đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

MOCK TEST-3

Mcqs

1. A man standing in a lift holds a spring balance with a load of 5 kg suspended from it.

What would be the reading of the balance when the lift is descending with an acceleration of $4 m s^{-2}$?
A. 1 kg
B. 2 kg
C. 3 kg
D. 4 kg .

Answer: C

D Watch Video Solution
2. A particle is displaced from a position
$(2 \hat{i}-\hat{j}+\hat{k})$ to another position $(3 \hat{i}+2 \hat{j}-2 \hat{k})$ under the action of the force $(2 \hat{i}+\hat{j}-\hat{k})$. The work done by the force in arbitrary unit is :
A. 8
B. 10
C. 12
D. 16
3. A 50 gram bullet moving with a velocity of $10 \mathrm{~ms}^{-1}$ gets embedded into a 950 g stationary body. The loss in kinetic energy of the system will be
A. 95%
B. 100%
C. 5%
D. 50%

Answer: A

D Watch Video Solution

4. A horizontal pipe line carries water in a stream line flow. At a point along the pipe where cross-sectional area is $10 \mathrm{~cm}^{2}$, the water velocity is $1 \mathrm{~m} / \mathrm{s}$ and the pressure is 2000 Pa .

The pressure of water at another point where the cross-sectional area is $5 \mathrm{~cm}^{2}$, is (density of water $\left.=10^{3} \mathrm{~kg} . \mathrm{m}^{-3}\right):$
A. 200 Pa
B. 300 Pa
C. 400 Pa
D. 500 Pa .

Answer: D

D Watch Video Solution

5. For a transistor, the current amplification
factor $\alpha=0.9$. This transistor connected in
common emitter configuration. When the base
current changes by 0.4 mA , the change in

collector current will be

A. 36 mA
B. 9 mA
C. 4 mA
D. 3.6 mA .

Answer: D
(Watch Video Solution
6. A mass ' M ' is suspended from a spring of negligible mass. The spring is pulled a little and then released. It execuutes S.H. oscillations of period T. When mass is increased by ' m ', the period becomes $\frac{5}{4}$ T, the ratio $\frac{m}{M}$ is :
A. $9 / 16$
B. $25 / 16$
C. $4 / 5$
D. $5 / 4$.

Answer: A

D Watch Video Solution

7. A regular hexagon of side 10 cm has a charge $5 \mu C$ at each of its vertices. Calculate the potential at the centre of the hexagon.
A. $2.7 \times 10^{6} V$
B. $3.7 \times 10^{6} V$
C. $4.7 \times 10^{6} V$
D. $5.7 \times 10^{6} V$.

Answer: A

- Watch Video Solution

8. Two metal plates form a parallel plate capacitor.The distance between the plates is d .

A metal sheet of thickness $d / 2$ and of the same area is introduced between the plates. What is
the ratio of the capacitances in the two cases ?
A. $4: 1$
B. 2:1
C. 3:1
D. 5:1

Answer: B

- Watch Video Solution

9. A circular coil of 100 turns has a radius of 10
cm and carries a current of 5 A . The magnetic
field at a point on the axis of the coil at a distance of 5 cm from the centre of the coil is :
A. $2.25 \times 10^{-3} T$
B. $3.5 \times 10^{-3} T$
C. $4.5 \times 10^{-3} T$
D. $5.25 \times 10^{-3} T$.

Answer: A

D Watch Video Solution

10. Deuterons are accelerated in cyclotron that
has an oscillatory frequency of $10^{7} \mathrm{~Hz}$ and a dee radius of 50 cm . The strength of the
magnetic field needed to accelerate the deuterons is:
A. 1.21 T
B. 1.31 T
C. 1.41 T
D. 1.51 T.

Answer: A
(Watch Video Solution
11. An ammeter is obtained by shunting a 30Ω galvanometer with a 30Ω resistance. The additional shunt which should be connected across it to double its range is
A. 30Ω
B. 15Ω
C. 10Ω
D. 5Ω.

Answer: C

12. A sinusoidal voltage of peak vale 283 V and
frequency 50 Hz is applied to a series LCR circuit in
which
$R=3 \Omega, L=25.48 \mathrm{mH}$ and $C=786 \mu F$.

The power factor.
A. 2Ω
B. 5Ω
C. 10Ω
D. 12Ω

Answer: B

D Watch Video Solution

13. If the electric amplitude of the electromagnetic wave is $5 \mathrm{Vm}^{-1}$, its magnetic amplitude will be
A. $5 T$
B. $1.67 \times 10^{-8} T$
C. $1.67 \times 10^{-10} T$
D. $5 \times 10^{-10} T$.

Answer: B

D Watch Video Solution

14. The energy emitted per second by a black body at $1227^{\circ} \mathrm{C}$ is E . If the temperature of the black body is increased to $2727^{\circ} \mathrm{C}$, the energy emitted per second in terms of E is :
A. E
B. 2 E
C. 4 E

D. 16E.

Answer: D

D Watch Video Solution

15. The speed of sound in agas at N.T.P. is 300 $m s^{-1}$. If the pressure increases 4 times without change in temperature, the velocity of sound will be
A. $150 m s^{-1}$
B. $300 m s^{-1}$
C. $600 m s^{-1}$
D. $120 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

16. The length of a seconds' pendulum on the earth is 60 m . What will be the length of a seconds' pendulum on the surface of moon?

Given : the value of g on the surface of moon?

Given : the value of g on the surface of moon?

Given : the value of g on the surface of moon
is $1 / 6 t h$ of value of g on the surface of earth.
A. 60 m
B. 360 m
C. 10 m
D. 0.479 m .

Answer: C

D Watch Video Solution
17. A girl is swinging on a swing in the standing position. How will the period of swing be affected if she sits down?
A. It will become shorter
B. It will become longer
C. It will not change
D. It will become infinite.

Answer: B

18. A resistance of 2Ω is connected across one gap of a metre-bridge (the length of the wire is 100 cm) and an unknown resistance, greater than 2Ω, is connected across the other gap.

When these resistances are interchanged, the balance point shifts by 20 cm . Neglecting any corrections, the unknown resistance is :
A. 3Ω
B. 4Ω
C. 5Ω
D. 6Ω

Answer: A

D Watch Video Solution

19. A hollow metallic tube a length L and
closed at one end produces resonance with a
tuning fork of frequency n. The entire tube is
then heated carefully. So that at equilibrium
temperature its length changes by l. If the change in velocity V of sound is v, the resonance will now be produced by tuning fork whose frequency is :
A. $\frac{V-v}{4(L+l)}$
B. $\frac{V+v}{4(L-l)}$
C. $\frac{V-v}{4(L-l)}$
D. $\frac{V+v}{4(L+l)}$.

Answer: D

D Watch Video Solution

20. Equal temperature difference exists between the ends of two metallic rods 1 and 2 of equal lengths. Their thermal conductivity is
K_{1} and K_{2} and cross-sectional areas are respectively A_{1} and A_{2}. The condition for equal rate of heat transfer will be

> A. $K_{1} A_{1}^{2}=K_{2} A_{2}^{2}$
> B. $K_{1} A_{2}=K_{2} A_{1}$
> C. $K_{2} A_{1}=K_{2} A_{2}$
> D. $K_{1} A_{2}^{2}=K_{2}^{2} A_{1}$

Answer: C

D Watch Video Solution
21. Statement-1 : A planet moves in a elliptical orbit around the sun. Its angular momentum remains constant.

Statement-2 : Gravitational force is a central
force. Therefore, no torque acts on the planet
with respect to the sun. As a result angular
momentum remains conserved.
A. Statement-1 is false, Statement-2 is true.
B. Statement-1 is true, Statement-2 is true ,

Statement-2 is a correct explanation for

Statement-1.
C. Statement-1 is true, Statement-2 is true,

Statement-2 is not a correct explanation
for Statement-1.
D. Statement-1 is true, Statement-2 is false.

Answer: B

D Watch Video Solution

22. Statement-1 : When light enters a prism and deviates from its normal path. The deviation of violet colour is less than that of
red colour.

Statement-2 : The velocity of the violet colour is less than the velocity of red colour.
A. Statement- 1 is false, Statement- 2 is true.
B. Statement-1 is true, Statement-2 is true ,

Statement-2 is a correct explanation for

Statement-1.
C. Statement-1 is true, Statement-2 is true,

Statement-2 is not a correct explanation
for Statement-1.

D. Statement- 1 is true, Statement- 2 is false.

Answer: A

D Watch Video Solution

23. Plank's constant is represented by:
A. $\left[M L T^{-1}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T^{-1}\right]$.

Answer: D

D Watch Video Solution

24. A body moves with uniform acceleration. If
v_{1}, v_{2} and v_{3} be the average velocities in three successive intervals of time t_{1}, t_{2} and t_{3} , then :

$$
\begin{aligned}
& \text { A. } v_{1}-v_{2}: v_{2}-v_{3}=t_{1}-t_{2}: t_{2}+t_{3} \\
& \text { B. } v_{1}-v_{2}: v_{2}-v_{3}=t_{1}+t_{2}: t_{2}+t_{3} \\
& \text { C. } v_{1}-v_{2}: v_{2}-v_{3}=t_{1}+t_{2}: t_{1}-t_{3}
\end{aligned}
$$

$$
\text { D. } v_{1}-v_{2}: v_{2}-v_{3}=t_{1}+t_{2}: t_{2}-t_{3}
$$

Answer: B

D Watch Video Solution

25. Two forces of magnitude F and $\sqrt{3} \mathrm{~F}$ act at
right angles to each other. Their resultant makes an angle θ with F . The value of θ is :
A. 30°
B. 45°
C. 60°
D. 135°

Answer: C

D Watch Video Solution

26. The magnitude of the vector product of two vectors is 4 . The magnitude of their scalar product is $4 \sqrt{3}$. The angle between the two vectors is :
A. 30°
B. 45°
C. 60°
D. 75°

Answer: A

D Watch Video Solution

27. A Diwali rocket is ejecting 0.05 kg of gases
per second at a velocity of $200 \mathrm{~m} / / \mathrm{s}$. The accelerating force on the rocket is :
A. 10 N
B. 20 N
C. 5 N
D. 5 dynes.

Answer: A

D Watch Video Solution
28. Which of the following is the relation of centripetal force?
A. $\frac{m v^{2}}{r}$
B. $\frac{m v}{r}$
C. $\frac{m v^{3}}{r}$
D. $\frac{m v^{2}}{r^{2}}$.

Answer: A

D Watch Video Solution

29. A metal ball hits a wall and does not rebound, where as b a rubber ball of the same mass on hitting the wall with the same
velocity rebounds back. It can be concluded that:
A. The initial momentum of metal ball is
greater than initial momentum of
rubber
B. Rubber ball suffers greater change in
momentum
C. Metal ball suffers greater change in
momentum
D. None of these.

Answer: B

D Watch Video Solution

30. A body of mass m is raised through a distance equal to the radius of the earth from earth's surface. The change in P.E. will be:
A. $m g R$
B. 2 mgR
C. 3 mgR
D. $\frac{1}{2} \mathrm{mgR}$.

D Watch Video Solution

31. When load is applied to a wire the extension is 3 mm , the extension in the wire of
same material, length but half the radius by the same load is :
A. 0.75 mm
B. 6 mm
C. 1.5 mm

D. 12.0 mm

Answer: D

D Watch Video Solution

32. If the work done in blowing a bubble of radius R is W , then the work done in blowing a bubble of radius 2 R from that solution is :
A. $W / 2$
B. 2 W
C. 4 W
D. $2^{1 / 3} W$.

Answer: C

- Watch Video Solution

33. Under constant temperature, graph between P and $1 / V$ is a:
A. parabola
B. straight line

C. hyperbola

D. circle.

Answer: B

D Watch Video Solution

34. There are three source of sound of equal intensities with frequencies 400,401 and 402

Hz . The no. of beats per second is :
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

35. The density of a liquid of coefficient of
cubical expansion γ is d at $0^{\circ} C$. When the
liquid is heated to a temperature T , the change in density will be:
A. $\frac{-\gamma T d_{0}}{(1+\gamma T)}$
B. $\frac{\gamma T d_{0}}{(1+\gamma T)}$
C. $\frac{(\gamma+\gamma T) d_{0}}{\gamma T}$
D. $\frac{(\gamma-\gamma T) d_{0}}{\gamma T}$

Answer: A

- Watch Video Solution

36. There are two spherical balls A and B of the same material with same surface finish but the radius of A is half than of B. If A and B are
heated to the same temperature and allowed to cool then :
A. rate of cooling of both is same
B. rate of cooling of A is four times that of

B
C. rate of cooling of A is twice that of B
D. rate of cooling of A is $1 / 4$ time that of B.

Answer: B

37. Between the plates of a parallel plate capacitor of capacitance C, two parallel plates, of the same material and area same as the plate of original capacitor, are placed. If the thickness of these plates is equal to $\frac{1}{5}$ th of distance between the plates of original capacitor, then capacitance of new capacitor is
A. $\frac{5}{3} C$
B. $\frac{3}{5} C$
C. $\frac{3}{10} C$

D. $\frac{10}{3} C$

Answer: A

D Watch Video Solution

38. A parallel plate capacitor of capacity 100 μF is charged by a battery of 50 V . The battery remains connected and if the plates of the capacitor are brought closer so that the distance between them becomes half the
original distance, the additional energy given by battery to capacitor in joules is :
A. 125×10^{-3}
B. 12.5×10^{-3}
C. 1.25×10^{-3}
D. 0.125×10^{-3}

Answer: A
(Watch Video Solution
39. A straight conductor carries a current along the z-axis. Consider the points $A(a, 0,0)$, $B(0,-a, 0), C(-a, 0,0)$ and $D(a, a, 0)$:
A. all four points have magnetic fields of the same magnitude.
B. all four points have magnetic fields in
different directions.
C. the magnetic fields at A and C are in opposite directions.
D. the magnetic fields at A and B are mutually perpendicular.

Answer: A::B::C::D

D Watch Video Solution

40. A bar magnet with poles 25.0 cm apart and of pole strength 14.4 Am rests with its centre on a frictionless point. It is held in equilibrium at 60° to a uniform magnetic field of induction 0.25 T by applying a force F at right
angle to the axes, 12 cm from its pivot. The magnitude of the force is :
A. $15 \sqrt{3} \mathrm{~N}$
B. $7.5 \sqrt{3} N$
C. $3.75 \sqrt{3} N$
D. None of these.

Answer: C
(Watch Video Solution
41. A superconducting ring of radius 'a' and inductance L is located in a uniform magnetic field of induction B. The plane of ring is parallel to B and the current in the ring is zero. Then the ring is turned through 90° so that plane is perpendicular to the field. What is the work done in turning the ring?

$$
\begin{aligned}
& \text { A. } \frac{\pi^{2} a^{4} B^{2}}{2 L} \\
& \text { B. } \frac{\pi^{2} a^{2} B^{2}}{2 L} \\
& \text { C. } \frac{\pi a^{2} B^{2}}{2 L}
\end{aligned}
$$

D. $\frac{\pi^{2} a^{4} B^{2}}{4 L}$.

Answer: A

D Watch Video Solution

42. An object is x times, the focal length of a concave mirror away from the principal focus.

Show that the image will be $\frac{1}{n x}$ times the focal length of mirror away from principal focus, where n is :

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{1}{3}$
C. 1
D. 1.5

Answer: C

- Watch Video Solution

43. In a Young's double slit experiment, the fringes are displaced by a distance x when a glass plate of refractive index 1.5 is introduced in the path of one of the beams. When this
plate is replaced by another plate of the same thickness, the shift of fringes is $\frac{3}{2} x$. The refractive index of the second plate is :
A. 2.25
B. 2.0
C. 1.75
D. 1.25

Answer: C

D Watch Video Solution
44. The unit of expression $\mu_{0} \in_{0}$ are :
A. m / s
B. m^{2} / s^{2}
C. s / m
D. s^{2} / m^{2}

Answer: D

- Watch Video Solution

45. Threshold wavelength for metal is $10,000 \AA$. If light of wavelength $5461 \AA$ is incident on it, then stopping potential is 1.02 V , then value of Planck's constant is :
A. $6.45 \times 10^{-34} \mathrm{~J}$-sec
B. $6.54 \times 10^{-34} \mathrm{~J}-\mathrm{sec}$
C. $6.60 \times 10^{-3} \mathrm{~J}$-sec
D. $6.67 \times 10^{-34} \mathrm{~J}$-sec

Answer: C

46. The hydrogen atom in the ground state excited by means of light of $\lambda=975$ Å. How many different lines are possible in resultant spectrum?
A. 4
B. 3
C. 2
D. 6

Answer: D

- Watch Video Solution

47. In above question, calculate the longest wavelength produced :
A. $18800 \AA$
B. $9800 \AA$
C. $12400 \AA$
D. $8800 \AA$

Answer: A

D View Text Solution

48. The binary number corresponding to the decimal number 49 is :
A. 1101
B. 11001
C. 110001
D. 10001

Answer: C

- Watch Video Solution

49. If I_{r} is reflected current and I_{0} is the
incident current of a transmission line, then
value of K_{r} is :
A. $K_{r}=\frac{I_{r}}{I_{0}}$
B. $K_{r}=\frac{I_{0}}{I_{r}}$
C. $K_{r}=\sqrt{I_{r} \times I_{0}}$
D. $K_{r}=\sqrt{\frac{I_{r}}{I_{0}}}$.

Answer: A

D Watch Video Solution

