© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

ROTATIONAL MOTION

Level I Mcq

1. A uniform rectangular block has length twice
as large as the breath. It is lying on the
horizontal plane, which is gradually being
raised so as to be inclined to the horizontal at an angle θ. For what value θ, the block be at the point of toppling?
A. 70.6°
B. 65.8°
C. 45.5°
D. 26.6°

Answer: D

2. A thin circular ring of mass M and radius R is

rotating about its central axis with angular
velocity ω. Four point objects each of mass m
are attached gently to the opposite ends of two perpendicular diameters, the angular velocity of the ring is given by :

$$
\begin{aligned}
& \text { A. } \frac{M}{M+m} \cdot \omega \\
& \text { B. } \frac{M}{M+4 m} \cdot \omega \\
& \text { C. } \frac{M+4 m}{M} \cdot \omega
\end{aligned}
$$

D. $\frac{M-4 m}{M+4 m} \cdot \omega$

Answer: B

D Watch Video Solution

3. What is the moment of inertia of a thin rod of length L and mass M about an axis passing through one end and perpendicular to its length?
A. $\frac{1}{3} M L^{2}$
B. $\frac{1}{12} M L^{2}$
C. $M L^{2}$

D. $\frac{1}{2} M L^{2}$

Answer: A

D Watch Video Solution

4. The centre of mass of a system of two particles of masses m_{1} and m_{2} is at a distance a_{1}, from mass m_{1} and at a distance a_{2} from mass m_{2} such that:

$$
\text { A. } \frac{a_{1}}{a_{2}}=\frac{m_{2}}{m_{1}}
$$

$$
\begin{aligned}
& \text { B. } \frac{a_{1}}{a_{2}}=\frac{m_{1}}{m_{2}} \\
& \text { C. } \frac{a_{1}}{a_{2}}=\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \\
& \text { D. } \frac{a_{1}}{a_{2}}=\frac{m_{2}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. Three particles of the same mass lie in the x y plane. The (x, y) coordinates of their positions are (1, 1), (2, 2) and (3, 3) respectively.

The (x, y) co-ordinates of the centre of mass are:
A. $(1,2)$
B. $(2,2)$
C. $(4,2)$
D. $(6,6)$

Answer: B
(Watch Video Solution
6. A child is standing at one end of a long trolley moving with a speed v on a smooth horizontal track. If the child starts running towards the other end of the trolley with a speed u, the centre of mass of the system
(trolley + child) will move with a speed :
A. v
B. $(v-u)$
C. $(v+u)$
D. zero

- Watch Video Solution

7. When a sphere of moment of inertia I moves
down an inclined plane, the percentage of energy which is rotational, is approximately :
A. 100%
B. 72%
C. 28%
D. None of these

Answer: C

D Watch Video Solution

8. A solid disc first rolls without slipping and
then slides without rolling down the same inclined plane. The velocities in two cases at the bottom are in the ratio of
A. $1: 2$
B. $2: \sqrt{6}$
C. $\sqrt{6}: 3$
D. $\sqrt{3}: 1$

Answer: B

- Watch Video Solution

9. Moment of inertia of a solid sphere of density ρ and radius R is given by :
A. $\frac{105}{176} \rho R^{2}$
B. $\frac{176}{105} \rho R^{2}$
C. $\frac{176}{105} \rho R^{2}$

D. None of these

Answer: B

D Watch Video Solution

10. A thin uniform rod of length 21 is acted upon a constant torque. The angular velocity changes from zero to ω in time t. The value of torque is:

$$
\text { A. } \frac{m l^{2} \omega}{t}
$$

B. $\frac{m l^{2} \omega}{12 t}$
C. $\frac{m l^{2} \omega}{3 t}$
D. $\frac{2 m l^{2} \omega}{t}$

Answer: C

D Watch Video Solution

11. Speed of a solid sphere after rolling down an inclined plane is :
A. $\left(\frac{10}{7} g h\right)^{1 / 2}$
B. $\sqrt{\frac{6}{5} g h}$
C. $\sqrt{\frac{4}{5} g h}$
D. $(g h)^{1 / 2}$

Answer: A

D Watch Video Solution

12. Four spheres of radius r each of mass m placed with their centres on the four corners of the square of side 'a'. The M.I. of the system
about an axis along one of the sides of square
is :

> A. $\frac{4}{5} m r^{2}+2 m a^{2}$
> B. $\frac{4}{5} m r^{2}+4 m a^{2}$
> C. $\frac{8}{5} m r^{2}$
> D. $\frac{8}{5} m r^{2}+2 m a^{2}$

Answer: D

D Watch Video Solution

13. A homogenous disc of mass 2 kg and radius

10 cm is rotating about its axis with an
angular velocity of 4 rad s^{-1}. The angular momentum of the disc is :
A. $1 \mathrm{~kg} m s^{-1}$
B. $0.6 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$
C. $1.2 \mathrm{~kg} \mathrm{~ms}{ }^{-1}$
D. None of these

Answer: D
14. If the earth were to suddenly shrink to I / n of its present radius without any change in its mass the duration of the new day will be

$$
\text { A. } \frac{24}{n} h
$$

B. $24 n h$
C. $\frac{24}{n^{2}} h$
D. $24 n^{2} h$

Answer: C
15. A ring rolls down an inclined plane. At the bottom its kinetic energy is E. Theratio of its rotational K.E. to the translational K.E. is :
A. 1:4
B. 1:2
C. 1:1
D. 2:1

- Watch Video Solution

16. A mass sliding down an inclined plane and reaches the bottom with velocity v. If the same mass is in the form of a disc and rolls down the same inclined plane, what is its velocity at the bottom ?
A. v
B. $\sqrt{\frac{2}{3} v}$
C. $\sqrt{2} v$
D. $\frac{v}{\sqrt{2}}$

Answer: B

D Watch Video Solution

17. If earth suddenly stops revolving and whole of its K.E. is used up for raising its temperature and if $S=$ specific heat, $R=$ radius,
$\omega=$ angular velocity of earth, the rise of temperature of earth is: ($\mathrm{J}=$ joules constant $)$

$$
\text { A. } \frac{R^{2} \omega^{2}}{5 S}
$$

B. $\frac{R^{2} \omega^{2}}{5 J}$
C. $\frac{R^{2} \omega^{2}}{5 J S}$
D. $\frac{R^{2} \omega}{5 J S}$

Answer: C

D Watch Video Solution

18. A solid sphere rolls down on an inclined
plane of 30° inclination. Ratio of acceleration when it rolls and slides is:
A. $5: 7$
B. $7: 5$
C. 2:5
D. $3: 5$

Answer: A

D Watch Video Solution

19. Angular momentum of the earth revolving around the sun is proportional to r^{n}, where r

Value of n is :
A. 2
B. 1
C. $1 / 2$
D. $3 / 2$

Answer: C
(Watch Video Solution
20. The moment of inertia of two spheres of equal masses about their diameters are equal.

If one of them is solid and other is hollow, the ratio of their radii is :
A. $\sqrt{3}: \sqrt{5}$
B. $3: 5$
C. $\sqrt{5}: \sqrt{3}$
D. 5: 3

Answer: C

21. If the earth were to tripple its present distance from the sun then number of days in one year will be :
A. 365×3
B. 365×27
C. $365 \times 3 \sqrt{3}$
D. $365 / 3 \sqrt{3}$

Answer: C
22. Moment of inertia of a solid sphere about
a diameter is 8 g cm (mass $=5 \mathrm{~g}$, radius $=2$
$\mathrm{cm})$. Moment of inertia of the solid sphere about a tangent shall be :
A. $28 \mathrm{gcm}^{2}$
B. $40 \mathrm{gcm}^{2}$
C. $18 \mathrm{gcm}^{2}$
D. $12 \mathrm{gcm}^{2}$

Answer: A

D Watch Video Solution

23. A stone of mass 4 kg whirled in a
horizontal circle of radius 1 m and makes 2
revolutions/s. Moment of inertia of the stone about the axis of rotation is :
A. $65 \mathrm{kgm}^{2}$
B. $4 \mathrm{kgm}^{2}$
C. $16 \mathrm{kgm}^{2}$

D. $1 \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution

24. In the above question, the angular momentum of the stone is:
A. $64 \pi k g \times m^{2} / s$
B. $16 \pi k g \times m^{2} / s$
C. $4 \pi k g \times m^{2} / s$

D. $\pi k g \times m^{2} / s$

Answer: B

D View Text Solution

25. A thin circular ring of mass m and r is rotating about its axis with a constant angular
velocity ω. Two objects, each of mass m are attached gently to the opposite ends of a diameter of the ring wheel now rotates with an angular velocity :
A. $\omega M /(M+m)$
B. $\omega(M-2 m) /(M+2 m)$
C. $\omega M /(M+2 m)$
D. $\omega(M+2 m) / M$

Answer: C

D Watch Video Solution
26. Two identical balls one solid and other hollow are allowed to roll down an inclined
plane, which one of them reached the base first?
A. Hollow ball
B. Solid ball
C. Both reach together
D. None reaches

Answer: B
(Watch Video Solution
27. What is the moment of inertia and K.E. of a
thin uniform ring of mass 2 kg and diameter 1 m rotating about the axis passing through its centre and perpendicular to the plane of the ring?
A. $0.5 \mathrm{kgm}^{2}$
B. $1.0 \mathrm{kgm}^{2}$
C. $2.0 \mathrm{kgm}^{2}$
D. $4.0 \mathrm{kgm}^{2}$

Answer: A
28. A solid sphere and a disc. Of same diameter
and mass roll down from rest on a frictionless
inclined plane. The ratio of their acceleration
is :
A. $15: 14$
B. 7: 8
C. 1:1
D. 2:1

Answer: A

D Watch Video Solution

29. A thin uniform ring of mass 5 kg and radius
0.2 metre is making 2100 r.p.m. about its
central axis. Its moment of inertia and kinetic energy of rotation is :
A. $0.2 \mathrm{kgm}^{2}, 4836 \mathrm{~J}$
B. $0.4 \mathrm{kgm}^{2}, 3648 \mathrm{~J}$
C. $0.02 \mathrm{kgm}^{2}, 3936 \mathrm{~J}$

D. $0.04 \mathrm{kgm}^{2}, 8436 \mathrm{~J}$

Answer: A

D Watch Video Solution

30. In a rectangle $A B C D, B C=2 A B$. The moment of inertia along which of the axis is minimum?
A. BC
B. BD

C. HF

D. EG

Answer: D

D View Text Solution

31. The M.I. of a cyclinder about the axis of symmetry is equal to the M.I. about the axis passing through its centre and perpendicular to its length. The ratio of its length to the radius is :
A. $\sqrt{3}: 1$
B. $1: \sqrt{3}$
C. $\sqrt{2}: 1$
D. $1: \sqrt{2}$

Answer: A

D Watch Video Solution
32. The ratio of angular momentum of the electron in the first allowed orbit to that in the second allowed orbit of hydrogen atom is :
A. $\sqrt{2}$
B. $\sqrt{1 / 2}$
C. $\frac{1}{2}$
D. 2

Answer: C

D Watch Video Solution

33. A metre stick held vertically with one end on the floor is allowed to fall. Speed of the other end when it hits the floor is :
A. Nearly $3 \mathrm{~m} / \mathrm{s}$
B. $5.5 \mathrm{~m} / \mathrm{s}$
C. $7 \mathrm{~m} / \mathrm{s}$
D. $9 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

34. A solid sphere rolls without sliding with constant velocity. What fraction of total K.E of sphere is rotational K.E. ?
A. $1 / 5$
B. $2 / 5$
C. $2 / 3$
D. $2 / 7$

Answer: D

D Watch Video Solution

35. A particle of mass m travels with speed v along + ve direction of x-axis parallel to line $y=6$. At $t=0$, the particle is at $(0,6)$. The
angular momentum of particle about origin is
A. 0
B. 6 mv directed along + ve y axis
C. 6 mv directed along - ve z axis
D. 6 mv directed along +ve z axis

Answer: C

D Watch Video Solution

36. A constant couple of 500 Nm turns a wheel of moment of inertia $100 \mathrm{~kg} \mathrm{~m}{ }^{2}$ about an axis through its centre, the angular velocity gained in two second is:
A. $5 \mathrm{rad} s^{-1}$
B. $100 m s^{-1}$
C. $200 m s^{-1}$
D. $10 \mathrm{rad} s^{-1}$

Answer: D

37. A ring rolls on a plane surface. The fraction of total energy associated with its rotation is :
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{4}$
D. $\frac{2}{1}$

Answer: A

- Watch Video Solution

38. The moment of inertia of a straight thin rod of mass M and length L about an axis perpendicular to its length and passing through its C.G. is :
A. $\frac{1}{12} M L^{2}$
B. $\frac{1}{3} M L^{2}$
C. $\frac{1}{2} M L^{2}$
D. $M L^{2}$
39. A wheel of moment of inertia
$5 \times 10^{-3} \mathrm{kgm}^{2}$ is making 20 rps . It is stopped in 20 s . The angular retardation is:
A. $\pi \mathrm{rad} s^{-2}$
B. $2 \pi \mathrm{rad} s^{-2}$
C. $4 \pi \mathrm{rad} s^{-2}$
D. $8 \pi \mathrm{rad} s^{-2}$
40. The moment of inertia of circular disc about its diameter is $200 \mathrm{~g} \mathrm{~cm}^{2}$. Then its moment of inertia about an axis passing through its centre and normal to its face is :
A. $100 \mathrm{gcm}^{2}$
B. $200 \mathrm{gcm}^{2}$
C. $400 \mathrm{gcm}^{2}$
D. $1000 \mathrm{gcm}^{2}$

Answer: C

- Watch Video Solution

41. The angular velocity of body changes from

1 revolution per 16 seconds to 1 revolution per
second without applying an external torque.
The ratio of radii of gyration in two cases is :
A. $1: 4$
B. $4: 1$
C. 16: 1

D. 1: 16

Answer: B

D Watch Video Solution

42. A flywheel rotating about a fixed axis has a
K.E. of 360 J, when its angular speed is 30 rad
s^{-1}. The M.I. of the flywheel about the axis of rotation is :
A. $0.15 \mathrm{kgm}^{2}$
B. $0.8 \mathrm{kgm}^{2}$
C. $0.6 \mathrm{kgm}^{2}$
D. $0.75 \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution

43. Two discs one of density $7.2 \mathrm{~g} \mathrm{~cm}^{-3}$ and other of density $8.9 \mathrm{gcm}^{-3}$ are of same mass and thickness. Their M.I. are in the ratio of :
A. $\frac{7.2}{8.9}$
B. $\frac{1}{8.9 \times 7.2}$
C. $\frac{8.9}{7.2}$
D. $\frac{(8.9 \times 7.2)}{1}$

Answer: C

- Watch Video Solution

44. A particle of mass m slides down an inclined plane and reaches the bottom with
linear velocity v. If the same mass is in the
form of ring and rolls without slipping down
the same inclined plane, its velocity will be:
A. v
B. $\sqrt{2} v$
C. $\frac{v}{\sqrt{2}}$
D. 2 v

Answer: C
(Watch Video Solution
45. From a given sample of uniform wire, two circular loops P and Q are made. P of radius ' r ' and Q of radius nr. If the M.I. of Q about its axis is 4 times than that of P, then value of n is
A. $(4)^{1 / 3}$
B. $(4)^{2 / 3}$
C. $(4)^{1 / 4}$
D. $(4)^{1 / 2}$

Answer: A
46. A particle of mass m rotating in a plane circular path of radius r has angular momentum L. The centripetal force acting on its is :

$$
\begin{aligned}
& \text { A. } \frac{L^{2}}{m r} \\
& \text { B. } \frac{L^{2} m}{r^{2}} \\
& \text { C. } \frac{L^{2}}{m r^{3}} \\
& \text { D. }\left[\frac{L}{m r}\right]^{1 / 2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

47. A mass m is moving with a constant
velocity along a line parallel to the X-axis away
from the origin, its angular momentum w.r.t. origin :
A. is zero
B. is constant
C. goes on decreasing

D. goes on increasing

Answer: A

- Watch Video Solution

48. A rod of length L rotates about an axis
passing through its centre and normal to its
length with an angular velocity ω. If A is the cross section and D is the density of material of rod, its rotational K.E. is :

$$
\text { A. } \frac{1}{2} A L^{3} D \omega^{2}
$$

B. $\frac{1}{6} A L^{3} D \omega^{2}$
C. $\frac{1}{24} A L^{3} \omega^{2} D$
D. $\frac{1}{12} A L^{3} D \omega^{2}$

Answer: C

D Watch Video Solution

49. A ring is rotating without slipping. The ratio of its translational kinetic energy to the total K.E. is :
A. $1: 2$
B. 2:3
C. $3: 2$
D. $2: 1$

Answer: A

D Watch Video Solution

50. A hollow sphere of mass m and radius ' r ' is rotating with velocity ω. It suddenly stops and
75% of K.E. is converted into heat. If its specific heat is 's' $\mathrm{J} / \mathrm{kg} / \mathrm{K}$, the rise of temperature is :
A. $\frac{R^{2} \omega^{2}}{4 s}$
B. $\frac{3 R^{2} \omega^{2}}{20 s}$
C. $\frac{R^{2} \omega^{2}}{12 s}$
D. $\frac{2 R^{2} \omega^{2}}{3 s}$

Answer: A

D Watch Video Solution

51. A disc is rotating with angular velocity $\vec{\omega}$. A force \vec{F} acts at a point whose position vector with respect to the axis of rotation is \vec{r}. The power associated with the torque due to the force is given by :

$$
\begin{aligned}
& \text { A. }(\vec{r} \times \vec{F}) \times \vec{\omega} \\
& \text { B. }(\vec{r} \times \vec{F}) \cdot \vec{\omega} \\
& \text { C. } \vec{r} \cdot(\vec{F} \times \vec{\omega}) \\
& \text { D. } \vec{r} \times(\vec{F} \cdot \vec{\omega})
\end{aligned}
$$

52. The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about a tangential axis is :
A. $1: \sqrt{2}$
B. $\sqrt{2}: 1$
C. $\sqrt{2}: \sqrt{3}$
D. $\sqrt{5}: \sqrt{6}$
53. If a disc of mass m and radius r is reshaped
into a ring of radius $2 r$, the mass remaining
the same, the radius of gyration goes up by a factor of:
A. 4
B. 2
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

54. Four tiny masses are connected by a rod of negligble mass as shown in fig. The moment of inertia of the system about axis $A B$ is :
A. $30 m a^{2}$
B. $50 m a^{2}$
C. $40 m a^{2}$

D. $60 m a^{2}$

Answer: B

D View Text Solution

55. In above question, the radius of gyration of
the system about axis $A B$ is :
A. $\sqrt{5} a$
B. $\sqrt{2 a}$
C. $\sqrt{3} a$

D. $2 a$

Answer: A

D View Text Solution

56. Three point-mases m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side a. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

$$
\text { A. }\left(m_{1}+m_{2}\right) \frac{a^{2}}{4}
$$

B. $\left(m_{1}+m_{2}+m_{3}\right) \frac{a^{2}}{4}$
C. $\left(m_{2}+m_{3}\right) \frac{a^{2}}{4}$
D. $\left(m_{1}+m_{3}\right) \frac{a^{2}}{4}$

Answer: C

D Watch Video Solution

57. The moment of inertia of a solid sphere of mass M and radius R, about an axis through its centre, is $\frac{2}{5} M R^{2}$. The moment of inertia
about an axis tangential to the surface of the sphere will be :
A. $\frac{4}{5} M R^{2}$
B. $\frac{6}{5} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $M R^{2}$

Answer: C
(Watch Video Solution
58. The moment of inertia of a uniform circular disc of mass M and radius R about any of its diameter is $\frac{1}{4} M R^{2}$. What is the moment of inertia of the disc about an axis passing through its centre and normal to the disc?
A. $M R^{2}$
B. $2 M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $\frac{1}{2} M R^{2}$

Answer: D
59. A solid cyclinder of mass 4 kg and radius 20
cm is rotating about its axis with a frequency of $10 / \pi \mathrm{Hz}$. What is the rotational kinetic energy of the cylinder?
A. 4 J
B. 8 J
C. 16 J
D. 32 J

- Watch Video Solution

60. A flywheel of moment of inertia $250 \mathrm{kgm}^{2}$ is
rotating at an angular speed of $12 \mathrm{rad} s^{-1}$.
What torque is needed to stop the wheel in 6 s ?
A. 500 Nm
B. 1000 Nm
C. 1500 Nm

D. 2000 Nm

Answer: A

D Watch Video Solution

61. A circular disc is rolling down an inclined
plane without slipping. If the angle of inclination is 30°, the acceleration of the disc down the inclined plane is:
A. g
B. $\frac{g}{2}$
C. $\frac{g}{3}$
D. $\frac{\sqrt{2}}{3} g$

Answer: C

- Watch Video Solution

62. A uniform disc of mass m and radius r rotates about frictionless axle passing through its centre and perpendicular to its plane. A chord is wound over the rim of the
disc. A uniform force F is applied to the other
end of chord. The tangential acceleration is proportional to :
A. R^{1}
B. R^{-1}
C. R^{-2}
D. R^{0}

Answer: D

D Watch Video Solution
63. A light massless cord is wrapped around
the circumference of a disc of radius ' r ' and a
steady downward pull F is applied tangentially
on the free acceleration of the wheel is:

> A. $\frac{F}{M r}$
> B. $\frac{2 F}{M}$
> C. $\frac{2 F}{M r}$
> D. $\frac{M}{2 F}$

- View Text Solution

64. A solid sphere is rotating about its diameter. Due to increase in room temperature, its volume increases by 0.5%. If no external torgue acts, the angular speed of the sphere will :
A. Increase by nearly $\frac{1}{2} \%$
B. Increase by nearly $\frac{1}{3} \%$
C. Decrease by nearly $\frac{2}{3} \%$
D. Decrease by nearly $\frac{1}{3} \%$

Answer: D

- Watch Video Solution

65. A mass m is moving with a constant
velocity along a line parallel to the X-axis away
from the origin, its angular momentum w.r.t. origin :
A. Remains constant
B. Is zero
C. Goes on increasing

D. Goes on decreasing

Answer: A

- Watch Video Solution

66. A disc of mass M and radius R is rolling
with angular speed ω on a horizontal plane as
shown in fig. The magnitude of angular momentum of the disc about the origin is :

$$
\text { A. } \frac{1}{2} M R^{2} \omega
$$

B. $M R^{2} \omega$
C. $2 M R^{2} \omega$
D. $\frac{3}{2} M R^{2} \omega$

Answer: D

D View Text Solution

67. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown in fig. The moment of
inertia of the loop about the axis $X X^{\prime}$ is :
A. $\frac{3 \rho L^{3}}{8 \pi^{2}}$
B. $\frac{\rho L^{3}}{8 \pi^{2}}$
C. $\frac{\rho L^{3}}{16 \pi^{2}}$
D. $\frac{5 \rho L^{3}}{16 \pi^{2}}$

Answer: A

D View Text Solution
68. A rigid body rotates about a fixed axis with
variable angular speed $\omega=A-B t$ where A
and B are constant. Find the angle through which it rotates before it comes to rest :

$$
\begin{aligned}
& \text { A. } \frac{A^{2}}{2 B} \\
& \text { B. } \frac{A^{2}-B^{2}}{2 A} \\
& \text { C. } \frac{A^{2}-B^{2}}{2 B} \\
& \text { D. } \frac{(A-B) A}{2}
\end{aligned}
$$

Answer: A

69. A pendulum consisting of a small sphere of mass m suspended by aninextensible and massless string of length I is made to swing in a vertical plane. If the breaking strength of the string is 2 mg , then the maximum angular amplitude of the displacement from the vertical can be
A. 0°
B. 60°
C. 60°
D. 90°

Answer: C

D Watch Video Solution

70. Two particles which are initially at rest move towards each other under the action of their mutual attraction. If their speeds are v and $2 v$ at any instant, then the speed of center of mass of the system is,
A. 0
B. V
C. 3V
D. 1.5 V

Answer: A

D Watch Video Solution
71. Two blocksof masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An
impulse gives a velocity of $14 \mathrm{~m} / \mathrm{s}$ to the
heavier block in the direction of the lighter block. The velocity of the centre of mass is :
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
72. Two girls of weights 40 kg and 60 kg stand at A and B and are 10 m apart. They pull on a massless string stretched between them. Then they will meet at :
A. 4 m from A
B. 6 m from A
C. Mid point of $A B$
D. None of these

Answer: B

- Watch Video Solution

73. A shell has mass 3 kg and radius 1 m . Its moment of inertia about the tangent is :
A. $2 \mathrm{kgm}^{2}$
B. $5 \mathrm{kgm}^{2}$
C. $9 \mathrm{kgm}^{2}$
D. $3 \mathrm{kgm}^{2}$

Answer: B
74. A sphere, disc and a ring each having same mass M and radius R roll down without slipping from an inclined plane. Which of three will reach foot of inclined plane first :
A. Ring
B. Disc
C. Sphere
D. All the three will reach at same time.

Answer: C

75. A solid sphere, a hollow sphere and a ring are released from top of an inclined plane
(frinctionless) so that they slide down the plane. Then maximum acceleration down the plane is for (no rolling) :
A. solid sphere
B. hollow sphere
C. ring
D. all same

Answer: D

- Watch Video Solution

76. Moment of inertia of a circular wire of mass
M and radius R about its diameter is :
A. $M R^{2} / 2$
B. $M R^{2}$
C. $2 M R^{2}$
D. $M R^{2} / 4$

Answer: A

- Watch Video Solution

77. The minimum velocity (in $m s^{-1}$) with which a car driver must traverse a flat curve of radius 150 m and coefficient of friction 0.6 to avoid skidding is :
A. 60
B. 30
C. 15

D. 25

Answer: B

D Watch Video Solution

78. Consider a body, shown in fig, consisting of two identical balls, each of mass M connected by a light rigid rod. If an impulse $\mathrm{J}=\mathrm{MV}$ is imparted to the body at one its ends, what would be its angular velocity?
A. V / L
B. $2 V / L$
C. $V / 3 L$
D. $V / A L$

Answer: A

D View Text Solution

79. A particle undergoes uniform circular motion. About which point on the plane of the
circle, will the angular momentum of the particle remain conserved?
A. at the centre of the circle
B. on the circumference of the circle
C. inside the circle
D. outside the circle

Answer: A

- Watch Video Solution

80. A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radius $4 R$ is made from an iron plate of thickness $\frac{t}{4}$. Then the relation between the moment of inertia I_{X} and I_{Y} is:

$$
\begin{aligned}
& \text { A. } I_{Y}=64 I_{X} \\
& \text { B. } I_{Y}=32 I_{X} \\
& \text { C. } I_{Y}=16 I_{X} \\
& \text { D. } I_{Y}=I_{X}
\end{aligned}
$$

81. A particle performing uniform circular motion has angular momentum L . If its angular frequency is doubled and its kinetic halved, then the new angular momentum is :
A. $\frac{L}{2}$
B. $\frac{L}{4}$
C. $2 L$
D. $4 L$

Answer: B

- Watch Video Solution

82. Let \vec{F} be the force acting on a particle having position vector \vec{r} and $\vec{\tau}$ be the torque of this force about the origin. Then :
A. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau}=0$
B. $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau}=0$
c. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau}=0$
D. $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau} \neq 0$

Answer: A

D Watch Video Solution

83. A child is standing with folded hands at the
center of a platform rotating about its central
axis. The kinetic energy of the system is K. The child now stretches his arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is :
A. 2 K
B. $\frac{K}{2}$
C. $\frac{K}{4}$
D. 4 K

Answer: B

D Watch Video Solution

84. Which of the following statements is FALSE
for a particle moving in a circle with a constant angular speed?
A. The velocity vector is tangent to the circle
B. The acceleration vector is tangent to the circle
C. The acceleration vector points to the
centre of the circle
D. The velocity and acceleration vectors are
perpendicular to each other

Answer: B

85. One solid sphere A and another hollow
sphere B are of same mass and same outer
radii. Their moment of inertia about their diameters are respectively I_{A} and I_{B} such that :
A. $I_{A}=I_{B}$
B. $I_{A}>I_{B}$
C. $I_{A}<I_{B}$
D. $\frac{I_{A}}{I_{B}}=\frac{d_{A}}{d_{B}}$

Answer: C

D Watch Video Solution

86. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle, the motion of the particle takes place in a plane. It follows that :
A. its velocity is constant
B. its acceleration is constant
C. its kinetic energy is constant
D. it moves in a straight line

Answer: C

- Watch Video Solution

87. A solid sphere is rotating in free space. If
the radius of the sphere is increased keeping mass same which one of the following will not be affected?
A. moment of inertia
B. angular momentum
C. angular velocity
D. rotational kinetic energy

Answer: B

D Watch Video Solution

88. An angular ring with inner and outer radii
R_{1} and R_{2} is rolling without slipping with a
uniform angular speed. The ratio of the forces
experienced by the two particles situated on
the inner and outer parts of the ring $\frac{F_{1}}{F_{2}}$ is:

> A. $\frac{R_{2}}{R_{1}}$
> B. $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
> C. 1
> D. $\frac{R_{1}}{R_{2}}$

Answer: D

89. A body of mass M while falling vertically downwards under gravity breaks into two parts, a body B of mass $\frac{1}{3} M$ and body C of mass $\frac{2}{3} M$. The centre of mass of bodies B and

C taken together shifts compared to that of body A towards :
A. depends on the height of breaking
B. does not shift
C. body C
D. body B

Answer: B

D Watch Video Solution

90. The moment of Inertia of a uniform semicircular disc of mass M and radius ' r ' about a line perpendicular to the plane of the disc through the centre is:
A. $\frac{1}{4} M r^{2}$
B. $\frac{2}{5} M r^{2}$
C. $M r^{2}$

D. $\frac{1}{2} M r^{2}$

Answer: D

D Watch Video Solution

91. Consider a two particle system with particles having masses m_{1} and m_{2}. If the first particle is pushed towards the centre of mas through a distance d, by what distance should the second particle be moved, so as to keep the centre of mass at the same position?

> A. $\frac{m_{2}}{m_{1}} d$
> B. $\frac{m_{1}}{m_{1}+m_{2}} d$
> C. $\frac{m_{1}}{m_{2}} d$
> D. d

Answer: C

- Watch Video Solution

92. Four point masses, each of value m, are placed at the corners of a square $A B C D$ of side
I. The moment of inertia of this system about
an axis passing through A are parallel to BD is
A. $2 m / l^{2}$
B. $\sqrt{3} m l^{2}$
C. $3 m l^{2}$
D. $m l^{2}$

Answer: C
(Watch Video Solution
93. A force of $-\vec{F} \hat{k}$ on O , the origin of the coordinate system. The torque about the point $(1,-1)$ is :

$$
\begin{aligned}
& \text { A. } F(\hat{i}-\hat{j}) \\
& \text { B. }-F(\hat{i}+\hat{j}) \\
& \text { C. } F(\hat{i}+\hat{j}) \\
& \text { D. }-F(\hat{i}-\hat{j})
\end{aligned}
$$

Answer: C

94. The potential energy of a 1 kg particle free
to move along x-axis is given by
$V(x)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J$. The total mechanical
energy of the particle is 2 J . Then, the maximum
speed (in m / s) is :
A. $3 / \sqrt{2}$
B. $\sqrt{2}$
C. $1 / \sqrt{2}$
D. 2

Answer: D

- Watch Video Solution

95. Angular momentum of the particle rotating with a central force is constant due to :
A. Constant linear momentum
B. Zero Torue
C. Constant Torque
D. Constant Force

Answer: B

D Watch Video Solution

96. A circular disc of radius R is removed from
a bigger circular disc of radius $2 R$ such that
the circumferences of the disc coincide. The centre of mass of the new disc is αR from the centre of the bigger disc. The value of α is :
A. $\frac{1}{2}$
B. $\frac{1}{6}$
C. $\frac{1}{4}$
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

97. A round uniform body of radius R, mass M
and moment of inertia 'I', rolls down (without
slipping) an inclined plane making an angle θ with the horizontal. Then its acceleration is :
A. $g \sin \theta$
$\frac{1+M R^{2} / I}{1}$
B. $\frac{g \sin \theta}{1-I / M R^{2}}$
C. $\frac{g \sin \theta}{1+M R^{2} / I}$
D. $\frac{g \sin \theta}{1+I / M R^{2}}$

Answer: D

D Watch Video Solution
98. For the given uniform lamina $A B C D$, whose centre is O .
A. $I_{A D}=3 I_{E F}$
B. $I_{A C}=I_{E F}$
C. $I_{A C}=\sqrt{2} I_{E F}$
D. $\sqrt{2} I_{A C}=I_{E F}$

Answer: B

D View Text Solution
99. Consider a uniform square plate of side 'a' and mass ' m '. The moment of inertia of the
plate about an axis perpendicular to its plane and passing through one of its corners is:
A. $\frac{5}{6} m a^{2}$
B. $\frac{1}{12} m a^{2}$
C. $\frac{7}{12} m a^{2}$
D. $\frac{2}{3} m a^{2}$

Answer: D

D Watch Video Solution

100. A thin uniform rod of length I and massm
is swinging freely about a horizontal axis
passing through its end. It maximum angular
speed is ω. Its centre of mass rises to a maximum height of :
A. $\frac{1}{2} \frac{l^{2} \omega^{2}}{g}$
B. $\frac{1}{6} \frac{l^{2} \omega^{2}}{g}$
C. $\frac{1}{3} \frac{l^{2} \omega^{2}}{g}$
D. $\frac{1}{6} \frac{l \omega}{g}$

Answer: B

- Watch Video Solution

Level li Mcq

1. A uniform disc of radius R has a hole cut out which has a radius r. The centre of hole is at a distance $\frac{R}{2}$ from the centre of disc. The position of centre of mass is :

$$
\begin{aligned}
& \text { A. } \frac{R-r}{R} \\
& \text { B. } \frac{R r^{2}}{2\left(R^{2}-r^{2}\right)}
\end{aligned}
$$

C. $\frac{R r^{2}}{2\left(R^{2}+r^{2}\right)}$
D. None of these

Answer: B

D Watch Video Solution

2. A rigid horizontal smooth rod $A B$ of mass
0.75 kg and length 40 cm can rotate freely about a fixed vertical axis through its midpoint O . Two rings each of mass 1 kg initially at rest at a distance 10 cm from O on either side
of the rod. The rod is rotated with angular
velocity of 30 rad s^{-1}. When the rings reach the ends of the rod, the angular velocity of the rod is :
A. 5
B. 10
C. 15
D. 20

Answer: B
3. A square plate has a uniform shape and density. A small piece of irregular shape is removed from first quadrant of the plate and is then glued to the centre O of the plate leaving behind a hold at point P of plate. What happens to the M.I. of the plate about the Zaxis?
A. Increased
B. Decreased

C. Remains the same

D. Change cannot be predicted

Answer: B

D View Text Solution

4. In the above question the centre of mass of
plate is now shifted to which quadrant of plate for X - Y plane ?
A. First

B. second

C. third
D. fourth

Answer: C

D View Text Solution

5. The density of a rod of 1 m and of non-

$$
\begin{aligned}
& \text { uniform structure is given by } \\
& \rho(x)=a\left(1+b x^{2}\right)
\end{aligned}
$$

where a and b are constant such that
$a \leq x \leq 1$. The centre of mass of the rod will be at :
A. $\frac{3[2+b]}{4[3+b]}$
B. $\frac{4[2+b]}{3[3+b]}$
C. $\frac{3[3+b]}{4[2+b]}$
D. $\frac{4[3+b]}{3[2+b]}$

Answer: A
6. The net value of an external torque acting on a system of particle is zero about a certain axis of rotation. Which of the following statements will hold good for the system?
(a) The forces may be acting radially from a point on the axis
(b) The forces may be directed along the axis of rotation
(c) The forces may be acting parallel to the axis of rotation
(d) The torques caused by some forces are
equal and opposite to those caused by other forces.
A. (i) only
B. (i) and (ii)
C. (i), (ii), (iii)
D. All of these

Answer: D

- Watch Video Solution

7. A regular polygon of n-sides with n vertices.

On all but one vertex ($n-1$) point masses each
of mass m are placed. The vacant vertex has
position vector ' \vec{a} ' w.r.t. the centre of polygen. What is the position vector of the centre of mass of polygon ?

$$
\begin{aligned}
& \text { A. } \frac{1}{n-1} a \\
& \text { B. } \frac{1}{n} \cdot a \\
& \text { C. } \frac{1-a}{n} \\
& \text { D. } \frac{n-1}{1-a} \times a
\end{aligned}
$$

Answer: A

- Watch Video Solution

8. Two discs having moment of inertias
I_{1} and I_{2} about their axes passing through
their respective centres and normal to their surfaces are rotating with angular speeds
ω_{1} and ω_{2} respectively. They are brought into
contact face to face with their axes of rotation
coinciding with each other, what is the angular speed of the two discs system?
A. $\frac{I_{1} \omega_{1}}{I_{1}+I_{2}}$
B. $\frac{I_{2} \omega_{2}}{I_{1}+I_{2}}$
C. $\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}$
D. $\frac{\omega_{1}+\omega_{2}}{I_{1}+I_{2}}$

Answer: C

D Watch Video Solution
9. In the above question what would be the loss in K.E. of system in the process?
A. $\frac{I_{1} I_{2}\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
B. $\frac{\left(I_{1}+I_{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)}{2 I_{1} I_{2}}$
C. $\frac{I_{1} \omega_{1}^{2}-I_{2} \omega_{2}^{2}}{\left(I_{1}+I_{2}\right)}$
D. $\frac{I_{1} \omega_{1}^{2}-I_{2} \omega_{2}^{2}}{2\left(I_{1}+I_{2}\right)}$

Answer: A

D View Text Solution

10. A uniform solid disc of radius R and mass m
is rotating about its horizontal axis $A B$ with a
uniform angular speed of ω_{0}. It is placed on
the horizontal table in contact with its surface.

If the coefficient of kinetic frinction is μ_{k}, calculate the time taken for the rolling to begin.

$$
\begin{aligned}
& \text { A. } \frac{R \omega_{0}}{\mu_{k} g\left(1+\frac{m R^{2}}{I}\right)} \\
& \text { B. } \frac{\omega_{0} \mu_{k}}{g R\left(1+\frac{m R^{2}}{I}\right)} \\
& \text { C. } \frac{g R \omega_{0}}{\mu_{k}\left(1+\frac{m R^{2}}{I}\right)} \\
& \text { D. } \frac{R \omega_{0}}{\mu_{k} g\left(\frac{m R^{2}}{I}\right)}
\end{aligned}
$$

Answer: A

D View Text Solution

11. A uniform disc of radius R and mass M is
rotating about its rim on a horizontal surface
of a table. Now the disc is pulled, with a force
F acting on the centre of disc. What is the maximum value of F for which the disc rolls
without slipping ? ($\mu=$ coeff, of frictoin)
A. $F \leq 3 \mu M g$
B. $F=2 \mu M g$
C. $F \leq 4 \mu M g$
D. None of these

Answer: A

D View Text Solution
12. Two hollow cylinderical drums one of radius
R and other $2 R$ but of a common height ' h ' are rotating with angular velocity ω in
anticlockwise direction and also ω in clockwise direction respectively, with their axes fixed and parallel to each other in a horizontal plane saparated by little greater than 3 R distance so that they just do not touch each other. They are now brought in contact making the separation exactly 3 . What would be the ratio of final angular velocity of the two when friction ceases ?
A. $\frac{2}{1}$
B. $\frac{3}{1}$
C. $1 / 2$

D. $1 / 3$

Answer: A

D Watch Video Solution

13. Four identical spheres each of radius 'a' are
placed on a horizontal table touching one another so that their centres lie at the corners of a square of side 2 a. Position of their centre of mass is :
A. 2a, a
B. 3a, a
C. a, a
D. $a / 2 a / 2$

Answer: C

D Watch Video Solution

14. Three particles of masses $2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 6 kg are located at the vertices of an equilateral triangle of side 0.5 m . What is the position of
centre of mass if the origin is located at 2 kg mass and 4 kg mass located along x -axis ?
A. $0.29 \mathrm{~m}, 0.22 \mathrm{~m}$
B. $2.9 \mathrm{~m}, 2.2 \mathrm{~m}$
C. $1.9 \mathrm{~m}, 1.2 \mathrm{~m}$
D. None of these

Answer: A
(Watch Video Solution
15. Four particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and

4 kg are at the vertices of a rectangle of sides
a and b with $a>b$. If $\mathrm{a}=1 \mathrm{~m}, \mathrm{~b}=2 \mathrm{~m}$, what is
the location of their centre of mass ?
A. $0.5 \mathrm{~m}, 1.4 \mathrm{~m}$
B. $1.4 \mathrm{~m}, 0.5 \mathrm{~m}$
C. $0.14 \mathrm{~m}, 0.05 \mathrm{~m}$
D. $0.05 \mathrm{~m}, 0.14 \mathrm{~m}$

Answer: A
16. Four identical spheres each of radius 10 cm
and equal mass 1 kg each are placed on
horizontal surface touching each other so that
their centres are located at the vertices of a
square of side 20 cm . What is the distance of
their centre of mass from the centre of either sphere?
A. 20 cm
B. 10 cm
C. $10 \sqrt{2} \mathrm{~cm}$
D. 5 cm

Answer: C

D Watch Video Solution

17. When a sphere of moment of inertia I moves down an inclined plane, the percentage of energy which is rotational, is approximately
A. 28%
B. 72%
C. 100%
D. None of these

Answer: A

D Watch Video Solution
18. Two discs have same mass and thickness.

Their materials are of densities ρ_{1} and ρ_{2}. The
ratio of their moment of inertia about central

axis will be :

A. $\rho_{1}: \rho_{2}$
B. $\rho_{1} \rho_{1}: 1$
C. $1: \rho_{1} \rho_{2}$
D. $\rho_{2}: \rho_{1}$

Answer: D
(Watch Video Solution
19. A thin uniform rod of length 21 is acted upon a constant torque. The angular velocity changes from zero to ω in time t. The value of torque is :

$$
\begin{aligned}
& \text { A. } \frac{m l^{2} \omega}{3 t} \\
& \text { B. } \frac{2 m l^{2} \omega}{t} \\
& \text { C. } \frac{m l^{2} \omega}{t} \\
& \text { D. } \frac{m l^{2} \omega}{12 t}
\end{aligned}
$$

Answer: A

20. What should be the ratio between the length and radius of the uniform solid cylinder so that its moment of inertia about central axis is the same as that about equatorial axis ?
A. $1: \sqrt{3}$
B. $\sqrt{3}: 1$
C. $\frac{1}{\sqrt{3}}: \frac{1}{\sqrt{2}}$
D. $\sqrt{3}: \sqrt{2}$

Answer: B

D Watch Video Solution

21. A rigid body rotates about a fixed axis with
variable angular speed $\omega=A-B t$ where A
and B are constant. Find the angle through
which it rotates before it comes to rest :
A. $\frac{a^{2}}{2 b}$
B. $\frac{a^{2}-b^{2}}{2 a b}$
C. $\frac{a^{2}-b^{2}}{2 b}$
D. $\frac{a^{2}-a b}{2 a}$

Answer: A

D Watch Video Solution

22. A uniform weter scale is made up of two
parts. Half of it is of wood and half of it is of
steel as shown.

First it is pivoted at the centre O of woodrn part and a force F is applied tangential to the
edge of steel part to give it a rotation similarly
the process is repeated y the same force by pivoting it at the centre of steel part. In what way the angular acceleration are related in two cases ?
A. $\alpha_{1}>\alpha_{2}$
B. $\alpha_{1}<\alpha_{2}$
C. $\alpha_{1}=\alpha_{2}$
D. None of these

Answer: B
23. A metallic rod of uniform density and mass
M has a length L, it is lying horizontally on the ground. How much work will be done in making it stand vertically?
A. $M g L$
B. $\frac{M g L}{3}$
C. $M \frac{g(L)}{2}$
D. $\frac{M g L}{4}$

Answer: C

D View Text Solution

24. A disc of mass M and radius R is rotating
freely about a horizontal axis passing through
its centre. A body of mass M is fixed to its
surface point at the highest point as shown.

The disc is released. The angular speed picked
up by the disc when the fixed boby comes to
the lowest position A will be :
A. $\sqrt{\frac{2 g}{3 R}}$
B. $\sqrt{\frac{3 g}{2 R}}$
C. $\sqrt{\frac{3 g}{8 R}}$
D. $\sqrt{8 g / 3 R}$

Answer: D

D View Text Solution

25. A cylinder of height 20 cm is placed on a smooth inclined plane as shown. As the angle of inclination is increased to 45°, it starts
slipping on the plane. What is the radius of the cylinder?
A. 10 cm
B. 20 cm
C. 15 cm
D. 25 cm

Answer: A

D View Text Solution
26. A ring of radius $4 a$ is rigidly fixed vertically on the horizontal surface of a table. A small disc of radius 'a' and mass ' m ' is released from point P of the ring as shown. The disc rolls down without slipping to the lower most position A of the ring the speed of disc at this point is :
A. $(g a)^{1 / 2}$
B. $(2 g a)^{1 / 2}$
C. $(3 g a)^{1 / 2}$

D. $(4 g a)^{1 / 2}$

Answer: D

D View Text Solution

27. A solid cylinder of mass 2 kg and radius 0.2

m is rotating about its central axis passing
through point O without any friction. Its speed
is $3 \mathrm{rad} s^{-1}$. A point mass of 0.5 kg and moving with a velocity $5 m s^{-1}$ strikes the cylinder and sticks to the point P as shown.

What is angular momentum of the cylinder before the collision?
A. 0.12 Js
B. 1.2 Js
C. 12 Js
D. 12.12 Js

Answer: A

D View Text Solution
28. In the above question angular velocity of
the system after the particle sticks to the cylinder
A. $0.3 \mathrm{rad} s^{-1}$
B. $5.3 \mathrm{rad} s^{-1}$
C. $10.3 \mathrm{rad} s^{-1}$
D. $8.3 \mathrm{rad} s^{-1}$

Answer: C

D View Text Solution
29. In the above question the energy before and after the collision will be :

D View Text Solution

30. A massless, inextensible string is wrapped
round the circumference of a disc of mass M
and radius R. The second end of the string is
tied to a m which stands at vertical height ' h '
from the ground initially. What will be the
velocity of mass m when it is released and it
touches the ground?
A. $\sqrt{2 g h}$
B. $\sqrt{2 g h} \cdot \frac{M}{m}$
C. $\sqrt{2 g h \times \frac{m}{M}}$
D. $\left(4 m g h \times \frac{1}{M+2 m}\right)^{1 / 2}$

Answer: D

31. A uniform disc of radius R has a hole cut out which has a radius r. The centre of hole is at a distance $\frac{R}{2}$ from the centre of disc. The position of centre of mass is shifted through a distance x from ' O ' find x . If in this question the values of $R=6 \mathrm{~m}$ and that if $\mathrm{r}=1 \mathrm{~m}$, calculate the value of shift from ' O ' and state whether it is towards left or right of 0 .
A. $\frac{R^{2} r}{2\left(R^{2}-r^{2}\right)}, \frac{3}{37} m$ towards left of 'O'
B. $\frac{R r^{2}}{2\left(R^{2}+r^{2}\right)}, \frac{3}{37} m$ towards right of 'O'
C. $\frac{R r^{2}}{2\left(R^{2}-r^{2}\right)}, \frac{3}{35} m$ towards left of 'O'

$R r^{2} \quad 3$
 D. $\frac{R r}{2\left(R^{2}+r^{2}\right)}, \frac{3}{35} m$ towards right of 'O'

Answer: C

- Watch Video Solution

32. A block of mass 12 kg is attached to pulley of radius 10 cm fixed at the top of a smooth inclined plane by the help of a massless inextensible string. When released to move on
the surface of inclined plane inclined to the horizontal at 37° its acceleration down the
plane is $2 m s^{-2}$, what is the tension in the string?
A. 24.5 N
B. 23.4 N
C. 46.8 N
D. 69.2 N

Answer: C

D View Text Solution
33. A uniform solid cylinder having mass M and radius R rotates about a horizontal frictionless
axle $A B$. With the help of massless inextensible
two ropes are suspended two masses with
equal mass m by wrapping the ropes on the
cylinder as shown. What will be the tension in
each of the rope when masses are released
from height ' h ' above the ground?
A. $\frac{M m g}{M+4 m}$
B. $\frac{M m g}{M+3 m}$
C. $\frac{M m g}{M+2 m}$
D. None of these

Answer: A

D View Text Solution

34. In the above question what is the angular velocity of cylinder after the masses fall down from height ' h '?

$$
\text { A. } \sqrt{\frac{8 m g h / M+4 m}{R}}
$$

> B. $\sqrt{\frac{8 m g h / M+m}{R}}$
> C. $\sqrt{\frac{4 m g h / M+m}{R}}$
> D. $\sqrt{\frac{2 m g h / M+2 m}{R}}$

Answer: A

D View Text Solution

35. In the above question what would be the acceleration of each of the following mass ?
A. $\frac{4 m g}{M+m}$
B. $\frac{4 m g}{M+2 m}$
C. $\frac{4 m g}{M+3 m}$
D. $\frac{4 m g}{M+4 m}$

Answer: D

D View Text Solution

36. A cylinder of mass M and radius R starts
falling freely under gravity at $t=0$ as shown
in fig. The tension in each string at any given
times is T. What is value of ' T ' ?
A. Mg
B. $\frac{M g}{2}$
C. $\frac{M g}{4}$
D. $\frac{M g}{6}$

Answer: D

D View Text Solution

37. In the above question what is the acceleration of the cylinder?
A. g
B. $g / 3$
C. $2 g / 3$
D. $\frac{3 g}{4}$

Answer: C
(D) View Text Solution
38. In the above question the instantaneous power developed by the gravitational force at time t will be :
A. $\frac{1}{2} M g t^{2}$
B. $M g t^{2}$
C. $2 / 3 M g^{2} t$
D. $M g^{2} t$

Answer: C

39. A ball weighing 15 g is tied to a string 10
cm long. Initially the ball is held in position
such that the string is horizontal. The ball is
now released. A nail N is situated vertically below the support at a distance L . The minimum value of L such that the string will be wound round the nail is :
A. 2 cm
B. 6 cm
C. 4 cm

D. 8 cm

Answer: B

D View Text Solution

40. A child stands at the centre of a turn table
with his two arms out stretched. The turntable
is set rotating with an angular speed of 40
rev/min. Now, the child folds his hands back and thereby reduces his moment of inertia to

2 $\frac{2}{5}$ times the initial value. The new kinetic
energy of rotation is x times the initial kinetic energy of rotation. The value of x is :
A. 2.5
B. 5
C. 1
D. 6.756

Answer: A
(Watch Video Solution
41. A nearly massless rod is pivoted at one end so that it can swing freely as a pendulum. Two masses 2 m andm are attached to it at distance b and $3 b$ respectively from the pivot. The rod is held horizontal and then released. The angular acceleration of the rod at the instant it is released is:
A. $b g$
B. $\frac{b}{g}$
C. $g b+5$
D. $\frac{5 g}{11 b}$

Answer: D

D Watch Video Solution

42. Two fly wheels A and B are mounted side by
side with frictionless bearing on a common
shaft. Their moments of inertia about the shaft are $5.0 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$ and $20.0 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$ respectively. Wheel A is made to rotate at 10 revolution per second. Wheel B, initially
stationary is now coupled to A with the help of
a clutch. The rotation speed of the wheels will
become
A. $2 \sqrt{5} \mathrm{rps}$
B. 0.5 rps
C. 2 rps
D. None of these

Answer: C

D Watch Video Solution
43. If I_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass, and I_{2} is the moment of inertia (about central axis) of the ring formed by bending the rod, then

$$
\begin{aligned}
& \text { A. } I_{1}: I_{2}=1: 1 \\
& \text { B. } I_{1}: I_{2}=\pi^{2}: 3 \\
& \text { C. } I_{1}: I_{2}=\pi: 4 \\
& \text { D. } I_{1}: I_{2}=3: 5
\end{aligned}
$$

44. If a disc slides from top to bottom of an
inclined plane, it takes time t_{1}. If it rolls, it
takes time t_{2}. Now, $\frac{t_{2}^{2}}{t_{1}^{2}}$ is
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$
45. From a given sample of uniform wire, two circular loops P and Q are made. P of radius ' r ' and Q of radius n r. If the M.I. of Q about its axis is 4 times than that of P, then value of n is
A. $4^{1 / 3}$
B. $4^{1 / 2}$
C. $4^{1 / 4}$
D. $4^{2 / 3}$

Answer: A

D Watch Video Solution

46. A uniform rod of length I is free to rotate in a vertical plane about a fixed horizontal axis through 0 . The rod begins rotating from rest from its unstable equilibrium position. When it has turned through an angle θ, its angular
velocity ω is given as
A. $\sqrt{\frac{6 g}{l}} \sin \theta$
B. $\sqrt{\frac{6 g}{l}} \sin . \frac{\theta}{2}$
C. $\sqrt{\frac{6 g}{l}} \cos \cdot \frac{\theta}{2}$
D. $\sqrt{\frac{6 g}{l}} \cos \theta$

Answer: B

D View Text Solution
47. A wheel of radius R is rolling on the ground without slipping with a speed u. When it reaches point A on the road a small lump of mud gets detached from its highest point B and drops on the ground at point D. What is the horizontal range AD of the mud?
A. $u \sqrt{R / g}$
B. $4 u \sqrt{R / g}$
C. $3 u \sqrt{R / g}$
D. $\sqrt{\frac{3 R}{g}}$

Answer: B

D View Text Solution

48. K.E. of body is increased by 300 percent,
then percentage increase in linear momentum
will be:
A. 300%
B. 200%

C. 100%

D. 150%

Answer: C

- Watch Video Solution

49. A block of mass 2 kg hangs tangentially from the rim of a wheel of radius 0.5 m when released from rest the block falls vertically through 5 m height in 2 seconds the M.I. of
the wheel is :
A. $1 \mathrm{~kg} . m^{2}$
B. $3.2 \mathrm{~kg} . \mathrm{m}^{2}$
C. $2.5 \mathrm{~kg} . \mathrm{m}^{2}$
D. $1.5 \mathrm{~kg} . \mathrm{m}^{2}$

Answer: D

- View Text Solution

50. A solid sphere is resting on a smooth horizontal surface. A horizontal impulse I is applied at a height ' h ' from the centre so that the sphere begins to rotate just after the application of the impulse. What is ratio h / R ?
A. $\frac{1}{2}$
B. $2 / 5$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

D View Text Solution

51. An equilateral triangle $A B C$ formed from a uniform wire has two small identical beds initially located at A. The triangle is set rotating about the vertical axis $\mathrm{A} O$. Then the beads are released from rest simultaneously and allowed to slide down one along $A B$ and other along AC as shown. Neglecting frictional effects, the quantities that are conserved as
the beads slide down, are :
A. angular velocity and total energy (kinetic and potential)
B.total angular momentum and total
energy
C. angular velocity and moment of inertia
about the axis of rotation
D.total angular momentum and the moment of inertia about the axis of

Answer: B

D View Text Solution

52. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with
centre at O as shown. The moment of inertia of the loop about the axis $X X^{\prime}$ is :
A. $\frac{\rho L^{3}}{8 \pi^{2}}$
B. $\frac{\rho L^{3}}{16 \pi^{2}}$
C. $\frac{5 \rho L^{3}}{16 \pi^{2}}$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer: D

D View Text Solution

53. A smooth sphere A is moving on a frinctionless horizontal plane with angular speed ω and centre of mass velocity v. It collides elastically and head on with an
identical sphere B at rest. Neglect friction
every where. After collision, their angular speeds are ω_{A} and ω_{B} respectively. Then :

$$
\begin{aligned}
& \text { A. } \omega_{A}>\omega_{B} \\
& \text { B. } \omega_{A}=\omega_{B} \\
& \text { C. } \omega_{A}=\omega \\
& \text { D. } \omega_{B}=\omega
\end{aligned}
$$

Answer: C

D Watch Video Solution
54. A particles of mass m moves along line PC with velocity v as shown. What is the angular momentum of the particle about P ?
A. $m v L$
B. $m v l$
C. $m v r$
D. zero

Answer: D

D View Text Solution
55. A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same height. The speed with which the block enters the track is the same in all cases.

At the highest point of the track, the normal reaction is maximum in :
A.
B.
c.
D.

Answer: A

D View Text Solution

56. An insect crawls up a hemispherical surface
very slowly The coefficient of friction between
the surface and the insect $1 / 3$. If the line joining the centre of the hemispherical surface
to the insect makes an angle α with the
vertical, the maximum possible value of α is given by :
A. $\cot \alpha=3$
B. $\tan \alpha=3$
C. $\sec \alpha=3$
D. $\cos e c \alpha=3$

Answer: A

D View Text Solution
57. Two blocks of masses 10 kg and 4 kg are connected by a negligible mass and placed on
a frictionless horizontal surface. An impulse
gives a velocity of $14 \mathrm{~m} / \mathrm{s}$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is :
A. $30 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $5 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
58. A cylinder rolls up an inclined plane, reaches some height, and then rolls down (without slipping throughout these motions).

The directions of the frictional force acting on the cylinder are :
A. up the incline while ascending and down
the incline while descending
B. up the incline while ascending and up
the incline while descending
C. down the incline while ascending and upt the incline whole descending

D. down the incline while ascending as well

as descending

Answer: B

D Watch Video Solution

59. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the
edge of the platform. Now the platform is given an angular velocity ω_{0}. When the tortoise moves along a chord of the platform with a constant velocity (with respect to the platform), the angular velocity of the platform $\omega(t)$ will vary with time t as :
B.
c.
D.
60. Initial angular velocity of a circular disc of mass M is ω_{1}. Then two small spheres of mass m are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc?
A. $\left(\frac{M+m}{M}\right) \omega_{1}$
B. $\left(\frac{M+4 m}{M}\right) \omega_{1}$
c. $\left(\frac{M}{M+4 m}\right) \omega_{1}$

$$
\text { D. }\left(\frac{M}{M+2 m}\right) \omega_{1}
$$

Answer: D

D Watch Video Solution

61. A disc is rolling (without slipping) on a horizontal surface C is its centre and Q and P are two points equidistant from C, Let V_{P}, V_{Q} and V_{C} be the magnitude of velocities of point P, Q and C respectively, then :
A. $V_{Q}>V_{C}>V_{P}$
B. $V_{Q}<V_{C}<V_{P}$
C. $V_{Q}=V_{P}, V_{C}=\frac{1}{2} V_{P}$
D. $V_{Q}<V_{C}>V_{P}$

Answer: A

D View Text Solution

62. A circular disc of mass 9 m , has a hole of radius $R / 3$, cut from it as shown in given
figure. The moment of inertia of the remaining
part of the disc about the axis passing through the centre of the disc and perpendicular to its plane will be :
A. $\frac{37}{9} m R^{2}$
B. $\frac{40}{9} m R^{2}$
C. $4 m R^{2}$
D. $8 m R^{2}$

Answer: C

63. A particle moving in a circular path with decreasing speed. Which of the following is correct?
A. It will move in a spiral and finally reach
the centre
B. Acceleration \vec{a} is towards the centre
C. Only direction of \vec{L} is constant
D. \vec{L} constant

- Watch Video Solution

64. A solid sphere of mass M and radius R having moment of inertia I about its diameter is recast into a solid disc of radius r and thickness t. The moment of inertia of the disc about an axis about the edge and perpendicular to the plane is I. Then the radius r of the disc is given by:

$$
\begin{aligned}
& \text { A. } r=\sqrt{\frac{2}{15}} R \\
& \text { B. } r=\frac{2}{\sqrt{15}} R
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } r=\frac{2}{15} R \\
& \text { D. } r=\frac{\sqrt{2}}{15} R
\end{aligned}
$$

Answer: B

D Watch Video Solution

65. A solid cylinder is rolling down the inclined
plane without slipping. Which of the following
is/are correct?
A. The friction force is dissipative
B. The friction force is necessarily changing
C. The friction force will aid rotation but hinder translation
D. The friction force is reduced, if θ is reduced

Answer: C::D

D View Text Solution

66. A thin circular ring of mass m and r is rotating about its axis with a constant angular velocity ω. Two objects, each of mass m are attached gently to the opposite ends of a diameter of the ring wheel now rotates with an angular velocity :
A. $\frac{\omega(m+2 M)}{m}$
B. $\frac{\omega(m-2 M)}{(m+2 M)}$
C. $\frac{\omega m}{(m+M)}$
D. $\frac{\omega m}{(m+2 M)}$

Answer: D

- Watch Video Solution

67. A 'T' shaped object with dimensions shown
in the fig., is lying on a smooth floor. A force
${ }^{\prime} \vec{F}$ ' is applied at the point P parallel to AB ,
such that the object has only the translational
motion without rotation. Find the location of
P with respect to C .
A. $\frac{2}{3} l$
B. $\frac{3}{2} l$
C. $\frac{4}{3} l$
D. I

Answer: C

D View Text Solution

68. A small object of uniform density rolls up a curved surface with an initial velocity 'u'. It
reaches upto maximum height of $\frac{3 v}{4 g}$ with respect to initial position. The object is :
A. Ring
B. solid sphere
C. hollowsphere
D. disc

Answer: D

69. Two discs A and B are mounted coaxially on
a vertical axle. The discs have moments of inertia I and 21 respectively about the common
axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy
of a spring compressed by a distance x_{1}. Disc
B is imparted an angular velocity ω by a spring
having the same spring constant and
compressed by a distance x_{2}. Both teh discs
rotate in the clockwise direction. The ratio $\frac{x_{1}}{x_{2}}$ is :
A. 2
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

D Watch Video Solution

70. In the above question disc B is brought in contact with disc A, they acquire a common angular velocity in time t. The average
frictional torque on one disc by the other during this period is :
A. $\frac{2 I \omega}{3 t}$
B. $\frac{9 I \omega}{2 t}$
C. $\frac{9 I \omega}{4 t}$
D. $\frac{3 I \omega}{2 t}$

Answer: A

D View Text Solution
71. In the above the question the loss of the kinetic energy during the above process is :
A. $\frac{I \omega^{2}}{2}$
B. $\frac{I \omega^{2}}{3}$
C. $\frac{I \omega^{2}}{4}$
D. $\frac{I \omega^{2}}{6}$

Answer: B

D View Text Solution
72. A thin rod length 'L' is lying along the x-axis
with its ends at $x=0$ and $x=L$. Its linear density (mass/length) varies with x as $\mathrm{k} \frac{x^{n}}{L}$, where n can be zero or any positive number. If the position $x_{C M}$ of the centre of mass of the rod is plotted against ' n ', which of the following graphs best approximates the dependence of $x_{C M}$ on n ?
A. R
B. r
c.

Answer: A

D View Text Solution

73. A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_{0} in the $x-y$ plane as shown in the fig.

At a time $t<\frac{v_{0} \sin \theta}{g}$, the angular momentum of the particle is :
A. $\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{i}$
B. $-m g v_{0} t^{2} \cos \theta \hat{j}$
C. $m g v_{0} t \cos \theta \hat{k}$
D. $-\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{k}$

Answer: D

D View Text Solution

74. A binary star consists of two stars A (mass
2.2 M_{s}) and B (mass $11 M_{s}$), where M_{s} is the mass of the sun. They are separated by a
distance d and are rotating about their centre of mass, which is stationary. The ratio of the total angular momentum of the binary star to the angular momentum of star B about the centre of mass is

D Watch Video Solution

Level lif Mcq

1. Two particles of equal mass 'm' go around a circle of radius ' R ' under the action of their
mutual gravitational attraction. The speed of each particle with respect to their centre of mass is :

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G m}{4 R}} \\
& \text { B. } \sqrt{\frac{G m}{3 R}} \\
& \text { C. } \sqrt{\frac{G m}{2 R}} \\
& \text { D. } \sqrt{\frac{G m}{R}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. A mass m hangs with the help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass m and radius R.

Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m if the string does not slip on the pulley, is
A. g
B. $\frac{2}{3} g$
C. $\frac{g}{3}$
D. $\frac{3}{2} g$

Answer: B

D Watch Video Solution

3. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end.

During the journey of the insect, the angular speed of the disc:
A. continuously decreases
B. continuously increases
C. first increases and then decreases
D. remains unchanged

Answer: C

D Watch Video Solution

4. A pulley of radius 2 m is rotated about its
axis by a force $F=\left(20 t-5 t^{2}\right)$ Newton
(where t is measured in seconds) applied
tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{kgm}^{2}$, the number of rotations made by the pulley before its direction of motion is reversed, is :
A. more than 3 but less than 6
B. more than 6 but less than 9
C. more than 9
D. less then 3

Answer: A

5. A diatomic molecule is made of two masses
m_{1} and m_{2} which are separated by a distance
r. If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by :

$$
\begin{aligned}
& \text { A. } \frac{\left(m_{1}+m_{2}\right) n^{2} h^{2}}{2 m_{1} m_{2} r^{2}} \\
& \text { B. } \frac{\left(m_{1}+m_{2}\right)^{2} n^{2} h^{2}}{2 m_{1}^{2} m_{2}^{2} r^{2}} \\
& \text { C. } \frac{n^{2} h^{2}}{2\left(m_{1}+m_{2}\right) r^{2}} \\
& \text { D. } \frac{2 n^{2} h^{2}}{\left(m_{1}+m_{2}\right) r^{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. A hoop of radius r and mass m rotating with
an angular velocity ω_{0} is placed on a rough
horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the
velocity of the centre of the loop when it ceases to slip?
A. $\frac{r \omega_{0}}{3}$
B. $\frac{r \omega_{0}}{2}$
C. $r \omega_{0}$
D. $\frac{r \omega_{0}}{4}$

Answer: B

D Watch Video Solution

7. A bob of massm attached to an inextensible string of length I is suspended from a vertical support. The bob length I is suspended from a vertical support. The bob rotates in a
horizontal circle with an angular speed $\omega \mathrm{rad} / \mathrm{s}$
about the vertical. About the point of suspension :
A. angular momentum changes in direction but not in magnitude
B. angular momentum changes both in
direction and magnitude
C. angular momentum is conserved
D. angular momentum changes in
magnitude but not in direction

Answer: C

D Watch Video Solution

8. A mass ' m ' is supported by a massless string
wound around a uniform hollow cylinder of
mass m and radius R. If the string does not
slipon the cylinder, with what acceleration will
the mass fall on release?
A. g
B. $\frac{2 g}{3}$
C. $\frac{g}{2}$
D. $\frac{5 g}{6}$

Answer: C

D View Text Solution

9. Distance of the centre of mass of a solid
uniform cone from its vertex is z_{0}. If the radius
of its base is Rand its height is h, the z_{0} is
A. $\frac{3 h}{4}$
B. $\frac{5 h}{8}$
C. $\frac{3 h^{2}}{8 R}$
D. $\frac{h^{2}}{4 R}$

Answer: A

D Watch Video Solution

10. From a solid sphere of mass M and radius R a cube of maximum possible volume is cut.

Moment of inertia of cube about an axis
passing through its centre and perpendicular to one of its faces is :
A. $\frac{M R^{2}}{16 \sqrt{2 \pi}}$
B. $\frac{4 M R^{2}}{9 \sqrt{3}}$
$9 \sqrt{3} \pi$
C. $\frac{4 M R^{2}}{3 \sqrt{3} \pi}$
D. $\frac{M R^{2}}{32 \sqrt{2} \pi}$

Answer: B

D Watch Video Solution

1. The moment of inertia of a circular disc of radius 2 m and mass 1 kg about an axis passing through the centre of mass but perpendicular to the plane of the disc is 2 kg m^{2}. Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc is :
A. $10 \mathrm{kgm}^{2}$
B. $6 \mathrm{kgm}^{2}$
C. $8 \mathrm{kgm}^{2}$

D. $1 \mathrm{kgm}^{2}$

Answer: B

D View Text Solution

2. A solid sphere of mass m rolls down an inclined plane without slipping from rest at the top of an inclined plane.The linear speed of the sphere at the bottom of the inclined
plane is v. The kinetic energy of the sphere at the bottom is
A. $\frac{1}{2} m v^{2}$
B. $\frac{5}{3} m v^{2}$
C. $\frac{2}{5} m v^{2}$
D. $\frac{7}{10} m v^{2}$

Answer: D

- Watch Video Solution

3. A force $\vec{F}=5 \hat{i}+2 \hat{j}-5 \hat{k}$ acts on a particle whose position vector is
$\vec{r}=\hat{i}-2 \hat{j}+\hat{k}$. What is the torque about the origin?
A. $8 \hat{i}+10 \hat{j}+12 \hat{k}$
B. $8 \hat{i}+10 \hat{j}-12 \hat{k}$
C. $8 \hat{i}-10 \hat{j}-8 \hat{k}$

$$
\text { D. } 10 \hat{i}-10 \hat{j}-\hat{k}
$$

Answer: A
4. A rotating wheel changes angular speed from 1800 rpm to 3000 rpm in 20 s . What is the angular acceleration assuming to be uniform ?
A. $60 \pi \mathrm{rad} s^{-2}$
B. $90 \pi \mathrm{rad} s^{-2}$
C. $2 \pi \mathrm{rad} s^{-2}$
D. $40 \pi \mathrm{rad} s^{-2}$

Answer: C

D Watch Video Solution

5. A body having a moment of inertia about its
axis of rotation equal to $3 \mathrm{~kg} \mathrm{~m}{ }^{-2}$ is rotating
with angular velocity of $3 \mathrm{rad} s^{-1}$. Kinetic energy of this rotating body is same as that of
a body of mass 27 kg moving with velocity v .

The value of v is
A. $1 m s^{-1}$
B. $0.5 m s^{-1}$
C. $2 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: A

D Watch Video Solution

6. Moment of interia of a thin uniform rod rotating about the perpendicular axis passing through its center is I. If the same rod is bent
into a ring and its moment of inertia about its

diameter is

A. $8 \pi^{2} / 3$
B. $5 \pi^{2} / 3$
C. $3 \pi^{2} / 2$
D. $2 \pi^{2} / 3$

Answer: D
(Watch Video Solution
7. A person sitting firmly over a rotating stool
has his arms stretched. If he folds his arms, his
angular momentum about the axis of the rotation :
A. Increases
B. Decreases
C. Remains unchanged
D. Doubles.

Answer: C

8. A uniform circular disc of mass 400 g and
radius 4.0 cm is rotated about one of its diameter at an anglar speed of $10 \mathrm{rot} / \mathrm{s}$. The kinetic energy of the disc is :
A. $3.2 \times 10^{-5} J$
B. $1.6 \times 10^{-3} \mathrm{~J}$
C. $3.2 \times 10^{-2} J$
D. $6.4 \times 10^{-4} J$

Answer:

- Watch Video Solution

