / 3$
C. F
D. $F / 9$

Answer: C

D Watch Video Solution

43. A satellite orbiting around earth of radius
R is shifted to an orbit of radius $2 R$. How many
times the time taken for one revolution increase?
A. $2 \cdot 5$ times
B. 2 times
C. $2 \cdot 8$ times
D. 8 times.

Answer: C

D Watch Video Solution

44. Earth is revolving around the sun. If the
distance of the earth from the sun is reduced
to $1 / 4$ th of the present distance then the day length reduced to :
A. $1 / 4$
B. $1 / 8$
C. $1 / 2$
D. $1 / 6$

Answer: B

D Watch Video Solution

45. The condition for the uniform sphere of mass m of radius r to be a black hole is ($\mathrm{G}=$ gravitational constant) :
A. $\left(\frac{2 G m}{r}\right)^{1 / 2} \geq C$
B. $\left(\frac{2 G m}{r}\right)^{1 / 2} \leq C$
C. $\left(\frac{2 g m}{r}\right)^{1 / 2}=C$
D. $\left(\frac{g m}{r}\right)^{1 / 2} \geq C$

Answer: A

D Watch Video Solution

46. The earth is assumed to be a sphere of
radius R. A platform is arranged at a height R
from the surface of earth. The escape velocity of a body from this platform is fv, where v is its escape velocity from surface of the earth. The value of f is :

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \sqrt{2} \\
& \text { C. } \frac{1}{\sqrt{2}} \\
& \text { D. } \frac{1}{3} .
\end{aligned}
$$

Answer: C

47. Two satellites of earth, S_{1} and S_{2} are moving in the same orbit. The mass of S_{1} is four times the mass of S_{2}. Which of the following statements is true?
A. The potential energies of earth and satellite in the two cases are equal.
B. S_{1} and S_{2} are moving with same speed.
C. The kinetic energies of two satellites are
equal.

D. The time period of S_{1} is four times that

$$
\text { of } S_{2}
$$

Answer: B

D Watch Video Solution

48. The figure shows eliptical orbit of a planet m about the Sun S . The shaded area SCD is twice the shaded area SAB. If t_{1} is the time for the planet of move from C to D and t_{2} is the
time to move from A to B then:

> A. $t_{1}=4 t_{2}$
> B. $t_{1}=2 t_{2}$
> C. $t_{1}=t_{2}$
> D. $t_{1}>t_{2}$

Answer: B

D View Text Solution
49. A body projected vertically from the earth
reaches a height equal to earth's radius before
returning ot the earth. The power exerted by
the gravitational force is greatest:
A. at the highest position of the body.
B. at the instant just before the body hits
the earth.
C. it remains constant all through.
D. at the instant just after the body is
projected.

Answer: B

D Watch Video Solution

50. A geostatationary satellite is orbiting the earth at a height of $5 R$ above the surface of the earth, R being the radius of the earth. The
time peiod of another satellite in hours at a height of $2 R$ from the surface of the earth is:
A. $\frac{6}{\sqrt{2}}$
B. 5
C. 10
D. $6 \sqrt{2}$

Answer: D

D Watch Video Solution

51. A spherical planet has a mass M_{p} and diameter D_{p}. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to :
A. $6 G M_{p} m / D_{p}^{2}$
B. $4 G M_{p} / D_{p}^{2}$
C. $G M_{p} m / D_{p}^{2}$
D. $G M_{p} / D_{p}^{2}$

Answer: B

D Watch Video Solution

52. Geostationary satellite orbits around the earth in a circular orbit of radius 36000 km .

Then the time period of a spy satellite orbiting
a few hundred kilometres above the earth's
surface $\left(R_{\text {earth }}=6400 \mathrm{~km}\right)$
will be approximately be
A. $1 / 2 \mathrm{hr}$
B. 1 hr
C. 2 hr
D. 4 hr .

Answer: C

53. If W_{1}, W_{2} and W_{3} represent the work done in moving a particle from A to B along
three different paths 1,2 and 3 respectively (as
shown) in a gravitational field of point mass m, then
A. $W_{1}=W_{2}=W_{3}$
B. $W_{1}>W_{2}>W_{3}$
c. $W_{11}<W_{2}<W_{3}$
D. $W_{1}<W_{3}<W_{2}$

Answer: D

D Watch Video Solution

54. Energy required to move a body of mass m
from an orbital of radius $2 R$ to $3 R$ is (where M
= mass or earth, $\mathrm{R}=$ radius of earth)

> A. $\frac{G M m}{12 R^{2}}$
> B. $\frac{G M m}{8 R}$
> C. $\frac{G M m}{3 R^{2}}$
> D. $\frac{G M m}{6 R}$

Answer: A

D Watch Video Solution

55. The time period of a satellite of earth is 5
hours. If the separation between the earth and
the satellite is increased to 4 times the
previous value, the new time period will become
A. 10 hours
B. 80 hours
C. 40 hours

D. 20 hours

Answer: C

D Watch Video Solution

56. Two spherical bodies of mass M and $5 M$ and radii R and $2 R$ respectively are released in
free space with initial separation between their centres equal to 12 R. If they attract each other due to gravitational force only then the
distance covered by the smaller body just before collision is
A. 2.5 R
B. 4.5 R
C. 7.5 R
D. 1.5 R

Answer: C
(Watch Video Solution
57. The escape velocity for a body projected
vertically upwards from the suface of earth is
$11 \mathrm{~km} / \mathrm{s}$. If the body is projected at angle of
45° with the vertical, the escape velocity will
be:
A. $11 \sqrt{2} \mathrm{~km} / \mathrm{s}$
B. $22 \mathrm{~km} / \mathrm{s}$
C. $11 \mathrm{~km} / \mathrm{s}$
D. $\frac{11}{\sqrt{2}} \mathrm{~km} / \mathrm{s}$

Answer: C
58. A satellite of mass m revolves around the earth of radius R at a height x from its surface.

If g is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is:
A. $g X$
B. $\left(\frac{g R^{2}}{R+X}\right)^{1 / 2}$
C. $\frac{g R^{2}}{R+X}$
D. $\frac{g R}{R-X}$

Answer: B

D Watch Video Solution

59. Average density of the earth
A. does not depend on g
B. is a complex function of g
C. is directly proportional to g
D. is inversly proportional to g

Answer: C

- Watch Video Solution

60. The change in the value of g at a height ' h ' above the surface of earth is the same as at a depth 'd' below the surface of earth. When both d and h are much smaller than the radius of earth, then which one of the following is correct?

$$
\text { A. } d=\frac{h}{2}
$$

> B. $d=\frac{3 h}{2}$
> C. $d=2 h$
> D. $d=h$

Answer: C

D Watch Video Solution
61. A particle of mass 10 g is kept on the surface of uniform sphere of mass 100 kg and radius 10 cm . Find the work done against the
gravitational force between them to take the particle far away from the sphere.

A. $13.34 \times 10^{-10} J$
B. $3.33 \times 10^{-10} J$
C. $6.67 \times 10^{-9} \mathrm{~J}$
D. $6.67 \times 10^{-10} J$

Answer: D
(Watch Video Solution
62. If g_{E} and 8_{M} are the accelerations due to
gravity on the surfaces of the earth and the moon respectively and if Millikan oil drop experiment could be performed on the two
surfaces, one will find the ratio electronic charge on moon to be:
A. 0
B. g_{E} / g_{M}
C. g_{M} / g_{E}
D. 1

Answer: D

D Watch Video Solution

63. This question contain Statement-1 and

Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1:

For a mass M kept at centre of a cube of side 'a', the flux of gravitational field passing through its sides $4 \pi G M$. and

Statement-2:

If the direction of a field due to a point source
is radial and its dependence on the distance ' r '
from the source is given as $\frac{1}{r^{2}}$, its flux through a closed surface depends only on the strength of the source enclosed by the surface and not on the size or shape of the surface.
A. Statement-1 is false, Statement-2 is true.
B. Statement-1 is true, Statement-2 is true,

Statement-2 is correct explanation for

Statement-1.
C. Statement-1 is true, Statement-2 is true,

Statement-2 is not a correct explanation
for Statement-1.
D. Statement-1 is true, Statement-2 is false.

Answer: B

D Watch Video Solution

64. A planet in a distant solar system is 10
times more massive than the earth and its
radius is 10 times smaller. Given that the
escape velocity from the earth is $11 \mathrm{~km} s^{-1}$,
the escape velocity from the surface of the planet would be :

A. $1.1 \mathrm{kms}^{-1}$

B. $11 \mathrm{kms}^{-1}$
C. $110 \mathrm{~km} \mathrm{~s}^{-1}$
D. $0.11 \mathrm{kms}^{-1}$

Answer: C

D Watch Video Solution

Multiple Choice Questions Level Ii Questions From Aieee Jee Examination

1. Two bodies of masses m and 4 m are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is :

$$
\begin{aligned}
& \text { A. }-\frac{4 G m}{r} \\
& \text { B. }-\frac{6 G m}{r} \\
& \text { C. }-\frac{9 G m}{r}
\end{aligned}
$$

D. zero

Answer: C

D Watch Video Solution

2. Two particles of equal mass 'm' go around a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle with respect to their centre of mass is :

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G m}{4 R}} \\
& \text { B. } \sqrt{\frac{G m}{3 R}}
\end{aligned}
$$

c. $\sqrt{\frac{G m}{2 R}}$
D. $\frac{1}{2} \sqrt{\frac{G m}{R}}$

Answer: A

D Watch Video Solution

3. The mass of a spaceship is 1000 kg . It is to be launched from the earth's surface out into
free space. The value of 'g' and 'R' (radius of earth) are $10 \mathrm{~m} / \mathrm{s}^{2}$ and 6400 km respectively.

The required energy for this work will be :
A. 6.4×10^{10} joules
B. 6.4×10^{11} joules
C. 6.4×10^{8} joules
D. 6.4×10^{9} joules

Answer: A

D Watch Video Solution
4. What is the minimum energy required to
launch a satellite of mass m from the surface
of a planet of mass M and radius R in a circular orbit at an altitude of $2 R$?

$$
\begin{aligned}
& \text { A. } \frac{2 G m M}{3 R} \\
& \text { B. } \frac{G m M}{2 R} \\
& \text { C. } \frac{G m M}{3 R} \\
& \text { D. } \frac{5 G m M}{6 R}
\end{aligned}
$$

Answer: D
5. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is:

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \sqrt{\frac{G M}{R}(1+2 \sqrt{2})} \\
& \text { B. } \sqrt{\frac{G M}{R}} \\
& \text { C. } \sqrt{2 \sqrt{2} \frac{G M}{R}} \\
& \text { D. } \sqrt{\frac{G M}{R}(1+2 \sqrt{2})}
\end{aligned}
$$

- Watch Video Solution

6. From a solid sphere of mass M and radius R,
a spherical portion of radius $\frac{R}{2}$ is removed, as shown in the figure. Taking gravitational potential $V=0$ at $r=\infty$, the potential at the centre of the cavity thus formed is :
(G = gravitational constant)

$$
\begin{aligned}
& \text { A. } \frac{-G M}{R} \\
& \text { B. } \frac{-2 G M}{3 R}
\end{aligned}
$$

c. $\frac{-2 G M}{R}$
 D. $\frac{-G M}{2 R}$

Answer: A

D View Text Solution

Recent Competitive Questions

1. An astronaut on a strange planet finds that acceleration due to gravity is twice as that on
the surface of earth. Which of the following could explain thin?
A. Both the mass and the radius of the planet are twice as that of Earth.
B. Mass of the planet is half as that of

Earth, but radius is same as that of Earth.
C. Both the mass and the radius of the planet are half as that of Earth.

D. Radius of the planet is half as that of

Earth, but the mass is the same as that of Earth.

Answer: C

D Watch Video Solution

2. A planet moves around sun sweeps area A_{1}
in 2 days A_{2} in 3 days and A_{3} in 6 days. Then
the relation between A_{1}, A_{2} and A_{3} is

$$
\text { A. } 3 A_{1}=2 A_{2}=A_{3}
$$

$$
\text { B. } 2 A_{1}=3 A_{2}=6 A_{3}
$$

C. $3 A_{1}=2 A_{2}=6 A_{3}$
D. $6 A_{1}=3 A_{2}=2 A_{3}$.

Answer: A

D View Text Solution

3. A period of geostationary satellite is

A. 24 h
B. 12 h
C. 30 h
D. 48 h .

Answer: A

D Watch Video Solution
4. Two satellites of mass m and $9 m$ are orbiting a planet in orbits of radius R.Their periods of revolution will be in the ratio of
A. $9: 1$
B. $3: 1$
C. 1:1
D. $1: 3$

Answer: C

D Watch Video Solution

5. What is a period of revolution of earth satellite ? Ignore the height of satellite above the surface of earth.

Given :

The value of gravitational acceleration
$g=10 m s^{-2}$
Radius of earta $R_{E}=6400 \mathrm{~km}$. Take $\pi=3.14$.
A. 85 min
B. 156 min
C. 83.73 min
D. 90 min .

Answer: C

6. If the mass of a body is M on the surface of
the earth, the mass of the same body on the
surface of the moon is
A. M
B. 0
C. $M / 6$
D. 6 M .

Answer: A

- Watch Video Solution

7. A stone weighs 100 N on the surface of the

Earth. The ratio of its weight at a height of half the radius of the Earth to a depth of half the radius of the earth will be approximately
A. 3.6
B. 2.2
C. 1.8
D. 0.9
8. The gravitational field strength at the surface of a certain planet is g. Which of the following is the gravitational field strength at the surface of a planet with twice the mass?
A. $g / 2$
B. g
C. 2 g
D. 4 g .

Answer: A
(Watch Video Solution

