びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

UNIT TEST PAPER -05

Multiple Choice Questions

1. Three point charges are placed at the corners of an equilateral triangle . Assume
that only electrostatic forces are acting .
A. The system will be in equilibrium if the
charges have the same magnitude but not all have the same sign.
B. The system will be in equilibrium if the
charge have different magnitudes are not all have the same sign.
C. The system will be in equilibrium if the
charges rotate about the centre of the triangle.

D. The system can never be in equilibrium

Answer: D

D View Text Solution

2. $A B$ is a section of a straight wire carrying a current I.P is a point at a distance d from $A B$. the magnetic field at P due to $A B$ has
magnitude:

D. $\frac{\mu_{0} I}{4 \pi d}\left(\sin \theta_{1}+\sin \theta_{2}\right)$

Answer: A

D View Text Solution

3. A positive point charge, which is free to move, is placed inside a hollow conducting sphere with negative charge, away from its centre . It will.
A. move towards the centre
B. move towards the nearer wall of the conductor
C. remain stationary
D. oscillate between the centre and the
nearer wall

Answer: C

D View Text Solution
4. $A B C D$ is a square loop made of a uniform conducting wire. A current enters the loop at A and leaves at D. The magnetic field is :

A. zero only at the centre of the loop
B. maximum at the of the loop

C. zero at all points outside the loop

D. zero at all points inside the loop

Answer: A

D View Text Solution

5. A conductor $A B$ carries a current i in a magnetic field $\vec{E} \cdot I f \overrightarrow{A B}=\vec{r}$ and the force on the conductor is \vec{F}
A. \vec{F} does not depend on the shape of $A B$

> B. $\vec{F}=i(\vec{r} \times \vec{B})$
> C. $\vec{F}=i(\vec{B} \times \vec{r})$
> D. $|\vec{F}|=i(\vec{r} \times \vec{B})$

Answer: A: B

D View Text Solution

6. In a uniform electric field
A. all points are at the same potential
B. no two points can have the same potential
C. pairs of points searated by the same
distance have the same difference in
potetial
D. none of the above

Answer: D

D View Text Solution

7. Two large, parallel conducting plates X and Y

, close to each other, are given charges
Q_{1} and $Q_{2}\left(Q_{1}>Q-(2)\right)$. The four
surfaces of the plates are A, b, C and D, as shown

A. The charge on A is $\frac{1}{2}\left(Q_{1}+Q_{2}\right)$
B. The charge on B is $\frac{1}{2}\left(Q_{1}-Q_{2}\right)$
C. The charge on C is $\frac{1}{2}\left(Q_{1}-Q_{2}\right)$
D. The charge on D is $\frac{1}{2}\left(Q_{1}+Q_{2}\right)$

Answer: A::B::C::D

D View Text Solution
8. All the edges of a block with parallel faces are unequal. Its longest edge is twice its
shortest edge. The ratio of the maximum

resistance between parallel faces is :

A. 2
B. 4
C. 8
D. indeterminate unless the length of the
third edge is specified

Answer: B

D View Text Solution

9. In the newtwork shown below, the ring has
zero resistance . The equivalent resistance
resistance between the point A and B is :

A. 2 R
B. 4 R
C. 7 R

D. 10 R

Answer: B

D View Text Solution

10. A flat coil carrying a current has a magnetic moment \vec{m}. It is placed in a magnetic field \vec{B} such that \vec{m} is antiparallel to \vec{B}. The coil is:
A. not in equilibrium
B. in stable equilibrium

C. in unstable equilibrium

D. in neutral equilibrium

Answer: C

D View Text Solution

11. An electric bulb designed to draw P_{0} power at V_{0} voltage. If the voltage is V , it draws P power. Then .

$$
\text { A. } P=\frac{V_{0}}{V} P_{0}
$$

> B. $P=\frac{V}{V_{0}} P_{0}$
> C. $P=\left(\frac{V}{V_{0}}\right)^{2} P_{0}$
> D. $P=\left(\frac{V_{0}}{V}\right)^{2} P_{0}$

Answer: C

D View Text Solution

12. Two identical positive charges are fixed on the y-axis at equal distances from the origin O
. An particle with a negative charges starts on the x-axis at a large distance from O , moves
along the x-axis, passes through O and moves
far away from 0 . its acceleration a is taken as
positive along its direction of motion. The particle's acceleration a is plotted against its x-coordinate. which of the following best represents the plot?

A.

Answer: B

D View Text Solution

13. Two identical point charges are placed at a
separation of I. P is a point on the line joining
the charges, at a distance x from any one charge. The field at P is E.E is plotted against x for values of x from close to zero to slightly less than I. Which of the following best represents the resulting curve?

B.

Answer: D

D View Text Solution

14. A solid sphere of radius R is charged uniformly .The electrostatic potential V is plotted as a function of distance r from the centre of the sphere. Which of the following best represents the resulting curve?

Answer: C
15. a large solid sphere with uniformly distributed positive charge has a smooth narrow tunnel through its centre . A small particle with negative charge, initially at far from the sphere, approaches it along the line of the tunnel, reaches its surface with a speed u, and pass through the tunnel. Its speed at the centre of the sphere will be :
A. 0
B. u
C. $\sqrt{2 v}$

$$
\text { D. } \sqrt{1.5 v}
$$

Answer: D

D View Text Solution

16. A spherical conductor A of radius r is placed concentrically inside a conducting shell B of radius $(R t>r)$. A charge Q is given to A ,
and then A is joint to B by a metal wire. The charge flowing from A to will be :
A. $Q\left(\frac{R}{R+r}\right)$
B. $Q\left(\frac{r}{R+r}\right)$
C. Q
D. zero

Answer: C

D View Text Solution
17. A conducting sphere of radius R, and carrying a charge Q, is joined to an uncharged conducting sphere of radius 2 R . The charge flowing between them will be :
A. $Q / 4$
B. $\mathrm{Q} / 3$
C. $\mathrm{Q} / 2$
D. $2 Q / 3$

Answer: D

18. In the circuit shown, a potential difference

 of 60 V is applied across AB. The potential difference between the points M and N is :
A. 10 V
B. 15 V
C. 20 V
D. 30 V

Answer: D

D View Text Solution

19. A spherical conductor A lies inside a hollow spherical conductor B . Charges $\mathrm{A} Q_{1}$ and Q_{2}
are given to A and B respectively .
A. Charges Q_{1} will appear on the outer surface of A.
B. Charge $-Q_{1}$ will appear on the inner surface of B.
C. Charge Q_{2} will apear on the the outer surface of B.
D. harge $Q_{1}+Q_{2}$ will apear on the inner surface of B.

Answer: A::B::D

20. Two points are at distances a and b
$(a<b)$ from a long string of charge per unit
length I. The potential difference between the points is proportional to :
A. b/a
B. b^{2} / a^{2}
C. $\sqrt{b / 2}$
D. In (b/a)

Answer: D

21. A charged particle moves with a speed u in a circular path of radius r around a long uniformly charged conductor
A. $v \propto r$
B. $v \propto \frac{1}{r}$
C. $v \propto \frac{1}{\sqrt{r}}$
D. v is independent of r
22. Two long thin wires $A B C$ and DEF are arranged as shown. They carry currents I as shown . The magnitude of the magnetio field at O is :

A. zero
B. $\frac{\mu_{0} I}{4 \pi a}$
C. $\frac{\mu_{0} I}{4 \pi a}$
D. $\frac{\mu_{0} I}{2 \sqrt{2 \pi a}}$

Answer: C

D View Text Solution

23. A wire carrying a current I is shaped as
shown. Section $A B$ is a quarter circle of radius
r. The magnetic field at C is directed

A. along the bisector of the angle ACD, away from $A B$.
B. along the bisector of the angle ACB,
towards AB.
C. perpendicular to the plane of the paper directed into the paper
D. at an angle $\frac{\pi}{4}$ to the plane of the paper .

Answer: C

D View Text Solution

24. In the circuit shown the potential difference across the $3-\mu F$ capacitor is V , and the equivalent capacitance between A and

B is $C_{A B}$

A. $C_{A B}=4 \mu F$
B. $C_{A B}=\frac{18}{11} \mu F$
C. $V=20 \mathrm{~V}$
D. $V=40 \mathrm{~V}$

Answer: A::D

D View Text Solution

25. The three resistances A, B and C have values $3 R, 6 R$ and R respectively. When some potential difference is applied across the network, the thermal powers dissipated by A, B and C are is the ratio

A. $2: 3: 4$
B. $2: 4: 3$
C. $4: 2: 3$
D. 3:2:4

Answer: C

D View Text Solution

26. In the circuit shown in fig. power developed across $1 \Omega, 2 \Omega$ and 3Ω resistances are in the
ratio of

A. $1: 2: 3$
B. $4: 2: 27$
C. $6: 4: 9$
D. $2: 1: 27$

Answer: D

D View Text Solution
27. In the circuit shown in fig. $C=6 \mu F$. The charge stored in capacitor of capacity C is

A. zero
B. $90 \mu C$
C. $40 \mu C$
D. $60 \mu C$

Answer: C

D View Text Solution

28. Equivalent resistance between A and B is :

A. $\frac{3}{4} R$
B. $\frac{5}{3} R$
C. $\frac{7}{5} R$
D. R

Answer: A

D View Text Solution

29. In the circuit shown in fig. net resistance between A and B is :

A. 2 R
B. $\left(\frac{4}{3}\right) R$
C. $\left(\frac{2}{3}\right) R$
D. R

Answer: B

D View Text Solution

30. A charge $+Q$ at A as shown in fig. produces electric field E and electric potential V at D. if we now put charges $-2 Q$ and $+Q$ at B and C
respectively , then the electric field and potential at D will be :

A. E and O
B. 0 and V
C. $\sqrt{2} E$ and $\frac{V}{\sqrt{2}}$
D. $\frac{E}{\sqrt{2}}$ and $\frac{V}{\sqrt{2}}$

Answer: A
(D) View Text Solution

