©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

UNIT TEST 07

Mcqs

1. Which of the following electromagnetic waves has the longest wavelength?
A. Radiowaves
B. Infrared radiation
C. Microwaves
D. X-rays

Answer: A

D View Text Solution
2. Which of the following electromagnetic waves emit- ted by the sun is responsible for
heating the earth's atmosphere due to

greenhouse effect?

A. Visible light

B. Infrared radiation
C. Ultraviolet rays
D. γ-rays

Answer: B

D View Text Solution
3. The speed of electromagnetic waves in a vacuum is given by :

> A. $\frac{1}{\mu_{0} \varepsilon_{0}}$
> B. $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
> C. $\mu_{0} \varepsilon_{0}$
> D. $\sqrt{\mu_{0} \varepsilon_{0}}$

Answer: B

D View Text Solution
4. In an electromagnetic wave travelling in air, the amplitudes E_{0} and B_{0} of the electric and magnetic fields are related as (here c is the speed of the wave in air) :

$$
\begin{aligned}
& \text { A. } E_{0}=c B_{0} \\
& \text { B. } E_{0}=\frac{B_{0}}{c} \\
& \text { C. } E_{0}=c^{2} B_{0} \\
& \text { D. } E_{0}=B_{0}
\end{aligned}
$$

Answer: A
5. When a plane electromagnetic wave travels in vacuum, the average electric energy density is given by (here E_{0} is the amplitude of the electric field of the wave) :
A. $\frac{1}{4} \varepsilon_{0} E_{0}^{2}$
B. $\frac{1}{2} \varepsilon_{0} E_{0}^{2}$
C. $2 \varepsilon_{0} E_{0}^{2}$
D. $4 \varepsilon_{0} E_{0}^{2}$

- View Text Solution

6. The amplitude of the electric field of a plane electro- magnetic wave in air is $6.0 \times 10^{-4} \mathrm{Vm}^{-1}$. The amplitude of the magnetic field will be:
A. $1.8 \times 10^{5} T$
B. $5.0 \times 10^{3} T$
C. $2.0 \times 10^{-4} T$
D. $2.0 \times 10^{-12} T$

Answer: D

D View Text Solution

7. An electromagnetic wave is produced by oscillating electric and magnetic field E and B.

Choose the only incorrect statement from the following.
A. E is perpendicular to B
B. E is perpendicular to the direction of propagation of the wave
C. B is perpendicular to the direction of propagation of the wave
D. E is parallel to B .

Answer: D

D View Text Solution

8. Which of the following pairs of space and time varying

$$
\begin{aligned}
E & =\left[\hat{i} E_{x}+\hat{j} E_{y}+\hat{k} E_{z}\right] \text { and } \\
B & =\left[\hat{i} B_{x}+\hat{j} B_{y}+\hat{k} B_{z}\right]
\end{aligned}
$$

would generate a plane electromagnetic wave travelling in the z-direction ?
A. E_{x}, B_{z}
B. E_{y}, B_{z}
C. E_{z}, B_{x}
D. E_{x}, B_{y}

Answer: D

D View Text Solution
9. The displacement current flows in the
dielectric of a capacitor when the potential difference between its plates :
A. is changing with time
B. is changing with distance
C. has assumed a constant value
D. become zero

Answer: A
10. The potential difference between the plates of a parallel plate capacitor is changing at the rate of $10^{6} V s^{-1}$. If the capacitance is
$2 \mu F$, the displacement current in the dielectric of the capacitor will be :
A. 1 A
B. 2 A
C. 3 A
D. 4 A

Answer: B
11. In Young's double slit experiment, the intensity of the maxima is I . If the width of each slit is doubled the intensity of the maxima will be:
A. $\frac{I}{2}$
B. 1
C. 21
D. 41

Answer: C

D View Text Solution

12. In Young's double slit experiment, the 10th maximum of wavelength λ_{1} is at a distance y_{1}
from its central maximum and the 5th maximum of wavelength λ_{2} is at a distance y_{2}
from its central maximum. The ratio y_{1} / y_{2} will be:

$$
\text { A. } \frac{2 \lambda_{1}}{\lambda_{2}}
$$

B. $\frac{2 \lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}}{2 \lambda_{2}}$
D. $\frac{\lambda_{2}}{2 \lambda_{1}}$

Answer: A

D View Text Solution

13. White light is used to illuminate the two
slits in Young's double slit experiment. The separation between the slits is d and the distance between the screen and the slit is D (
$\gg d$). At a point on the screen directly in
front of one of the slits, certain wavelengths
are missing. The missing wavelengths are
(here $m=0,1,2, \ldots$. is an integer):

$$
\begin{aligned}
& \text { A. } \lambda=\frac{d^{2}}{(2 m+1) D} \\
& \text { B. } \lambda=\frac{(2 m+1) d^{2}}{D} \\
& \text { C. } \lambda=\frac{d^{2}}{(m+1) D} \\
& \text { D. } \lambda=\frac{(m+1) d^{2}}{D}
\end{aligned}
$$

Answer: A

14. A thin film of variable thickness is
illuminated by a parallel beam of white light.

The colour of the film at a certain point depends upon:
A. the thickness of the film at that point
B. the refractive index of the film
C. the angle of incidence
D. all the above factors.

- View Text Solution

15. When a thin wedge-shaped film is
illuminated by a parallel beam of light of wavelength $6000 A$, 7 fringes are observed in a certain region of the film. How many fringes will be observed in the same region of the film if light of wavelength $4200 \dot{A}$ is used ?
A. 6
B. 10
C. 14

D. 18

Answer: B

D View Text Solution

16. The fact that light can be polarized confirms that light:
A. is a transverse wave
B. is a longitudinal wave
C. is a photon of energy

D. has a de Broglie wavelength

Answer: A

D View Text Solution

17. When a ray of light is incident on a glass
slab at an angle of 60°, the angle between the reflected and refracted rays is 90°. The refractive index of glass is :
A. 1.5
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer: B

D View Text Solution
18. A double slit apparatus is immersed in a
liquid of refractive index 1.33. It has slit separation of 1 mm and distance between the plane of slits and screen 1.33 m . The slits are
illuminated by a parallel beam of light whose wavelength in air is 6300 A . What is the fringe width?
A. $(1.33 \times 0.63) \mathrm{mm}$
B. $\frac{0.63}{1.33} \mathrm{~mm}$
C. $\frac{0.63}{(1.33)^{2}} \mathrm{~mm}$
D. 0.63 mm

Answer: C

D View Text Solution
19. In a Young's double slit experiment, 12
fringes are observed to be formed in a certain region of the screen when light of wavelength

600 nm is used. If the light of wavelength 400 $n m$ is used, the number of fringes observed in the same region of the screen will be:
A. 12
B. 18
C. 24
D. 8

Answer: B

- View Text Solution

20. In a two slit experiment with monochromatic light, fringes are obtained on
a screen placed at some distance from the
slits. If the screen is moved by a distance of
$5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in the fringe width is $3 \times 10^{-5} \mathrm{~m}$. If the separation be. tween the slits is $10^{-3} \mathrm{~m}$, the wavelength of light used is :
A. $5 \times 10^{-7} \mathrm{~m}$
B. $6 \times 10^{-7} \mathrm{~m}$
C. $7 \times 10^{-7} \mathrm{~m}$
D. $6 \times 10^{-6} \mathrm{~m}$

Answer: B

D View Text Solution

21. White light is used to illuminate the two slits in Young's double slit experiment. The distance between the slits is b and the screen
is at a distance $\mathrm{d}(\gg b)$ from the slits. At a
point on the screen directly in front of one of
the slits, certain wavelengths are missing. Some of the missing wavelengths are :

$$
\begin{aligned}
& \text { A. } \lambda=\frac{b^{2}}{2 d} \\
& \text { B. } \lambda=\frac{2 b^{2}}{d} \\
& \text { C. } \lambda=\frac{b^{2}}{3 d} \\
& \text { D. } \lambda=\frac{2 b^{2}}{3 d}
\end{aligned}
$$

Answer: C

22. Two waves of intensities I and 4I
superpose, then the maximum and minimum
intensities are :
A. 51,31
B. 91, I
C. 91, 31
D. $5 \mathrm{I}, \mathrm{I}$

Answer: B

- View Text Solution

23. A parallel beam of monochromatic light is incident nor- mally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the first minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of the slit is:
A. zero

$$
\text { B. } \frac{\pi}{2}
$$

C. π
D. 2π

Answer: D

D View Text Solution

24. A string of length 0.4 m and mass $10^{-2} \mathrm{~kg}$
is rigidly clamped at its ends. The tension in the string is 1.6 N . Identical wave pulses are produced at one end at equal intervals of time
Δt. The minimum value of Δt which allows

pulses is :

A. 0.05 s
B. 0.10 s
C. 0.20 s
D. 0.40 s

Answer: B

D View Text Solution
25. Yellow light is used in a single slit diffraction experiment with a slit of width 0.6 mm. If yellow light is replaced by X-rays, then the observed pattern will reveal:
A. that the central maximum is narrower
B. more number of fringes
C. less number of fringes
D. no diffraction pattern

Answer: A
26. In Fig., PQ represents a plane wavefront and $A O$ and $B P$ the corresponding extreme rays of monochromatic light of wavelength λ.

The value of angle θ for which the ray BP and the reflected ray OP interfere constructively is
given by :

Answer: B

D View Text Solution

27. The difference in the number of wavelengths, when yellow light (of wavelength $6000 A$ in vacuum) propa- gates through air and vacuum columns of the same thickness is one. If the refractive index of air is 1.0003 , the thickness of the air column is:
A. 1.8 mm

B. 2 mm

C. 2 cm
D. 2.2 cm

Answer: B

D View Text Solution

28. The question contains statement I and statement II. Of the four choices given, choose one that best describes two statements.

Statement I: For free space $(\varepsilon=0, I=0)$
$\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \oint \vec{B} \cdot \overrightarrow{d s}$
Statement II: For steady state
$\oint \vec{E} \cdot \overrightarrow{d l}=\oint \vec{B} \cdot \overrightarrow{d s}=0$
A. Statement I is true, statement II is false.
B. Statement I is false, statement II is true.
C. Statement I and II both are true but
statement I is correct explanation of
that of II.
D. Statement I and II are both true but

Answer: C

D View Text Solution

29. The magnetic field in plane e.m. wave is
given by

$$
B_{y}=2 \times 10^{7} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)
$$

Tesla.

Wavelength of e.m. wave is
A. 1.26 cm

B. 10.2 cm

C. 12.6 cm

D. 31.4 cm

Answer: A

D View Text Solution

30. The magnetic field in plane e.m. wave is given by

$$
B_{y}=2 \times 10^{7} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)
$$

Tesla.

The peak value of electric field is

A. $50 \mathrm{Vm}^{-1}$
B. $60 \mathrm{Vm}^{-1}$
C. $65 \mathrm{Vm}^{-1}$
D. $70 \mathrm{Vm}^{-1}$

Answer: B

D View Text Solution

