©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

OSCILLATIONS

Mcq Level I

1. A particle of mass m is executing S.H.M.
about a point with amplitude 10 cm . Its
maximum velocity is $100 \mathrm{~cm}^{-1}$. Its velocity
will be $50 \mathrm{~cm} s^{-1}$ at a distance :
A. 5 cm
B. $5 \sqrt{2} \mathrm{~cm}$
C. $5 \sqrt{3} \mathrm{~cm}$
D. $\frac{10}{\sqrt{2}} \mathrm{~cm}$.

Answer: C
(Watch Video Solution
2. A.S.H.M. oscillator has period of 0.1 s and amplitude of 0.2 m . The maximum velocity is given by :
A. $100 \mathrm{~m} \mathrm{~s}^{-1}$
B. $4 \pi \mathrm{~m} \mathrm{~s}^{-1}$
C. $100 \pi \mathrm{~m} \mathrm{~s}^{-1}$
D. $20 \pi \mathrm{~m} \mathrm{~s}^{-1}$

Answer: B

D Watch Video Solution
3. If a hole is drilled along the diameter of the earth and a stone is dropped into it. The stone
A. reaches the centre of earth and stops
B. reaches the opposite end and stops
C. executes S.H.M. about the centre of earth
D. reaches the opposite side and escapes
earth.

Answer: C

D Watch Video Solution

4. A pendulum is first vibrated on the surface of earth. Its period is T. It is then taken to the
surface of moon where acceleration due to
gravity is $1 / 6$ th of that on earth. Its period will be :

> A. $\frac{T}{6}$
> B. $\frac{T}{3}$
C. $\frac{T}{\sqrt{3}}$
D. $T \sqrt{6}$

Answer: D

D Watch Video Solution

5. The angular frequency of a pendulum is ω
rad s^{-1}. If the length is made one fourth of
the original length, the angular frequency becomes:
A. $\frac{\omega}{2}$
B. 2ω
C. 4ω
D. $\omega / 4$

Answer: B

D Watch Video Solution

6. A simple pendulum has a pariod T inside a
lift when it is stationary. The lift is accelerated
upwards with constant acceleration 'a'. The period:
A. decreases
B. increases
C. remains same
D. sometimes increases and sometimes
decreases.

Answer: A
(Watch Video Solution
7. A simple pendulum is suspended vertically to the ceiling of compartment in a stationary train. If the 'train' is constantly accelerated by acceleration 'a' the angle θ which string makes with vertical is :
A. zero
B. $\tan ^{-1} \frac{a}{g}$
C. $\sin ^{-1} \frac{a}{g}$
D. $\cos ^{-1} \frac{a}{g g}$

- Watch Video Solution

8. An object attached to a light spring oscillates in S.H.M. on horizontal smooth surface. The ratio of maximum P.E. to maximum K.E. is :
A. $1 / 2$
B. 2
C. 1
D. $\sqrt{3} / 2$

Answer: C

- Watch Video Solution

9. A girl swinging on a swing in sitting position
suddenly stands up. The period of swing then
will be :
A. increased
B. decreased
C. the same
D. none of these.

Answer: B

D Watch Video Solution

10. The equation of mation for a body
executing
S.H.M.
is
given
by
$y=1.5 \sin (10 \pi t+5)$. The frequency is given by :
A. 5 Hz
B. 10 Hz
C. 2.5 Hz
D. $5 \pi \mathrm{~Hz}$

Answer: A

D Watch Video Solution

11. The length of the second's pendulum is increased by 0.1%. The clock :
A. gains 43.2 s per day
B. loses 43.2 s per day
C. neither loses nor gains time

D. none of the above.

Answer: B

D Watch Video Solution

12. The maximum acceleration of a body
moving in S.H.M. is a_{0} and maximum velocity is
v_{0}. The amplitude is given by :

$$
\begin{aligned}
& \text { A. } \frac{v_{0}^{2}}{a_{0}} \\
& \text { B. } \frac{a_{0}^{2}}{v_{0}}
\end{aligned}
$$

C. $a_{0} \cdot v_{0}$

$$
\text { D. } \frac{1}{a_{0} \cdot v_{0}}
$$

Answer: A

D Watch Video Solution

13. The kinetic energy and potential energy of
a particle executing simple harmonic motion
will be equal when its displacement is :
(amplitude = a) :
A. $\frac{a}{2}$
B. $\frac{a}{\sqrt{2}}$
C. $a \sqrt{2}$
D. $\frac{a \sqrt{2}}{3}$

Answer: B

D Watch Video Solution

14. Lissajou's figure obtained by combining $x=$

A \sin oemgat and $y=A \sin (\omega t+\pi / 4)$ will be :
A. an ellipse
B. a circle
C. a straight line
D. a parabola

Answer: A

D Watch Video Solution
15. The motion of 10 g mass tied to massless
spring is represented by S.H.M.
$x=25 \cos \left(3 t+\frac{\pi}{4}\right)$ where x is in cm and t in second, the force constant of the spring is :
A. $9 \mathrm{Nm}^{-1}$
B. $0.9 \mathrm{~N} \mathrm{~m}^{-1}$
C. $0.09 \mathrm{~N} \mathrm{~m}^{-1}$
D. none of the above.

Answer: C
(Watch Video Solution
16. A pendulum bob has a period 24 s . Its
velocity 4 s after it has passed the mean position is $6.28 \mathrm{~cm} \mathrm{~s}^{-1}$. The amplitude of its motion is :
A. 12 cm
B. 24 cm
C. 48 cm
D. 40 cm

Answer: C
17. Two pendulums oscillate in S.H.M. with a constant phase difference $\frac{\pi}{2}$ but with same amplitudes. The maximum velocity of one is v, the maximum velocity of other will be :
A. v
B. 2 v
C. $\sqrt{2} v$
D. $\frac{v}{\sqrt{2}}$.

D Watch Video Solution

18. The potential energy of particle moving is
S.H.M. is $\frac{1}{2} k x^{2}$. If the frequency of the particle is n, the frequency of oscillation of P.E. is :
A. n
B. 2 n
C. $\frac{n}{2}$
D. $n \sqrt{2}$.

Answer: B

D Watch Video Solution

19. A mass of 1 kg is suspended from a spring
and has a time period T on the surface of earth. The period at the centre of earth is :
A. zero
B. T
C. 2 T
D. infinite.

Answer: B

- Watch Video Solution

20. If the length of second's pendulum is
increased by 2%, how many seconds it loses per day?
A. 3927 s
B. 1728 s
C. 3427 s
D. 864 s .

Answer: D

D Watch Video Solution

21. A small body of mass 0.1 kg is undergoing
S.H.M. of amplitude 1 metre and period 0.2 s .

The maximum force acting on it is nearly :
A. 99 N
B. 9.9 N
C. 0.99 N
D. 990 N

Answer: A

D Watch Video Solution

22. A body of mass 1 kg is executing S.H.M.
given by $x=6 \cos (100 t+\pi / 4) \mathrm{cm}$, what is
its maximum K.E. ?
A. 18 J
B. 36 J
C. 180 J
D. 1.8 J

Answer: A

D Watch Video Solution

23. A simple pendulum executing S.H.M. has
period T and amplitude A. Its speed, when at a distance $\frac{A}{4}$ is :
A. $\frac{\pi A \sqrt{15}}{2 T}$
B. $\frac{\pi A \sqrt{15}}{T}$
C. $\frac{\pi A}{2 T}$
D. $\frac{2 \pi A}{T}$.

Answer: A

- Watch Video Solution

24. A simple harmonic oscillator has an amplitude A and time period T , the time required by it to travel from $\mathrm{x}=\mathrm{A}$ to $x=\frac{A}{2}$ is
A. $\frac{T}{6}$
B. $\frac{T}{4}$
C. $\frac{5 T}{7}$
D. $\frac{T}{2}$.

Answer: A

- Watch Video Solution

25. Two pendulums have time periods T and $\frac{5 T}{4}$. They start swinging in S.H.M. together.

What will be the phase difference between
them after the longer has completed one oscillation ?
A. 45°
B. 90°
C. 60°
D. 30°

Answer: B

D Watch Video Solution

26. A second's pendulum is placed in a space
laboratory orbiting round the earth at a height of $3 R$, where R is the radius of earth. The time period of the pendulum is :
A. zero
B. $\frac{3}{2} s$
C. 4 s
D. infinite.

Answer: D

D Watch Video Solution

27. A particle executes S.H.M. with amplitude 2
cm . At extreme position the force is 4 N . The
force acting on it at a position mid-way between the mean and extreme is :
A. 1 N
B. 2 N
C. 3 N
D. 4 N

Answer: B
(Watch Video Solution
28. A horizontal platform executes up and down S.H.M. about a mean position. Its period is $2 \pi \mathrm{~s}$. A mass m is resting on the platform, what is the greatest value of amplitude so that the mass 'm' may not leave the platform?
A. 4.9 m
B. 9.8 m
C. 2.25 m
D. 19.6 m

Answer: B
29. A body of 5 kg hangs from a spring and oscillates with a time period of $2 \pi \mathrm{~s}$. If the body is removed, the length of the spring will decrease by :
A. $\frac{k}{g}$ meter
B. g metre
C. $\frac{g}{k}$ metre
D. none of these.

Answer: B

D Watch Video Solution

30. A block of mass m rests on a platform. The platform is given up and down S.H.M. with an amplitude d. What can be the maximum frequency so that the block never leaves the platform?
A. $\sqrt{g / d}$
B. $\frac{1}{2 \pi} \sqrt{\frac{g}{d}}$

> C. $\frac{1}{2 \pi}\left(\frac{g}{d}\right)$
> D. $\frac{1}{2 \pi} \sqrt{\frac{g}{d}}$

Answer: B

D Watch Video Solution

31. A spring of force constant k is cut into three equal parts, which are joined in parallel to each other. The force constant of the combination will be :
A. k
B. 3 k
C. 9 k
D. $\mathrm{k} / 3$.

Answer: C

D Watch Video Solution

32. The velocity -time graph of harmonic oscillator is shown in the given figure. The
frequency of oscillation is :
A. 25 Hz
B. 50 Hz
C. 12.25 Hz
D. none of these.

Answer: A

D View Text Solution
33. The period of oscillation of the mass m suspended by a massless spring, when slightly displaced and let go, is T . The period will be more than T if :
A. The above experiment is performed on
the moon
B. The above experiment is performed in a
mine
C. The mass m is increased
D. The mass m is decreased.

Answer: C

D Watch Video Solution

34. The maximum speed of a particle executing
an S.H.M. is $1 \mathrm{~m} \mathrm{~s}^{-1}$ and maximum
acceleration is $1.57 \mathrm{~m} \mathrm{~s}^{-2}$. The time period of S.H.M. is :
A. 0.25 s
B. 4.00 s
C. 1.57 s
D. $\frac{1}{1.57} s$.

Answer: B

D Watch Video Solution

35. A particle undergoes S.H.M. having time period T. The time taken in $\frac{3}{8}$ th oscillation is :
A. $\frac{3}{8} \mathrm{~T}$
B. $\frac{5}{8} T$
C. $\frac{5}{12} T$

D. $\frac{7}{12} \mathrm{~T}$.

Answer: C

D Watch Video Solution

36. A body executes S.H.M. with an amplitude
A. At what displacement from the mean position is the potential energy of the body is one-fourth of its total energy ?

$$
\text { A. } \frac{A}{4}
$$

B. $\frac{A}{2}$
C. $\frac{3 A}{4}$
D. some other fraction of A .

Answer: B

D Watch Video Solution

37. A particle of mass 0.1 kg is executing S.H.M.
with amplitude 0.1 m . At the mean position its
K.E. is 8×10^{-3} J. If the intial phase is 45°.

What is the equation of its motion?
A. $y=0.1 \sin (4 t)$
B. $y=0.1 \sin \pi t$
C. $y=0.1 \sin \left[4 t+\frac{\pi}{4}\right]$
D. $y=0.1 \sin \left[4 t-\frac{\pi}{4}\right]$.

Answer: B

D Watch Video Solution
38. For a particle executing simple harmonic motion, the kinetic energy K is given by,
$K=K_{0} \cos ^{2} \omega t$

The maximum value of potential energy is :
A. K_{0}
B. zero
C. $K_{0} / 2$
D. not obtainable

Answer: A

D Watch Video Solution
39. The bob of simple pendulum of length L is
released at time $t=0$ from a position of small angular displacement θ. Its linear displacement at time t is given by :

$$
\begin{aligned}
& \text { A. } x=\theta o \sin 2 \pi \sqrt{\frac{L}{g}} \times t \\
& \text { B. } x=L \theta o \cos 2 \pi \sqrt{\frac{g}{L}} \times t \\
& \text { C. } x=L \theta o \sin \sqrt{\frac{g}{L}} \times t \\
& \text { D. } x=L \theta o \cos \sqrt{\frac{g}{L}} \times t .
\end{aligned}
$$

40. The kinetic energy of a particle, executing S.H.M., is 16 J when it is in its mean position. If the amplitude of oscillation is 25 cm , and the mass of the particle is 5.12 kg , the time period of its oscillations is:
A. $\pi / 5 \mathrm{~s}$
B. $2 \pi \mathrm{~s}$
C. $20 \pi \mathrm{~s}$
D. $5 \pi \mathrm{~s}$.

Answer: A

D Watch Video Solution

41. A simple pendulum is executing simple
harmonic motion with a time period T. If the
length of pendulum is increased by 21%, the
\% increase in the time period of the pendulum of increased length is :
A. 0.1
B. 0.21
C. 0.3
D. 0.5

Answer: A

D Watch Video Solution

42. An instantaneous displacement of a simple
harmonic oscillator is $x=A \cos (\omega t+\pi / 4)$.
Its speed will be maximum at time :
A. $\pi / 4 \omega$
B. π / ω
C. $\pi / 2 \omega$
D. $2 \pi / \omega$.

Answer: A

D Watch Video Solution

43. A child is sitting on a swing. Its minimum and maximum heights from the ground are
0.75 m and 2 m respectively. Its maximum speed will be :
A. $10 \mathrm{~m} / \mathrm{s}$
B. $8 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $15 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

44. A particle of mass m, oscillates with SHM between points x_{1} and x_{2}, the equilibrium
position being O. Its P.E. is plotted. It will be as given below in the graph.
A.
B.
C.
D.

Answer: A
(D) View Text Solution
45. A weightless spring of length 60 cm and force constant $100 \mathrm{Nm}^{-1}$ is kept straight and unstretched on a smooth horizontal table and its ends are rigidly fixed. A mass of 0.25 kg is attached at the middle of the spring and is slightly displaced along the length. The time period of the oscillation of the mass is :
A. $\frac{\pi}{20} s$
B. $\frac{\pi}{5} s$
C. $\frac{\pi}{10} s$

$$
\text { D. } \frac{\pi}{\sqrt{200}} s
$$

Answer: A

- Watch Video Solution

46. A particle executes S.H.M. with an amplitude of 2 cm . When the particle is at 1 cm
from the mean position the magnitude of tis velocity is equal to that of its acceleration.

Then its time period in second is :

$$
\text { A. } \frac{1}{2 \pi \sqrt{3}}
$$

B. $2 \pi \sqrt{3}$
C. $\frac{2 \pi}{\sqrt{3}}$
D. $\frac{\sqrt{3}}{2 \pi}$

Answer: C

D Watch Video Solution

47. Two springs A and B having spring constant k_{A} and $k_{B}\left(k_{A}=2 k_{B}\right)$ are stretched
by applying force of equal magnitude. If
energy stored in spring A is E_{A} then energy

stored in B will be :

A. $2 E_{A}$
B. $E_{A} / 4$
C. $E_{A} / 2$
D. $4 E_{A}$.

Answer: A

D Watch Video Solution
48. When the kinetic energy of the body executing SHM is $1 / 3$ of the potential energy, the displacement of the body is $\mathrm{x} \%$ of the amplitude, where x is :
A. 33
B. 67
C. 87
D. 50

Answer: C

49. A rectangular block of mass m and area of cross-section A floats in a liquid of density ρ. If
it is given a small vertical displacement from equilibrium it undergoes oscillation with a time period T. Then :
A. $T \propto \frac{1}{\sqrt{m}}$
B. $T \propto \sqrt{\rho}$
C. $T \propto \frac{1}{A}$
D. $T \propto \frac{1}{\rho}$.

D Watch Video Solution

50. A bodyy executes simple harmonic motion.

The potential energy (P.E.), the kinetic energy
(K.E.) and total energy (T.E.) are measured as a function of displacement X. Which of the following statements is true ?
A. K.E. is maximum when $X=0$
B. T.E. is zero when $X=0$

C. K.E. is maximum when X is maximum

D. P.E. is maximum when $X=0$

Answer: A

- Watch Video Solution

51. The total energy of a particle, executing S.H.M. is :
A. $\propto X$
B. $\propto X^{1 / 2}$
C. independent of X
D. $\propto X^{2}$ where X is the displacement from
the mean position

Answer: C

D Watch Video Solution

52. The function $\sin ^{2}(\omega t)$ represents :
A. a periodic, but not simple harmonic motion with a period $2 \pi / \omega$
B. a periodic, but not simple harmonic motion with a period π / ω
C. a simple harmonic motion with a period
$2 \pi / \omega$
D. a simple harmonic motion with a period
π / ω

Answer: B

- Watch Video Solution

53. If a simple harmonic motion is represented
by $\frac{d^{2} X}{d t^{2}}+\alpha x=0$ its time period is :
A. $2 \pi / \alpha$
B. $2 \pi / \sqrt{\alpha}$
C. $2 \pi \alpha$
D. $2 \pi \sqrt{\alpha}$

Answer: B
54. The bob of a simple pendulum is a spherical hollow ball filled with water. A plugged hole near the bottom of the oscillating bob gets suddenly unplugged.

During observation,till water is coming out, the time period of oscillation would :
A. first increase and then decrease to the original value
B. first decrease and then increase to the
original value
C. remain unchanged

D. increase towards a saturation value

Answer: A

D Watch Video Solution

55. The maximum velocity of a particle executing simple harmonic motion with an amplitude 7 mm is $4.4 \mathrm{~m} / \mathrm{s}$. The period of oscillation is:
A. 0.01 s
B. 10 s
C. 0.1 s
D. 100 s .

Answer: A

- Watch Video Solution

56. A coin is placed on a horizontal platform which under goes vertical simple harmonic motion of angular frequency ω. The amplitude of oscillation is gradually increased. The coin
will leave contact with platform for the first

time :

A. at the mean position of platform
B. for an amplitude g / ω^{2}
C. for an amplitude of g^{2} / ω^{2}

D. at the highest position of the platform.

Answer: D

57. A mass hangs at the end of a massless
spring and oscillates up and down at its natural frequency f. If the spring is cut at the midpoint and and mass reattached at the end, the frequency of oscillation is :
A. $\sqrt{2} f$
B. $2 \sqrt{2}$
C. $f / 2$
D. $f \sqrt{2}$.

Answer: A

- Watch Video Solution

58. Two particles are executing simple harmonic motion. At an instant of time t their displacement are
$y_{1}=a \cos (\omega t)$
and $\quad y_{2}=a \sin (\omega t)$

Then the phase difference between y_{1} and y_{2}
is:
A. 120°
B. 90°
C. 180°
D. zero.

Answer: B

D Watch Video Solution

59. Displacement between maximum potential
energy position and maximum kinetic energy
position for a particle executing S.H.M. is :
A. $\pm \frac{a}{2}$
B. $\pm a$
C. +1
D. -1

Answer: B

D Watch Video Solution
60. The ratio of kinetic energy of mean position to the potential energy when the displacement is half of the amplitude is :
A. $\frac{4}{1}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{1}{2}$.

Answer: A

D Watch Video Solution

61. The equation of a simple harmonic motion is $\pi=0.34 \cos (3000 t+0.74)$ where x and t
are in mm and s respectively. The frequency of
the motion is :
A. 3000
B. $0.74 / 2 \pi$
C. $\frac{3000}{2} \pi$
D. $3000 / \pi$.

Answer: C

D Watch Video Solution
62. A lift is ascending by acceleration $g / 3$.

What will be the time period of a simple pendulum suspended from its ceiling if its time period in stationary lift is T ?
A. $T / 2$
B. $(\sqrt{3 / 4}) T$
C. $T / 4$
D. $(\sqrt{3 / 2}) T$.

Answer: B
63. A pendulum suspended from ceiling of a train has a time period T, when the train is at rest. When the train is accelerating with uniform acceleration ' a ', the period of oscillation will
A. Decrease
B. Increase
C. Remains unaffected
D. Becomes infinite.

Answer: A

D Watch Video Solution

64. Period of oscillation of mass attached to a spring and performing S.H.M. is T. The spring is now cut into four equal pieces and the same mass attached to one piece. Now the period of
its simple harmonic oscillation is :
A. 2 T
B. T/2

C. T

D. T/4

Answer: B

- Watch Video Solution

65. In case of a forced vibrations, the resonance wave becomes very sharp when the
A. damping force is small

B. applied periodic force is small

C. restoring force is small
D. qiality factor is small.

Answer: A

- Watch Video Solution

66. Pendulum after some time becomes slow in motion and finally slopes due to :
A. air friction

B. mass of pendulum

C. earth's gravity
D. none of these.

Answer: A

D Watch Video Solution

67. The resultat of two rectangular simple harmonic motions of the same frequency and unequal amplitudes but differing in phase by $\frac{\pi}{2}$ is :
A. simple harmonic
B. circular
C. elliptical
D. parabolic.

Answer: B

- Watch Video Solution

68. The period of oscillation of a simple pendulum is T in a stationary lift. If the lift
moves upward with acceleration of 8 g the time period will :
A. becomes T/2
B. becomes T/3
C. remains same
D. none of these.

Answer: B
(Watch Video Solution
69. The particle executing simple harmonic motion has kinetic energy $K_{0} \cos ^{2} \omega t$. The maximum values of the potential energy and the total energy are respectively :
A. $\frac{K_{0}}{2}$ and K_{0}
B. K_{0} and $2 K_{0}$
C. K_{0} and K_{0}
D. 0 and $2 K_{0}$.

Answer: C

70. A simple pendulum performs simple harmonic motion about $x=0$ with an amplitude a and time period T .

The speed of the pendulum at $x=\frac{a}{2}$ will be :
A. $\frac{\pi a}{T}$
B. $\frac{3 \pi^{2} a}{T}$
C. $\frac{\pi a \sqrt{3}}{T}$
D. $\frac{\pi a \sqrt{3}}{2 T}$.

Answer: C

- Watch Video Solution

71. The period of oscillation of a mass M suspended from a spring of negligible mass is
T. If along with it another mass M is also
suspended, the period of oscillation will now be :
A. $2 T$
B. $\sqrt{2} T$
С. T

$$
\text { D. } T / \sqrt{2}
$$

Answer: B

- Watch Video Solution

Mcq Level li

1. A pendulum suspended from ceiling of a
train has a time period T, when the train is at
rest. When the train is accelerating with
uniform acceleration ' a ', the period of

oscillation will

A. increase
B. decrease
C. remain the same
D. become infinite.

Answer: B
(Watch Video Solution
2. A mass m is suspended to a spring of length

L and force constant k. The frequency of
vibration is v. The spring is cut into two equal
parts and each half is loaded with same mass
m. The new frequency v^{\prime} is given by :
A. $v^{\prime}=\sqrt{2} v$
B. $v^{\prime}=\frac{v}{\sqrt{2}}$
C. $v^{\prime}=2 v$
D. $v^{\prime}=4 v$.
3. A particle is executing S.H.M., with the length of its path as as 8 cm . At what displacement from the mean position half the energy is kinetic and half is potential ?
A. At 2 cm
B. At $2 \sqrt{2} \mathrm{~cm}$
C. At $\sqrt{2} \mathrm{~cm}$
D. At 4 cm .

Answer: B

D Watch Video Solution

4. Two weightless springs have force constants
k_{1} and k_{2} and connected in series. The combination is loaded with m , the time period of oscillation is :

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m}{k_{1}+k_{2}}} \\
& \text { В. } T=2 \pi \sqrt{m\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)} \\
& \text { С. } T=2 \pi \sqrt{\frac{\mathrm{~m}_{1} k_{2}}{k_{1}+k_{2}}}
\end{aligned}
$$

D. none of these.

Answer: B

D Watch Video Solution

5. A body is executing S.H.M. with period 12 s .

The time it takes in traversing a distance equal
to half its amplitude is:
A. 6 s
B. 9 s
C. 3 s
D. 1 s

Answer: D

- Watch Video Solution

6. A sphere of brass is suspended to a vertical spring and oscillates with frequency f^{\prime}. The ball
is now immersed is non-viscous liquid whose density is $\frac{1}{10}$ th of density of brass. If the
sphere remains vibrating in the liquid the frequency f now will be:
A. $f^{\prime}=f$
B. $f^{\prime}=\sqrt{\frac{10}{9}} f$
C. $f^{\prime}=\sqrt{\frac{10}{9}} f$
D. $f^{\prime}=\sqrt{\frac{9}{10}} f$.

Answer: A

D Watch Video Solution

7. A U-tube contains a non-viscous liquid up to

a height of 20 cm in each of the column. It is pressed in one of the columns and then released. The liquid executes a S.H.M. of period
A. 0.89 s
B. 2.89 s
C. 2.13 s
D. none of the above.

Answer: A

- Watch Video Solution

8. A mass M is suspended from a light spring.

An additional mass m added displaces the spring further by a distance x. Now the combined mass will oscillate on the spring with a period:

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m g}{x(M+m)}} \\
& \text { B. } T=2 \pi \sqrt{\frac{(M+m) x}{m g}} \\
& \text { C. } T=2 \pi \sqrt{\frac{(M+m)}{m g x}}
\end{aligned}
$$

D. $T=2 \pi \sqrt{\frac{m g x}{(M+m)}}$

Answer: B

- Watch Video Solution

9. In arrangement shown in Fig., if the block of mass ' m ' is displaced and then released the frequency of oscillation is given by:

$$
\text { A. } v=\frac{1}{2 \pi} \sqrt{\frac{k_{1}-k_{2}}{m}}
$$

> B. $v=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{m}}$
> C. $v=\frac{1}{2 \pi} \sqrt{\frac{m}{k_{1}-k_{2}}}$
> D. $v=\frac{1}{2 \pi} \sqrt{\frac{m}{k_{1}+k_{2}}}$

Answer: B

D View Text Solution

10. A particle executes S.H.M. with an amplitude of 2 cm . When the particle is at 1 cm
from the mean position the magnitude of tis
velocity is equal to that of its acceleration.

Then its time period in second is :
A. $2 \pi \sqrt{3} \mathrm{~s}$
B. $\frac{2 \pi}{3} \sqrt{3} s$
C. $\frac{\sqrt{3}}{2 \pi} s$
D. $\frac{1}{2 \pi \sqrt{3}} s$.

Answer: B
(Watch Video Solution
11. A S.H.M. is given by
$y=5[\sin (3 \pi t)+\sqrt{3} \cos (3 \pi t)]$. What is the amplitude of the motion if y is in metres ?
A. 2 m
B. 5 m
C. 4 m
D. 10 m .

Answer: D

D Watch Video Solution
12. A mass ' M ' is suspended from a spring of negligible mass. The spring is pulled a little and then released. It execuutes S.H. oscillations of period T. When mass is increased by ' m ', the period becomes $\frac{5}{4}$ T, the ratio $\frac{m}{M}$ is :
A. $\frac{9}{16}$
B. $\frac{25}{16}$
C. $\frac{4}{5}$
D. $\frac{5}{4}$.

Answer: A

D Watch Video Solution

13. A simple pendulum having length 1 cm and mass mg is suspended between two plates
having a uniform electric field E as shown. The bob is given a charge of q coulombs. The time period T of its vibration is :
A. $2 \pi \sqrt{\frac{l}{g}}$
B. $2 \pi \sqrt{\frac{l}{g-\frac{E q}{m}}}$
C. $2 \pi \sqrt{\frac{l}{g+\frac{E q}{m}}}$
D. $2 \pi \sqrt{\frac{l}{\left[g^{2}+\left(\frac{E q^{2}}{m}\right)\right]^{1 / 2}}}$.

Answer: C

D View Text Solution

14. In the above question, if the direction of the field is reversed and is from B to A and $g>\frac{E q}{m}$, then the period is :
A. $2 \pi \sqrt{\frac{l}{g}}$
B. $2 \pi \sqrt{\frac{l}{g+\frac{E q}{m}}}$
C. $2 \pi \sqrt{\frac{l}{\left[g^{2}+\left(\frac{E q^{2}}{m}\right)\right]^{1 / 2}}}$
D.

Answer: B

D View Text Solution
15. A body executes S.H.M. under the influence of one force and has a period T_{1} second and
the same body executes S.H.M. with period T_{2}
second when under the influence of another
force. When both forces act simultaneously and in the same direction, then the time period of the same body is :
A. $\left(T_{1}+T_{2}\right) s$
B. $\sqrt{T_{1}^{2}+T_{2}^{2}} s$
C. $\sqrt{\frac{T_{1}^{2}+T_{2}^{2}}{T_{1} T_{2}}} s$
D. $\sqrt{\frac{T_{1}^{2} T_{2}^{2}}{\left(T_{1}^{2}+T_{2}^{2}\right)}} s$.

Answer: D

16. A mass m is suspended to a spring of
length L and force constant k. The frequency of vibration is v . The spring is cut into two equal parts and each half is loaded with same mass m. The new frequency v ' is given by :

$$
\begin{aligned}
& \text { A. } f_{2}=\sqrt{2} f_{1} \\
& \text { B. } f_{2}=\frac{f_{1}}{\sqrt{2}} \\
& \text { C. } f_{2}=f_{1} / 2 \\
& \text { D. } f_{2}=\frac{\sqrt{2}}{f_{1}} .
\end{aligned}
$$

Answer: A

D Watch Video Solution

17. Two bodies A and B of mass 1 kg and 2 kg are soldered to two ends of vertical spring of
force constant $400 \mathrm{~N} / \mathrm{m}$. A being at the upper end and B resting on a table. A is now compressed and then released. The freq. of osillation is :

$$
\text { A. } \frac{10}{\pi} \mathrm{~Hz}
$$

B. $10 \pi \mathrm{~Hz}$
C. $\frac{\pi}{10} \mathrm{~Hz}$
D. None of these.

Answer: A

- Watch Video Solution

18. Energy is constantly fed to a spring oscillator of force constant $225 \pi^{2} \quad \mathrm{Nm}^{-1}$ and attached mass 0.01 kg at a frequency of 50 cycles per s. Will the resonance be achieved?
A. Yes
B. No
C. Sometimes only
D. After a long time only.

Answer: B

D Watch Video Solution

19. The time period of pendulum at temperature $t_{1}^{\circ} C$ is $T_{1} \mathrm{~s}$. Its time period at $t_{2}^{\circ} C$ is T_{2} s. If coefficient of linear expansion of
material of pendulum is α, then increase in
time period is :
A. $\alpha\left(t_{2}-t_{1}\right)$
B. $\frac{\alpha\left(t_{2}-t_{1}\right)}{2}$
C. $\frac{\alpha\left(t_{2}-t_{1}\right)}{3}$
D. None of these.

Answer: B

D Watch Video Solution
20. If the potential energy of a harmonic oscillator in its resting position is 500 erg and total energy is 1500 erg when the amplitude is

5 cm what is the force constant if its mass is 200 gm ?
A. 40 dyne/cm
B. 60 dyne/cm
C. 80 dyne/cm
D. 120 dyne/cm.

Answer: C

- Watch Video Solution

21. A particle starts S.H.M. from the mean position as shown in the Fig. below. Its amplitude is A and its time period is T . At one time its speed is half that of the maximum speed. What is this displacement ?
A. $\frac{\sqrt{2} A}{3}$
B. $\frac{\sqrt{3} A}{2}$
c. $\frac{2 A}{\sqrt{3}}$
D. $\frac{3 A}{\sqrt{2}}$.

Answer: B

D View Text Solution

22. A simple pendulum oscillates in a verticle
plane. When it passes through the mean
position, the tension in the string is 3 times
the weight of the pendulum bob. What is the maximum angular displacement of the
pendulum of the string with respect to the

vertical ?

A. 30°
B. 60°
C. 45°
D. 90°

Answer: D
(Watch Video Solution
23. When an oscillator completes 100 oscillations its amplitude reduces to $\frac{1}{3}$ of its initial value. What will be its amplitude, when it completes 200 oscillations?
A. $\frac{1}{8}$
B. $\frac{1}{6}$
C. $\frac{2}{3}$
D. $\frac{1}{9}$.

Answer: D

24. The time period of a particle in simple harmonic motion is 8 second. At $t=0$ it is at the mean position. The ratio of the distances travelled by it in the first and second is :
A. $1 / 2$
B. $1 /(\sqrt{2}-1)$
C. $1 / \sqrt{2}$
D. $1 / \sqrt{3}$.

Answer: B

- Watch Video Solution

25. Statement-I : In simple harmonic motion,
the motion is 'to and fro' and periodic.
Statement-II : Velocity of particle is
$v=w \sqrt{r^{2}-x^{2}}$ where x is displacement and
r is amplitude.
A. Statement-I is true, Statement-II is true

Statement-II is correct explanation for

Statement-I.
B. Statement-I is true, Statement-I is true
and

Statement-II is correct explanation for

Statement-I.
C. Statement-I is true, Statement-II is false.

D. Statement-I is false, Statement-II is false.

Answer: B

26. Statement-I : Resonance is a special case of
forced vibrations in which frequency and nature of vibration of the body is same as the impressed frequency and amplitude of forced vibration is maximum.

Statement-II : The amplitude of forced
vibration of a body increases with an increase
in the frequency of the externally applied periodic force.
A. Statement-I is true, Statement-II is true
and

Statement-II is correct explanation for

Statement-I.
B. Statement-I is true, Statement-I is true
and

Statement-II is correct explanation for

Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: B

- Watch Video Solution

27. Statement-I : In S.H.M., the velocity is maximum when acceleration is minimum.

Statement-II : Displacement and velocity of S.H.M. differ in phase by $\pi / 2$.
A. Statement-I is true, Statement-II is true and

Statement-II is correct explanation for

Statement-I.
B. Statement-I is true, Statement-I is true
and

Statement-II is correct explanation for

Statement-I.
C. Statement-I is true, Statement-II is false.

D. Statement-I is false, Statement-II is false.

Answer: B

28. Statement-I : Energy of a particle excuting
simple harmonic motion is entirely potenital
energy at the extreme possition.

Statement-II : Particle at extreme position is at rest.
A. Statement-I is true, Statement-II is true and

Statement-II is correct explanation for

Statement-I.
B. Statement-I is true, Statement-I is true and

Statement-II is correct explanation for Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

29. Statement-I : The time period of a simple pendulum on a setellite orbiting the earth is infinite.

Statement-II : The time period of a satellite $T \propto \frac{1}{g}$
A. Statement-I is true, Statement-II is true and

Statement-II is correct explanation for

Statement-I.
B. Statement-I is true, Statement-I is true and

Statement-II is correct explanation for Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

30. Paragraph : Two blocks A and B each of mass m are connected by springs each of spring constant K is shown in figure beloe :

If mass A is displaced to the left and mass B is displaced to the right by same distance and released.

The time period of oscillation is
A. $2 \pi \sqrt{\frac{m}{2 K}}$
B. $2 \pi \sqrt{\frac{m}{K}}$
C. $\pi \sqrt{\frac{m}{2 K}}$
D. $\pi \sqrt{\frac{2 m}{K}}$.

Answer: D

D View Text Solution

31. Paragraph : Two blocks A and B each of mass m are connected by springs each of spring constant K is shown in figure beloe :

If mass A is displaced to the left and mass B is displaced to the right by same distance and
released.

If two masses A and B joined together are pushed towards right by same distance and then released then frequency of oscillation of combined mass is :

> A. $\frac{1}{2 \pi} \sqrt{\frac{K}{m}}$
> B. $\frac{1}{2 \pi} \sqrt{\frac{2 K}{m}}$
C. $2 \pi \sqrt{\frac{m}{2 K}}$
D. $2 \pi \sqrt{\frac{m}{K}}$.

Answer: A
32. Paragraph : A scientist was asked to find the height of the roof of a dome shaped hall.

He took a spherical ball of radius 20 cm which
he suspend with the string from the roof of dome. The height of the ball above the ground was 5 cm when suspended. He noted the time of 20 oscillations to be 100 s .

The time period of the pendulum when suspended from roof is :
A. 5 s
B. 10 s
C. 20 s
D. 100 s .

Answer: A

- Watch Video Solution

33. Paragraph : A scientist was asked to find
the height of the roof of a dome shaped hall.

He took a spherical ball of radius 20 cm which
he suspend with the string from the roof of
dome. The height of the ball above the ground
was 5 cm when suspended. He noted the time of 20 oscillations to be 100 s .

The length of the string used to suspend the bob of pendulum is:
A. 6.39 m
B. 6.14 m
C. 6 m
D. 6.44 m .

Answer: B
34. Paragraph : A scientist was asked to find the height of the roof of a dome shaped hall.

He took a spherical ball of radius 20 cm which
he suspend with the string from the roof of dome. The height of the ball above the ground was 5 cm when suspended. He noted the time of 20 oscillations to be 100 s .

The height of the roof of the dome from the ground is :
A. 6.19 m
B. 6.39 m
C. 6.59 m
D. 6.0 m .

Answer: C

D View Text Solution

35. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3
cm / s when displacement is 4 cm .

The amplitude of SHM is :
A. 5 cm
B. 10 cm
C. 7 cm
D. 9 cm .

Answer: C
(Watch Video Solution
36. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

The period of oscillation in seconds is :
A. π
B. 2π
C. 3π
D. 4π
37. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

The maximum value of acceleration is :
A. $2 \mathrm{~cm} / \mathrm{s}^{2}$
B. $3 \mathrm{~cm} / \mathrm{s}^{2}$
C. $4 \mathrm{~cm} / \mathrm{s}^{2}$

D. $5 \mathrm{~cm} / \mathrm{s}^{2}$.

Answer: D

D Watch Video Solution

38. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

If mass of body is 50 g the calculate the total energy of oscillation :
A. $6.25 \times 10^{-5} \mathrm{~J}$
B. 6.25×10^{-5} ergs
C. $5.5 \times 10^{-5} \mathrm{~J}$
D. 5.5×10^{-5} ergs

Answer: A

- Watch Video Solution

39. Paragraph : A particle vibrates in S.H.M.
along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$
when its displacement is 3 cm and velocity is 3
cm / s when displacement is 4 cm .

A particle executes simple harmonic motion
between $x=-A$ and $x=+A$. The time
taken for it to go from 0 to $\mathrm{A} / 2$ is T_{1} and go
from $\mathrm{A} / 2$ to A is T_{2}. Then :
A. $T_{1}<T_{2}$
B. $T_{1}=T_{2}$
C. $T_{1}>T_{2}$
D. $T_{1}=2 T_{2}$.

Answer: A
40. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

For a particle executing SHM the displacement
x is given by $\mathrm{x}=\mathrm{A} \sin \omega t$. Identify the graph which represents the variation of potential energy (P.E.) as a function of time and displacement x.
A. I, III
B. II, III
C. I, IV
D. II, IV.

Answer: B

D View Text Solution
41. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$
when its displacement is 3 cm and velocity is 3
cm / s when displacement is 4 cm .

The length of a simple pendulum executing simple harmonic motion is increased by 21%.

The percentage increase in the time period of the pendulum of increased length is :
A. 0.11
B. 0.21
C. 0.42
D. 0.1

Answer: D
42. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

The displacement of a particle varies according to the relation $X=4$
$(\cos \pi t+\sin \pi t)$. The amplitude of the particle is :
A. -4
B. 4
C. $4 \sqrt{2}$
D. 8

Answer: C

D Watch Video Solution

43. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

Two simple harmonic motions are represented
by the equations $y_{1}=0.1 \sin (100 \pi t+\pi / 3)$
and $\mathrm{y}=0.1 \cos \pi t$. The phase difference of the
velocity of particle 1 with respect to the velocity of particle 2 is :
A. $-\pi / 6$
B. $\pi / 3$
C. $-\pi / 3$
D. $\pi / 6$

Answer: A
44. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

Starting from origin a body oscillates simple harmonically with a period of 2 s . After what time will its kineti energy be 75% of the total energy.

$$
\text { A. } \frac{1}{6} s
$$

B. $\frac{1}{4} s$
C. $\frac{1}{3} s$
D. $\frac{1}{12} s$

Answer: A

D Watch Video Solution

45. A particle of mass 'm' executes simple harmonic motion with amplitude 'a' and frequency v. The average kinetic energy during
its motion from the position of equilibrium to
the end is :
A. $\frac{1}{4} m a^{2} v^{2}$
B. $4 \pi^{2} m a^{2} v^{2}$
C. $2 \pi^{2} m a^{2} v^{2}$
D. $\pi m a^{2} v^{2}$.

Answer: D
(Watch Video Solution
46. Paragraph : A particle vibrates in S.H.M.
along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$
when its displacement is 3 cm and velocity is 3
cm / s when displacement is 4 cm .

The displacement of an object attached to a
spring and executing simple harmonic motion
is given by $x=2 \times 10^{-2} \cos \pi t$ metres. The
time at which the maximum speed first occurs
is :
A. 0.75 s
B. 0.125 s
C. 0.25 s
D. 0.5 s

Answer: D

D Watch Video Solution

47. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

A point mass oscillates along the x-axis
according to the law $x=x_{0} \cos \omega t-\frac{\pi}{4}$. If acceleration of the particle is written as $a=A \cos (\omega t+\delta)$, then

$$
\begin{aligned}
& \text { A. } A=x_{0} \text { oemga }{ }^{2}, \delta=\frac{\pi}{4} \\
& \text { B. } A=x_{0} \omega^{2}, \delta=-\frac{\pi}{4} \\
& \text { C. } A=x_{0} \omega^{2}, \delta=\frac{3 \pi}{4} \\
& \text { D. } A=x_{0}, \delta=-\frac{\pi}{4} .
\end{aligned}
$$

Answer: C

- Watch Video Solution

48. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$ when its displacement is 3 cm and velocity is 3 cm / s when displacement is 4 cm .

A body of mass M is suspended by a string of length L . The horizontal velocity v at position A is just sufficient to make it reach the point B.

The angle θ at which the speed of the bob is half of that at A, satisfies :
A. $\theta=\frac{\pi}{4}$
B. $\frac{\pi}{4}<\theta<\frac{\pi}{2}$
C. $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$
D. $\frac{3 \pi}{4}<\theta<\pi$.

Answer: D

D View Text Solution

49. When a particle of mass moves on the x axis in a potential of the form $V(x)=k x^{2}$, it performs simple harmonic motion. The corresponding time period is proportional to
$\sqrt{\frac{m}{k}}$. As can be seen easily using dimensional analysis.

However, the motion of a particle can be periodic even when its potential energy increases on both sides of $x=0$ in a way different from $k x^{2}$ and its total energy is such that the particle does not escape to infinity.

Consider a particle of mass m moving on the x axis. Its potential energy is
$V(x)=\alpha x^{4}(\alpha>0)$ for $|\mathrm{x}|$ near the origin and becomes a constant equal to V_{0} for $|x| \geq X_{0}$ (See Fig).

If the total energy of the particle is E , it will perform periodic motion only if :
A. $E<0$
B. $E>0$
C. $V_{0}>E>0$
D. $E>V_{0}$

Answer: C

D View Text Solution
50. When a particle of mass m moves on the x axis in a potential of the form $V(x)=k x^{2}$, it performs simple harmonic motion. The corresponding time period is proportional to
$\sqrt{\frac{m}{k}}$. As can be seen easily using dimensional analysis.

However, the motion of a particle can be periodic even when its potential energy increases on both sides of $x=0$ in a way different from $k x^{2}$ and its total energy is such
that the particle does not escape to infinity.

Consider a particle of mass m moving on the x axis. Its potential energy is
$V(x)=\alpha x^{4}(\alpha>0)$ for $|\mathrm{x}|$ near the origin and becomes a constant equal to V_{0} for $|x| \geq X_{0}$ (See Fig).

For periodic motion of small amplitude A, the time period T of this particle is proportional to
A. $A \sqrt{\frac{m}{\alpha}}$
B. $\frac{1}{A} \sqrt{\frac{m}{\alpha}}$
C. $A \sqrt{\frac{\alpha}{m}}$

$$
\text { D. } \frac{1}{A} \sqrt{\frac{\alpha}{m}} \text {. }
$$

Answer: B

D View Text Solution

51. When a particle of mass moves on the x axis in a potential of the form $V(x)=k x^{2}$, it performs simple harmonic motion. The corresponding time period is proportional to
$\sqrt{\frac{m}{k}}$. As can be seen easily using dimensional analysis.

However, the motion of a particle can be periodic even when its potential energy increases on both sides of $x=0$ in a way different from $k x^{2}$ and its total energy is such
that the particle does not escape to infinity.

Consider a particle of mass m moving on the x axis. Its potential energy is
$V(x)=\alpha x^{4}(\alpha>0)$ for $|\mathrm{x}|$ near the origin and becomes a constant equal to V_{0} for $|x| \geq X_{0}$ (See Fig).

The acceleration of this particle of $|x|>X_{0}$ is
A. proportional to V_{0}
B. proportional to $\frac{V_{0}}{m X_{0}}$
C. proportional to $\sqrt{\frac{V_{0}}{m X_{0}}}$
D. zero.

Answer: D

D View Text Solution

52. Which of the following energy-time graphs represents damped harmonic oscillator.
A.
B.
C.
D.

Answer: C

D View Text Solution
53. The x-t graph of a particle undergoing
simple harmonic motion is as shown in the
figure.
(1 - 4
The acceleration of the particle at $t=\frac{4}{3} s$ is :
A. $-\frac{\pi}{32} \mathrm{~cm} \mathrm{~s}^{-2}$
B. $\frac{\sqrt{3}}{32} \pi^{2} \mathrm{~cm} \mathrm{~s}^{-2}$
C. $\frac{\pi^{2}}{32} \mathrm{~cm} \mathrm{~s}^{-2}$
D. $-\frac{\sqrt{3}}{32} \pi^{2} \mathrm{~cm} \mathrm{~s}^{-2}$.

Answer: D
(D) View Text Solution
54. A child is sitting on a swing.lts minimum
and maximum heights from the ground are
0.75 m and 2 m respectively. Its maximum speed will be :
A. $10 \mathrm{~m} / \mathrm{s}$
B. $8 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $15 \mathrm{~m} / \mathrm{s}$

Answer: C
55. Two springs A and B having spring constant k_{A} and $k_{B}\left(k_{A}=2 k_{B}\right)$ are stretched
by applying force of equal magnitude. If energy stored in spring A is E_{A} then energy stored in B will be :
A. $2 E_{A}$
B. $E_{A} / 2$
C. $E_{A} / 4$
D. $4 E_{A}$.

D Watch Video Solution

56. A simple pendulum of length I has a maximum angular displacement θ. The maximum kinetic energy of the bob of masss m will be :
A. $m g(1-\cos \theta)$
B. 2 mg |
C. $m g l \cos \theta$

D. mgl .

Answer: A

D Watch Video Solution

57. When a mass m is attached to the spring of
force constant k, then the spring stretches by
I. If the mass oscillates with amplitude I, what
will be the maximum potential energy stored
in the spring ?

$$
\text { A. } \frac{k l}{2}
$$

B. 2 kl
C. $\frac{1}{2} \mathrm{mg}$ I
D. mg .

Answer: D

- Watch Video Solution

58. The angular velocities of three bodies in simple harmonic motion are $\omega_{1}, . \omega_{2}, \omega_{3}$ with their respective amplitudes as A_{1}, A_{2}, A_{3}. If
all the three bodies have the same mass and velocity, then :
A. $A_{1} \omega_{1}=A_{2} \omega_{2}=A_{3} \omega_{3}$
B. $A_{1} \omega_{1}^{2}=A_{2} \omega_{2}^{2}=A_{3} \omega_{3}^{2}$
C. $A_{1}^{2} \omega_{1}=A_{2}^{2} \omega_{2}=A_{3}^{2} \omega_{3}$
D. $A_{1}^{2} \omega_{1}^{2}=A_{2}^{2} \omega_{2}^{2}=A_{3}^{2} \omega_{3}^{2}$.

Answer: A

- Watch Video Solution

59. The P.E. of a simple harmonic oscillator, when the particle is half way to its end point is
A. $\frac{2}{3} E$
B. $\frac{E}{4}$
C. $\frac{E}{8}$
D. $\frac{E}{2}$.

Answer: B

D Watch Video Solution
60. A particle executes simple harmonic oscillation with an amplitude a. The period of oscillation is T. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is :

$$
\begin{aligned}
& \text { A. } \frac{T}{8} \\
& \text { B. } \frac{T}{12} \\
& \text { C. } \frac{T}{2} \\
& \text { D. } \frac{T}{4} .
\end{aligned}
$$

61. Two simple harmonic motions of angular frequency 100 and $1000 \mathrm{rads}^{-1}$ have the same displacement amplitude. The ratio of their maximum acceleratins is :
A. $1: 10^{2}$
B. $1: 10^{3}$
C. $1: 10^{4}$

D. 1: 10

Answer: A

D View Text Solution

62. Out of the following functions
representing motion of a particle which
represents SHM :
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^{3} \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y=1+\omega t+\omega^{2} t^{2}$.
A. Only (A)
B. Only (D) does not represent SHM
C. Only (A) and (C)
D. Only (A) and (B).

Answer: C

D Watch Video Solution

Mcq Level lif Questions From Aieee Jee Examination

1. Two particles are executing simple harmonic motion of the same amplitude A and frequency ω along the x-axis. Their mean position is separated by distance
$X_{0}\left(X_{0}>A\right)$. If the maximum separation between them is $\left(X_{0}+A\right)$, the phase difference between their motion is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{3} \\
& \text { B. } \frac{\pi}{4}
\end{aligned}
$$

C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$.

Answer: A

D Watch Video Solution

2. A mass M, attached to a horizontal spring, executes S.H.M. with aplitude A_{1}. When the mass M passes through its mean position
then a smaller mass m is placed over it and
both of them move together with amplitude
A_{2}. The ratio of $\left(\frac{A_{1}}{A_{1}}\right)$ is :

$$
\begin{aligned}
& \text { A. } \frac{M+m}{M} \\
& \text { B. }\left(\frac{M}{M+m}\right)^{1 / 2} \\
& \text { C. }\left(\frac{M+m}{M}\right)^{1 / 2} \\
& \text { D. } \frac{M}{M+m}
\end{aligned}
$$

Answer: C
3. A wooden cube (density of wood ' d ') of side 'I' floats in a liquid of density ' ρ ' with its upper and lower surfaces horizontal. If the cube is pushed slightly down and released, it performs simple harmonic motion of period ' T '. Then, ' T ' is equal to :

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{l d}{\rho g}} \\
& \text { B. } 2 \pi \sqrt{\frac{l \rho}{d g}} \\
& \text { C. } 2 \pi \sqrt{\frac{l d}{(\rho-d) g}} \\
& \text { D. } 2 \pi \sqrt{\frac{l d}{(\rho-d) g}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. The phase space diagram for simple harmonic motion is a circle centered at the origin. In the figure, the two circles represent
the same oscillator but for different initial
conditions, and E_{1} and E_{2} are the total
mechanical energies respectively. Then
A. $E_{1}=\sqrt{2} E_{2}$
B. $E_{1}=2 E_{2}$
C. $E_{1}=4 E_{2}$
D. $E_{1}=16 E_{2}$

Answer: C

D View Text Solution

5. A particle of mass m is at rest at the origin at time $\mathrm{t}=0 . \mathrm{It}$ is subjected to a force
$F(t)=F_{0} e^{-b t}$ in the x direction. Its speed
$\mathrm{v}(\mathrm{t})$ is depicted by which of the following curves ?
A.
B.
C.
D.

Answer: D

D View Text Solution
6. If a simple pendulum has significant amplitude (up to a factor of $1 / \mathrm{e}$ of original) only in the period between $\mathrm{t}=0$ to $t=\tau s$, then τ may be called the average life of the pendulum. When the spherical bob of the pendulum suffers a retardation (due to viscous drag) proportional to its velocity, with 'b' as the constant of proportionality, the average life time of the pendulum is (assuming dampling is small) in secods :
A. $\frac{2}{b}$

0.693
 B. $\frac{0.693}{b}$

C. b
D. $\frac{1}{b}$

Answer: A

D Watch Video Solution

7. The amplitude of a damped oscillator decreases to 0.9 times its original magnitude is 5 s . In another 10 s it will decrease to α
times its original magnitude, where α equals:
A. 0.81
B. 0.729
C. 0.6
D. 0.7

Answer: B

D Watch Video Solution

8. An ideal gas enclosed in a vertical cylindrical container supports a freely moving piston of mass M. The piston and cylinder have equal
cross sectional area A. When the piston is in equilibrium, the volume of the gas is V_{0} and its pressure is P_{0}. The piston is slightly displaced from the quilibrium position and released. Assuming that the system is completely isolated from its surrounding, the piston executes a simple harmonic motion with frequency :

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi} \frac{V_{0} M P_{0}}{A^{2} \gamma} \\
& \text { B. } \frac{1}{2 \pi} \sqrt{\frac{A^{2} \gamma P_{0}}{M V_{0}}} \\
& \text { C. } \frac{1}{2 \pi} \sqrt{\frac{M V_{0}}{A \gamma P_{0}}}
\end{aligned}
$$

D. $\frac{1}{2 \pi} \frac{A \gamma P_{0}}{V_{0} M}$

Answer: B

D Watch Video Solution

9. A particle moves with simple harmonic motion in a straight line. In first $\tau \mathrm{s}$, after
starting from rest it travels a distance a, and in next $\tau \mathrm{s}$ it travels 2 a , in same direction, then
A. time period of oscillations is 6τ
B. amplitude of motion is 3 a
C. time period of oscillations is 8τ
D. amplitude of motion is 4 a .

Answer: A

D Watch Video Solution

10. For a simple pendulum, a graph is plotted between its kinetic energy (K.E.) and potential energy (P.E.) against its displacement d. Which one of the following represents these
correctly ? (graph are schematic and not drawn to scale)
A.
B.
C.
D.

Answer: A
(D) View Text Solution

Rcq

1. Two simple harmonic motions are represented by $y_{1}=5[\sin 2 \pi t+\sqrt{3} \cos 2 \pi t]$ and $y_{2}=5 \sin \left(2 \pi t+\frac{\pi}{4}\right)$ The ratio of their amplitudes is
A. $1: 3$
B. $\sqrt{3}: 1$
C. 1:1
D. $2: 1$

- Watch Video Solution

2. A particle executing a simple harmonic motion has a period of 6 sec . The time taken by the particle to move from the mean position to half the amplitude is
A. $\frac{3}{2} \mathrm{sec}$
B. $\frac{1}{2} \mathrm{sec}$
C. $\frac{3}{4} \mathrm{sec}$
D. $\frac{1}{4} \mathrm{sec}$.

Answer: B

- Watch Video Solution

3. A particle executes SHM with amplitude 0.2
m and time period 24 s . The time required for
it to move from the mean position to a point
0.1 m from the mean position is
A. 2 s
B. 3 s
C. 8 s
D. 12 s

Answer: A

D Watch Video Solution

4. The circular motion of a particle with constant speed is
A. Periodic but not SHM
B. SHM but not Periodic
C. Periodic and also SHM

D. Neither periodic nor SHM.

Answer: A

- Watch Video Solution

5. The ratio of kinetic energy to the potential energy of a particle executing SHM at a distance equal to half its amplitude, the distance being measured from its equilibrium position is
A. $4: 1$
B. $8: 1$
C. 3:1
D. 2:1

Answer: C

- Watch Video Solution

6. A mass M is suspended from a light spring.

An additional mass m added displaces the spring further by a distance x. Now the
combined mass will oscillate on the spring with a period :

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m g}{x(M+m)}} \\
& \text { B. } T=2 \pi \sqrt{\frac{(M+m) x}{m g}} \\
& \text { C. } T=\frac{\pi}{2} \sqrt{\frac{m g}{X(M+m)}} \\
& \text { D. } T=2 \pi \sqrt{\frac{(M+m)}{m g}} .
\end{aligned}
$$

Answer: B

D Watch Video Solution

7. A 10 kg collar is attached to a spring (spring constant $600 \mathrm{~N} / \mathrm{m}$.), it slides without friction over a horizontal rod. The collar is displaced from the equilibrium position by 20 cm and released. What is the speed of the oscillation?
A. $\sqrt{60} \times 0.2 \mathrm{~m} / \mathrm{s}$
B. $60 \times 0.2 \mathrm{~m} / \mathrm{s}$
C. $60 \times 2 \mathrm{~m} / \mathrm{s}$
D. $6 \times 0.2 \mathrm{~m} / \mathrm{s}$.

Answer: A

Watch Video Solution

