びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

UNITS, MEASURMENTS, DIMENSIONS,

ERRORS OF MEASUREMENTS

Multiple Choice Questions Level I

1. The dimensional formula of latent heat is :
A. $M^{0} L^{2} T^{-2}$
B. $M L^{2} T^{-1}$
C. $M L T^{-1}$
D. $M^{0} L^{2} T^{-1}$

Answer: A

D Watch Video Solution

2. Which one of the following has the dimensions of $\left[M L^{-1} T^{-2}\right]$:
A. torque
B. surface tension
C. viscosity
D. stress

Answer: D

D Watch Video Solution

3. If C and L denote the capacitance and inductance, then the units of $L C$ are :
A. $M^{0} L^{0} T^{2}$
B. $M^{0} L^{0} T^{-2}$
C. $M L T^{2}$
D. $M^{0} L^{0} T$

Answer: A

D Watch Video Solution
4. The measured mass and volume of the body
are $22 \cdot 42 g$ and $4 \cdot 7 \mathrm{~cm}^{3}$ respectively with
permissible errors $0 \cdot 01 g$ and $0 \cdot 1 \mathrm{~cm}^{3}$. The maximum $\%$ error in density is about :
A. 0.2%
B. 2%
C. 5%
D. 10%

Answer: B
(Watch Video Solution
5. A quantity X is given by $\frac{m e^{4}}{8 \varepsilon_{0}^{2} c h^{3}}$ where m is mass of electron, e is the charge of electron,
ε_{0} is the permittivity of free space, c is the velocity of light and h is the Planck's constant.

The dimensional formula for X is the same as that of:
A. length
B. frequency
C. velocity
D. wave number

Answer: D

D Watch Video Solution

6. If a physical quantity X is represented by
$X=M^{a} L^{b} T^{-c}$ and the $\%$ error in M, L and T are $\alpha \%, \beta \%$ and $\gamma \%$ resperctively, then total $\%$ error in X is :
A. $(\alpha a+\beta b-\gamma c) \%$
B. $(\alpha a+\beta b+\gamma c) \%$
C. $(\alpha a-\beta b-\gamma c) \%$

D. None of the above

Answer: B

D Watch Video Solution

7. The frequency of vibrations of a mass m suspended from a spring of spring const. k is given by $v=c m^{x} k^{y}$, where c is a dimensionless constant. The values of x and y are respectively :

$$
\text { A. } \frac{1}{2}, \frac{1}{2}
$$

B. $-\frac{1}{2},-\frac{1}{2}$
C. $\frac{1}{2},-\frac{1}{2}$
D. $-\frac{1}{2}, \frac{1}{2}$

Answer: D

D Watch Video Solution

8. The velocity v of a particle is given in terms
of time t by the equation
$v=a t+\frac{b}{t+c}$ The dimensions of a, b and c are :
A. $L^{2}, T, L T^{2}$
B. $L T^{2}, L T, L$
C. $L T^{-2}, L, T$
D. $L, L T, T^{2}$

Answer: C

D Watch Video Solution

9. If C, the velocity of light, g the acceleration due to gravity and P the atmospheric pressure in $M . K . S$ units are the
fundamental units then the dimension of

length will be :

> A. $\frac{C}{g}$
> B. $\frac{C}{P}$
> C. $P . C \cdot g$
> D. $\frac{C^{2}}{g}$

Answer: D

(Watch Video Solution

10. Write the dimensional formula for

 resistivity.A. $\left[M L^{2} T^{-2} A^{-2}\right]$
B. $\left[M L^{3} T^{-3} A^{-2}\right]$
C. $\left[M L^{-2} T^{-2} A^{2}\right]$
D. $\left[M L^{2} T^{-2} A^{-3}\right]$

Answer: B
(Watch Video Solution
11. The quantities A and B are related by the relation $A / B=m$, where m is the linear density and A is force, the dimensions of B will be :
A. same as that of pressure
B. same as that of work
C. that of momentum
D. same as that of latent heat

Answer: D
12. If force F, acceleration A and time T are basic physical quantities, the dimensions of energy are :
A. $\left[F^{2} A^{-1} T\right]$
B. $\left[F A T^{2}\right]$
C. $\left[F A T^{-2}\right]$
D. $\left[F A^{-1} T\right]$

Answer: B
13. The dimensions $\left[M L^{-1} T^{-2}\right]$ can correspond to :
A. Moment of force
B. surface tension
C. Modulus of elasticity

D. Coefficient of viscosity

Answer: C

14. The dimensions of $\frac{1}{2} \varepsilon_{0} E^{2} \quad\left(\varepsilon_{0}=\right.$ permitivity of free space and $E=$ electric field) are :

> A. $\left[M L^{2} T^{-1}\right]$
> B. $\left[M L^{-1} T^{-2}\right]$
> C. $\left[M L^{2} T^{-2}\right]$
> D. $\left[M L T^{-1}\right]$

Answer: B

D Watch Video Solution
15. A physical quantity X is represented by
$x=\left(M^{x} L^{-y} T^{-z}\right) . \quad$ The maximum
percentage errors in the measurement of
M, L and T respectively are $a \%, b \%$ and
$c \%$. The maximum percentage error in the measurement of X will be :
A. $(a x+b y-c z)$ per cent
B. $(a x-b y-c z)$ per cent
C. $(a x+b y+c z)$ per cent
D. $(a x-b y+c z)$ per cent

Answer: C

- Watch Video Solution

16.

Given
$R_{1}=5.0 \pm 0.2 \Omega, R_{2}=10 \cdot 0 \pm 0.1 \Omega$. What
is total resistance in parallel with possible \% error.?
A. $15 \Omega \pm 2 \%$
B. $3.3 \Omega \pm 7 \%$
C. $15 \Omega \pm 7 \%$

D. $3.3 \Omega 2 \%$

Answer: B

D Watch Video Solution

17. Write the dimensions of a and b in the relation $P=\frac{b-x^{2}}{a t}$, where P is power, x is distance and t is the time :

$$
\text { A. 1) } M L T^{2}, L^{2}
$$

$$
\text { B. 2) } M^{-1} L^{0} T^{2}, L^{2}
$$

$$
\text { C. } M L^{-1} T^{-2}, L
$$

$$
\text { D. } M^{-1} L T^{2}, L \text {. }
$$

Answer: B

- Watch Video Solution

18. The dimensions of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance and t is time are

$$
\text { A. } M^{-1} L^{0} T^{-2}
$$

B. $M L^{0} T^{-2}$
C. $M L^{0} T^{2}$
D. $M L T^{-2}$

Answer: B

D Watch Video Solution

19. If force $(F), \quad \leq n>h(L)$ and time (T) be considered fundamental units, then units of mass will be :
A. $\left[F L^{-1} T^{2}\right]$
B. $\left[F^{2} L T^{-2}\right]$
C. $\left[F L T^{-2}\right]$
D. $\left[F L^{-2} T^{-1}\right]$

Answer: A

D Watch Video Solution
20. The frequency (n) of vibration of a string is
given as $n=\frac{1}{2 l} \sqrt{\frac{T}{m}}$, where T is tension
and l is the length of vibrating string, then the dimensional formula for m is :

> A. $\left[M^{0} L^{1} T^{1}\right]$
> B. $\left[M^{0} L^{0} T^{0}\right]$
> C. $\left[M^{1} L^{-1} T^{0}\right]$
> D. $\left[M L^{0} T^{0}\right]$

Answer: C

D Watch Video Solution

21. In the relation $y=r \sin (\omega t-k x)$ the dimensions of $\frac{\omega}{k}$ are :
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{0} L^{1} T^{-1}\right]$
C. $\left[M^{0} L^{0} T^{1}\right]$
D. $\left[M^{0} L^{1} T^{0}\right]$

Answer: B
(Watch Video Solution
22. Dimensions of $\in_{0} \mu_{0}$ are :

> A. $\left[L T^{-1}\right]$
> B. $\left[L T^{-2}\right]$
> C. $\left[L^{2} T^{-2}\right]$
> D. $\left[L^{-2} T^{2}\right]$

Answer: D
(Watch Video Solution
23. Two physical quantities, of which one is a vector and the other is a scalar, having same dimension are :
A. moment and momentum
B. power and pressure
C. impulse and momentum
D. torque and work.

Answer: D

D Watch Video Solution
24. If the units of force and velocity are doubled, then the units of power will :
A. be halved
B. be doubled
C. be quadrupled
D. remain unaffected.

Answer: C
(Watch Video Solution
25. The dimensions of the quantity namely $\mu_{0} c e^{2}$ $2 h$ is : where $\mu_{0}-$ permebility of free space, c-velocity of light, $e=$ electron charge and h being Plank's constant :
A. $\left[M^{0} L T\right]$
B. $\left[M^{0} L^{0} T\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. $\left[M^{-2} L^{-1} T^{3}\right]$

Answer: C
26. The period of a body under $S . H . M$. is represented by $T \propto P^{a} D^{b} S^{c}$, where P is the pressure, D is the density and S is surface tension then the values of a, b and c are :

$$
\begin{aligned}
& \text { А. } 1,2, \frac{1}{3} \\
& \text { B. } \frac{-3}{2}, \frac{1}{2}, 1 \\
& \text { C. }-1,-2,3 \\
& \text { D. } \frac{-1}{2}, \frac{-3}{2}, \frac{-1}{2}
\end{aligned}
$$

- Watch Video Solution

27. The relative density of a material of a body is found by weighing it first in air and then in water. If the wt. of the body in air is $W_{1}=8 \cdot 00 \pm 0 \cdot 05$ newton and weight in water is $W_{2}=6 \cdot 00 \pm 0 \cdot 05$ newton. Then
the relative density, $p_{r}=\frac{W_{1}}{W_{1}-W_{2}}$ with the maximum permissible error is :

$$
\text { A. } 4 \cdot 00 \pm 0 \cdot 62 \%
$$

$$
\text { B. } 4 \cdot 00 \pm 0 \cdot 82 \%
$$

C. $4 \cdot 00 \pm 3 \cdot 2 \%$

$$
\text { D. } 4 \cdot 00 \pm 5 \cdot 62 \%
$$

Answer: D

D Watch Video Solution

28. The length l, breadth b and thickness t of a block of wood were measured with the help of a metre scale. The results after calculating the errors are given as
$l=15 \cdot 12 \pm 0 \cdot 01 \mathrm{~cm}, b=10 \cdot 15 \pm 0 \cdot 01 \mathrm{~cm}$
$t=5 \cdot 28 \pm 0 \cdot 01 \mathrm{~cm}$. The percentage error in volume upto proper significant figure is :
A. $0 \cdot 36 \%$
B. $0 \cdot 28 \%$
C. $0 \cdot 48 \%$
D. $0 \cdot 64 \%$

Answer: A
(Watch Video Solution
29. Which one of the following has not been expressed in proper units ?
A. Stefan's constant $-W m^{-2} K^{-4}$
B. Latent heat $-J k g^{-1}$
C. Coefficient of elasticity $-\mathrm{Nm}^{-2}$
D. Universal gas constant $J K$

Answer: D

30. The dimensions of intensity of wave are :

> A. $\left[M L^{2} T^{-3}\right]$
> B. $\left[M L^{0} T^{-3}\right]$
> C. $\left[M L^{-2} L^{-3}\right]$
> D. $\left[M^{1} L^{2} L^{3}\right]$

Answer: B
(Watch Video Solution
31. Which of the following quantities has the same dimensions as the gravitational constant ?
A. $\frac{(\text { velocity })^{2}}{\text { Mass per unit length }}$
B. Force/ mass
C. Work/ time
D. $\frac{(\text { Momentum })^{2}}{\text { Force }}$

Answer: A

32. The same physical quantity is expressed in two different units x_{1} and x_{2}. The corresponding numerical values of the quantity are n_{1} and n_{2} respectively. Then
A. $n_{1} x_{1}=n_{2} x_{2}$
B. $n_{1} x_{2}=n_{2} x_{1}$
C. $n_{1} n_{2}=x_{1} x_{2}$
D. $n_{2}-n_{1}=x_{2}-x_{1}$.

Answer: A

33. A rectangular beam which is supported at
its two ends and loaded in the middle with
weight W sags by an amount δ such that $\delta=\frac{W l^{3}}{4 Y d^{3} x}$, where l, d and Y represent length, depth and elasticity respectively.

Guess the unknown factor using dimensional considerations:
A. breadth
B. $(\text { breadth })^{2}$
C. $(\text { breadth })^{3}$
D. mass.

Answer: A

- Watch Video Solution

34. The dimensional formula of magnetic moment of a curent- carrying coil is :
A. $\left[L^{2} A^{-1}\right]$
B. $\left[L^{2} A\right]$
C. $\left[L^{2} A^{-3}\right]$
D. $\left[L A^{2}\right]$

Answer: B

D Watch Video Solution

35. If L, R, C and V respectively represent inductance resistance, capacitance and potential difference then the dimensions of $\frac{L}{R C V}$ are the same as those of :
A. Charge
B. $\frac{1}{\text { Charge }}$
C. Current
D. $\frac{1}{\text { Current }}$

Answer: D

D Watch Video Solution

36. The error in the measurement of the radius
of a sphere is 1%. The error in the measurement of its volume is:
A. 1%
B. 3%
C. 5%
D. 8%

Answer: B

D Watch Video Solution

37. If P represents radiation pressure, C represent speed of light and Q represents radiation energy striking a unit area per
second, then the non-zero integers, x, y and z such that $P^{x} Q^{y} C^{z}$ is dimensionless are :

$$
\begin{aligned}
& \text { A. } x=1, y=1, z=1 \\
& \text { B. } x=1, y=1, z=-1 \\
& \text { C. } x=-1, y=1, z=1 \\
& \text { D. } x=1, y=-1, z=1
\end{aligned}
$$

Answer: D

D Watch Video Solution

38. The equation of state of a real gas can be expressed as $\quad\left(P+\frac{a}{V^{2}}\right)(v-b)=c T$, where P is the pressure, V the volume, T the absolute temperature and a, b, c are constants. What are the dimensions of a^{\prime} ?
A. $M^{0} L^{3} T^{-2}$
B. $M L^{-2} T^{5}$
C. $M L^{5} T^{-2}$
D. $M^{0} L^{3} T^{0}$

Answer: C
39. If the velocity (V), acceleration (A) and force (F) are taken as fundamental quantities instead of mass (M), length (L) and time (T), the dimensions of young's modulus (Y) would be :
A. $F A^{2} V^{-4}$
B. $F A^{2} V^{-5}$
C. $F A^{2} V^{-3}$

D. $F A^{2} V^{-2}$

Answer: A

D Watch Video Solution

40. A gas bubble from an explosion under water oscillates with a period proportional to
$P^{a} d^{b} E^{c}$, where P is the static pressure, d is the density of water and E is the energy of explosion. Then a, b, c are respectively :
A. $1,1,1$
B. $\frac{1}{3}, \frac{1}{2}, \frac{-5}{6}$
C. $\frac{-5}{6}, \frac{1}{2}, \frac{1}{3}$
D. $\frac{1}{2}, \frac{-5}{6}, \frac{1}{3}$

Answer: C

D Watch Video Solution

41. If the area of a square is $(100 \pm 0 \cdot 2) \mathrm{cm}^{2}$
then the side of the square is :
A. $(10 \pm 0 \cdot 1) \mathrm{cm}$
B. $(10 \pm 0 \cdot 2) \mathrm{cm}$
C. $10 \cdot 0 \pm 0 \cdot 01 \mathrm{~cm}$
D. None of these

Answer: C

D Watch Video Solution
42. The least count of a stop watch is $1 / 5$ second. The time of 20 oscillations of a pendulum is measured to be 25 seconds. The
minimum percentage error in the measurement of time will be :
A. $0 \cdot 1 \%$
B. $0 \cdot 8 \%$
C. 8%
D. 1.8%

Answer: B
(Watch Video Solution
43. Upon heating the length of each side of
the cube changes by 2%. The volume of the cube would change by :
A. 1%
B. 2%
C. $2 / 3 \%$
D. 6%

Answer: D

D Watch Video Solution
44. A resistor of $6 k \Omega$ with tolerance 10% and another of $4 k \Omega$ with tolerance 10% are connected in series. The tolerance of combination is about :
A. 5%
B. 10%
C. 12%
D. 40%

Answer: B
45. In the above question, the tolerance when resistors are connected in parallels :
A. 10%
B. 30%
C. 20%
D. 40%

Answer: B
46. An experiment measures quantities a, b, c
and then X is calculated from $X=\frac{a^{1 / 2} b^{2}}{c^{3}}$.
If the percentage errors in a, b, c are $\pm 1 \%$
$\pm 3 \%$ and $\pm 2 \%$ respectively, then the percentage error in X can be :
A. $\pm 12.5 \%$
B. $\pm 7 \%$
C. $\pm 1 \%$
D. $\pm 4 \%$

Answer: A

D Watch Video Solution

47. The resistance of a metal is given by $R=\frac{V}{I}$, where V is potential difference and
I is the current. In a circuit the potential difference across resistance is $V=(8 \pm 0 \cdot 5)$
V and current in resistance, $I=(4 \pm 0 \cdot 2) A$.

And current in resistance with its percentage error :
A. $(2 \pm 5 \cdot 6 \%)$ ohm
B. $(2 \pm 0 \cdot 7 \%)$ ohm
C. $(2 \pm 35 \%)$ ohm
D. $(2 \pm 11 \cdot 25 \%)$ ohm

Answer: D

D Watch Video Solution

48. Which one of the following is dimensionally incorrect?
A. Capcitance $C=\left[M^{-1} L^{-2} T^{4} A^{2}\right]$
B. Maagnetic
field
inducation

$$
B=\left[M L^{0} T^{-2} A^{-1}\right]
$$

C. Coefficient of self - induction

$$
L=\left[M L^{2} T^{-2} A^{-1}\right]
$$

D. Specific resistance $P=\left[M L^{3} T^{-3} A^{-2}\right]$

Answer: C

D Watch Video Solution

49. Which of the following product of e, h, μ,
G (where μ is the permeability) be taken so
that the dimensions of the product are same as that of speed of light?
A. $h e^{-2} \mu^{-1} G^{0}$
B. $h^{2} e G^{0} \mu$
C. $h^{0} e^{2} G^{-1} \mu$
D. $h G e^{-2} \mu^{0}$.

Answer: A
50. If eneryg E, velocity v and time t are taken
t are taken as the fundamental units, what is
the dimensional formula of intensity of radiation?
A. $E v^{-2} t^{-3}$
B. $E v^{-1} t^{-1}$
C. $E v^{-1} t^{-2}$
D. $E v^{-2} t^{-2}$.

Answer: A

D Watch Video Solution

51. Which of the following does not have the dimensions of velocity ? (Given, $\varepsilon_{0}=$ permittivity of free space, $\mu_{0}=$ permeability of free space, $v=$ frequency , is the wavelength, P
is the pressure and = density, $k=$ wave number,
ω is the angular frequency) :
A. ωk
B. $v \lambda$
C. $\sqrt{\varepsilon_{0} \mu_{0}}$
D. $\sqrt{\frac{P}{\rho}}$.

Answer: A

- Watch Video Solution

52. The mass of the liquid flowing per second per unit area of cross section of the tupe is proportional to P^{x} and v^{y} where P is the
pressure difference and v is the velocity, then
the relation between x and y is:

$$
\begin{aligned}
& \text { А. } x=y \\
& \text { В. } x=-y \\
& \text { C. } y^{2}=x \\
& \text { D. } y=-x^{2} .
\end{aligned}
$$

Answer: B
(Watch Video Solution
53. A physical quantity x is calculate from $x=\frac{a b^{2}}{\sqrt{c}}$. Calculate the percentage error in measuring x when the percentage errors in measuring a, b, c are 4,2 and 3 percent respectively :
A. 7%
B. 9%
C. 11%
D. 9.5%.
54. $\left[M^{1} L^{-2} T^{-2}\right]$ represents dimensional formula of which of the following physical quantities ?
A. energy
B. pressure
C. torque
D. pressure gradient.
55. Dimensions of $\frac{L}{R C V}$ are :
A. A^{-1}
B. A^{-2}
C. A
D. A^{2}.

Answer: A
56. The time dependance of a physical quantity
P is given by $P=P_{0} e^{\alpha t^{2}}$ where α is a constant and t is time. Then constant α is :
A. dimensionless
B. has dimension of T^{-2}
C. has dimension of P
D. has dimension of T^{2}.

Answer: B

- Watch Video Solution

57. In the formula $X=3 Y Z^{2}, X$ and Z have the dimensions of capacitance and magnetic induction respectively. The dimensions of Y in $M K S$ system are :

$$
\begin{aligned}
& \text { A. }\left[M^{-3} L^{-2} T^{-2} A^{-4}\right] \\
& \text { B. } M L^{-2}{ }^{\circ} A \\
& \text { C. }\left[M^{-3} L^{-2} T^{8} A^{4}\right] \\
& \text { D. }\left[M^{-3} L^{-2} T^{4} A^{-4}\right]
\end{aligned}
$$

58. The velocity v of a particle is given in terms
of time t by the equation
$v=a t+\frac{b}{t+c}$ The dimensions of a, b and c are:

- Watch Video Solution

59. If L has the dimensions of length, V that of potential and ε_{0} is the permittivity of free
space then quantity $\varepsilon_{0} L V$ have the

dimensions of :

A. Current
B. Charge
C. Resistance
D. Voltage

Answer: B
(Watch Video Solution
60. A quantity x is defined by the equation
$x=3 C^{2} B^{2}$, where C is capacitance in farads
and B is magnetic field in tesla, the dimension of x are :
A. $M L^{-2}$
B. $M L^{-2} T^{-2} A$
C. $L^{-4} T^{4} A^{2}$
D. $L^{-1} A^{-1}$

Answer: A
61. The dimensional formula for magnetic flux is :

$$
\begin{aligned}
& \text { A. }\left[M L^{2} T^{-2} A^{-1}\right] \\
& \text { B. }\left[M L^{0} T^{-2} A^{-2}\right] \\
& \text { C. }\left[M^{0} L^{-2} T^{-2} A^{-2}\right] \\
& \text { D. }\left[M L^{2} T^{-1} A^{3}\right]
\end{aligned}
$$

Answer: A
62. The speed of light c, acceleration due to gravity g and pressure p are taken as
fundamental units, the dimensions of gravitational constant G are :
A. $c^{0} g p^{-3}$
B. $c^{2} g^{3} p^{-2}$
C. $c^{0} g^{2} p^{-1}$
D. $c^{2} g^{2} p^{-2}$
63. The dimensions of electric susceptibility are :
A. $M^{\circ} L^{\circ} T^{\circ} A^{\circ}$
B. $M^{\circ} L^{-2} T^{\circ} A^{2}$
C. $M L T^{-2} A$
D. $M^{\circ} L^{-1} T^{\circ} A$

Answer: A

D Watch Video Solution
64. If ' $G^{\prime \prime} c^{\prime}$ and ' h ' are usual constants of physics, the unit of time is expressed as :

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{h c}{G}} \\
& \text { B. } \sqrt{\frac{h c}{c^{5}}} \\
& \text { C. } \frac{h c}{G} \\
& \text { D. } h G c^{3}
\end{aligned}
$$

Answer: B
65. A quantity x is given by es $\pi l o n_{0} L \frac{\Delta V}{\Delta t}$ where $e s \pi l o n_{0}$ is permittivity of free space L is length, ΔV is a potential difference and Δt is the time interval. The dimensional formula for x is the same as that of :
A. resistance
B. Charge
C. voltage
D. current

Answer: D

- Watch Video Solution

66. E, m, L and G denote energy, mass, angular momentum and gravititional constant respectively, the quantity $\frac{E . L}{m^{5} G^{2}}$ has the dimensions of :
A. angle
B. length
C. mass

D. time

Answer: A

D Watch Video Solution

67. The potential energy of a particle varies
with distance x as $U=\frac{A x^{1 / 2}}{x^{2}+B}$ where a and
B are constants. The dimensional formula for $A X B$ is :

$$
\text { A. } M^{1} L^{7 / 2} T^{-2}
$$

B. $M^{1} L^{11 / 2} T^{-2}$
C. $M^{1} L^{5 / 2} T^{-2}$
D. $M^{1} L^{9 / 2} T^{-2}$

Answer: B

D Watch Video Solution
68. What is the unit of k in the relation

$$
U=\frac{k y}{y^{2}+a^{2}}
$$

where U represents the potential energy, y
represents the displacement and a represents
the maximum displacement i.e., amplitude?
A. $m s^{-1}$
B. ms
C. Jm
D. $J s^{-1}$

Answer: C
(Watch Video Solution
69. $\frac{B^{2}}{\mu_{0}}$, where B is magnetic induction and
μ_{0} is permeability of free space, has the same dimensions as:
A. energy
B. energy density
C. magnetic intensity
D. none of these.

Answer: B
70. The time period of a large fluid star may depends upon its mean radius R, its mean density (p) and the gravitation constant G.

Using dimensional consideration the value of T is :
A. $k p R G$
B. $k p^{\frac{1}{2}} G^{\frac{1}{2}}$
C. $k p^{\frac{1}{2}} G^{-\frac{1}{2}} R^{0}$
D. $k p^{\frac{1}{2}} G^{-1} R^{0}$
71. The velocity of the wave v depends upon the wave length, density of water ' d ' and acceleration due to gravity g Then :

$$
\begin{aligned}
& \text { A. } v^{2}=K \lambda^{-1} g^{-1} d^{-1} \\
& \text { B. } v^{2}=K \lambda^{1} g^{1} d^{1} \\
& \text { C. } v^{2}=K \lambda^{1} g^{1} d^{0} \\
& \text { D. } v^{2}=K \lambda^{3} g^{-1} d^{-1}
\end{aligned}
$$

72. If L, C, R denote the inductance,

Capacitance and resistance repectively, the dimenstional formula of $C^{2} L R$ is:
A. $M L^{2} T^{-1} I^{0}$
B. $M^{0} L^{0} T^{3} I^{0}$
C. $M^{-1} L^{-2} T^{6} I^{2}$
D. $M^{0} L^{0} T^{2} I^{0}$
73. The position x of a particle at time t is given by :
$x=\frac{v_{0}}{a}\left(1-e^{-a t}\right)$ where v_{0} is a constant and $a>0$.

The dimensional formula of v_{0} and a is :
A. $\left[M^{0} L T^{-1}\right]$ and $\left[T^{-1}\right]$
B. $\left[M^{0} L T^{0}\right]$ and $\left[T^{-1}\right]$
C. $\left[M^{0} L T^{-1}\right]$ and $\left[T^{-2}\right]$

D. $\left[M^{0} L T^{-1}\right]$ and $[T]$

Answer: A

D Watch Video Solution

74. The dimensional formula for hole mobility
in a semiconductor is :
A. $\left[M^{-1} L^{0} T^{2} A\right]$
B. $\left[M^{-1} L^{2} T^{-2} A\right]$
C. $\left[M^{0} L^{0} T^{0} A\right]$

$$
\text { D. }\left[M L^{-2} T^{-2} A\right]
$$

Answer: A

D Watch Video Solution

75. Identify the pair whose dimensions are equal :
A. Torque and work
B. Stress and energy
C. Force and stress
D. Force and work.

Answer: A

D Watch Video Solution

76. Which one of the following represents the correct dimensions of the coefficient of viscosity?

$$
\text { A. }\left[M L^{-1} T^{-2}\right]
$$

$$
\text { B. }\left[M L^{-2} T^{-2}\right]
$$

C. $\left[M L^{-1} T^{-1}\right]$
D. $\left[M L T^{-1}\right]$

Answer: C

D Watch Video Solution

77. Out of following pairs which one does NOT have identical dimensions ?

A. angular momentum and Planck's

constant
B. impulse and momentum
C. moment of inertia and moment of force
D. work and torque.

Answer: C

D Watch Video Solution

78. Dimensions of $\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$ are
A. $\left[L^{-1} T\right]$
B. $L^{-2} T^{2}$
C. $L^{2} T^{-2}$
D. $L T^{-1}$

Answer: C

D Watch Video Solution

79. Which of the following units denote the
dimensions of $\frac{M L^{2}}{Q^{2}}$ where Q is the electric charge?
A. $W b / m^{2}$
B. henry (H)
C. $\frac{H}{m^{2}}$
D. weber (Wb)

Answer: B

- Watch Video Solution

80. The rad is the correct unit used to report
the measurement of :
A. The ability of a beam of γ - rays to produce ions in a target.
B. The energy delivered by radiation to a
target
C. The biological effect of radiation
D. The rate of decay of radioactive source.

Answer: B

D Watch Video Solution

81. Two full turns of the circular scale of a screw gauge cover a distance of 1 mm on its main scale. The total number of divisions on
the circular scale is 50 . Further it is found
that the screw gauge has a zero error of
-0.03 mm . While measuring the diameter of a
thin wire, a student notes the main scale reading of 3 mm and the number of circular scale division in line with the main scale as 35 .

The diameter of the wire is
A. 3.32 mm
B. 3.73 mm
C. 3.67 mm
D. 3.38 mm

Answer: D

D Watch Video Solution

82. The respective number of significant
figures for the numbers $23.023,0.0003$ and
2.1×10^{-3} are :
A. $4,4,2$
B. $5,1,2$
C. $5,1,5$
D. $5,5,2$.

Answer: B

- Watch Video Solution

83. A vernier calipers has 1 mm marks on the main scale. It has 20 equal divisions on the vernier scale which match with 16 main scale
divisions. For the vernier calipers, the least count is :
A. 0.02 mm
B. 0.05 mm
C. 0.1 mm
D. 0.2 mm

Answer: D
(D) Watch Video Solution

1. The velocity v of a particle is given in terms
of time t by the equation
$v=a t+\frac{b}{t+c}$ The dimensions of a, b and c are :
A. $L, L T$ and T^{2}
B. $L T^{-2}, L$ and T
C. L^{2}, T and $L T^{2}$
D. $L T^{2} L T$ and L

Answer: B
2. The intensity of a traveling wave has units of
W / m^{2}, give the dimensional formula of intensity :
A. $\left[M L^{0} T^{-3}\right]$
B. $\left[M L^{1} T^{-2}\right]$
C. $\left[M^{0} L^{-1} T^{2}\right]$
D. $\left[M^{-1} L^{0} T^{-3}\right]$
3. The radius of nucleus is $R=R_{0} A^{1 / 3}$ where
A is the mass number of the atom. What are the dimensions of R_{0} ?
A. $\left[M^{0} L^{0} T^{-1}\right]$
B. $\left[M^{0} L T^{0}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$
4. $\frac{B^{2}}{\mu_{0}}$, where B is magnetic induction and μ_{0} is permeability of free space, has the same dimensions as :
A. that of energy
B. that of presssure
C. that of energy density
D. power

Answer: C

D Watch Video Solution

5. If $x=\frac{a \cos \theta+b \cos \theta}{a+b}$, then
A. x has the same dimensions as a and b
B. a and b have different dimensions
C. x has no dimensions
D. x has dimensions of wavelength.
6. If the energy of a photon of light is given by
$E=k h^{x} c^{y} \lambda^{z}$, where $h=$ Planck's constant, $c=$ velocity of light and $\lambda=$ wavelength then values of x, y, z in order are :
A. $1,2,1$
B. $1,1,1$
C. $1,-1,1$
D. $1,1,-1$

Answer: D

D Watch Video Solution

7. The energy transfered to the battery of an
invertor from the electric line is given by
$U=E . q$
where $q=$ charge transfered. If A is the ammeter reading during transfer for a small
time Δt, then the dimensions of $e . m . f . E$ of the battery are :
A. $M L^{2} T^{-3} A^{-1}$
B. $M L T^{-2} A^{0}$
C. $M^{0} L^{0} T^{-3} A^{1}$
D. $M L^{2} T^{-3} A^{-2}$

Answer: A

D Watch Video Solution

8. In the formula $X=3 Y Z^{2}, X$ and Z have the dimensions of capacitance and magnetic
induction respectively. The dimensions of Y in $M K S$ system are :

$$
\begin{aligned}
& \text { A. } M^{-2} L^{-2} T^{4} Q^{4} \\
& \text { B. } M^{-3} L^{0} T^{4} Q^{-3} \\
& \text { C. } M^{-3} L^{-2} T^{4} Q^{4} \\
& \text { D. } M^{-3} L^{2} T^{4} Q^{-4}
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. Solar constant of the sun is the energy
received by earth per minute per cm^{2}. Its dimensions will be :

> A. $\left[M L^{2} T^{-3}\right]$
> B. $\left[M L^{0} T^{-3}\right]$
> C. $\left[M L^{2} T^{-1}\right]$
> D. $\left[M L^{0} T^{-1}\right]$

Answer: B

D Watch Video Solution
10. What will be the dimensions of the ratio of
electric intensity of the electric field E to the magnetic induction B of the magnetic field in case of electromagnetic wave propagation?
A. same as that of acceleration
B. same as that of velocity
C. same as that of force
D. same as that of energy

Answer: B

11. Which of the following pair has same dimensions?
A. Current density and charge density
B. Force constant and surface energy
C. Angular momentum and momentum
D. Moment of a force and force constant.

Answer: B
12. Given that force (F) is given
$F=P t^{-1}+Q t$. Here t is time. The unit of P
is same as that of :
A. displacement
B. velocity
C. acceleration
D. momentum.

Answer: D

13. If D represents the diameter, ρ the density, v the speed and η the coefficient of viscosity ,
then the quantity $\frac{D \rho v}{\eta}$ has:
A. dimensions of mass
B. dimensions of length
C. dimensions of time
D. no dimensions.

Answer: D

14. What is the unit of k in the relation
$U=\frac{k y}{y^{2}+a^{2}}$
where U represents the potential energy, y
represents the displacement and a represents
the maximum displacement $i . e .$, amplitude ?
A. power
B. couple
C. joule- metre
D. newton- sec.

Answer: C

- Watch Video Solution

15. If $x=\frac{\varepsilon_{0} l V}{t}$ where ε_{0} is permittivity of free space, l is the length, V is the potential difference and t is the time, then dimensions of x are the same as that of:
A. resistance
B. current
C. charge

D. potential.

Answer: B

D Watch Video Solution

16. The number of particles given by
$n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}}$
are crossing a unit area perpendicular to x axis in unit time, where n_{1} and n_{2} are the number of particles per unit volume for the
values x_{1} and x_{2} of x respectively. Then the
dimensional formula of diffusion constant D
is :

> A. $\left[M^{0} L T^{2}\right]$
> B. $\left[M^{0} L^{2} T^{-4}\right]$
> C. $\left[M^{0} L T^{-3}\right]$
> D. $\left[M^{0} L^{2} T^{-1}\right]$

Answer: B
(Watch Video Solution
17. On the basis of dimensions decide, which of
the following relations for the displacement of
a particle executing $S . H . M$ is incorrect ?

$$
\begin{aligned}
& \text { A. } y=a \sin \left(\frac{2 \pi t}{T}\right) \\
& \text { B. } y=a \sin \theta t \\
& \text { C. } y=\frac{a}{T} \sin (t / a) \\
& \text { D. } y=\sqrt{2} a \frac{\sin (2 \pi t)}{T}
\end{aligned}
$$

Answer: C

D Watch Video Solution

18. If momentum $/(p)$, area a and time (t) are
taken to be the fundamental quantities then
the energy has the dimensional formula :
A. $\left[p^{1} a^{-1} t^{1}\right]$
B. $\left[p^{0} a^{1} t^{1}\right]$
C. $\left[p^{1} a^{-\frac{1}{2}} t^{1}\right]$
D. $\left[p^{1} a^{\frac{1}{2}} t^{-1}\right]$

Answer: D

D Watch Video Solution
19. Youngs modulus for steel is
$2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. What is its value in $C . G . S$

UNITS ?

A. 2×10^{10}
B. 2×10^{11}
C. 2×10^{12}
D. 2×10^{13}

Answer: C

- Watch Video Solution

20. An artificial satellite is revolving round a planet of mass M and radius R in a circular orbit of radius ' r '. If its period of revolution
T obeys Kepler's law i.e. $T^{2} \propto r^{3}$. What is
relation for the period of revolution in terms
of R, r and g the accelerations due to gravity on the planet?

$$
\begin{aligned}
& \text { A. } T=k r^{\frac{3}{2}} R^{\frac{1}{2}} g^{\frac{1}{2}} \\
& \text { В. } T=k r^{3} R g^{\frac{1}{2}} \\
& \text { С. } T=k r^{\frac{3}{2}} R^{-1} g^{\frac{1}{2}}
\end{aligned}
$$

D. $T=k r^{\frac{3}{2}} R^{2} g$

Answer: C

D Watch Video Solution

21. A quantity $Q=\frac{E l^{2} G^{2}}{m^{5}}$ where E, l, G and m are energy, angular momentum gravitational constant and mass respectively. What are the dimensional of Q ?
A. $\left[M^{0} L^{0} T^{0}\right]$

> B. $\left[M^{1} L^{0} T^{1}\right]$
> C. $\left[M^{1} L^{1} T^{-1}\right]$
> D. $\left[M^{-1} L^{-1} T^{1}\right]$

Answer: A

- Watch Video Solution

22. A physical quantity $Q=\frac{a^{2} b^{3} c^{\frac{5}{2}}}{x^{2}}$. If the percentage errors in the measurement of ' a ', ' b ', ' c ' and x are $1 \%, 2 \%, 3 \%, 4 \%$
reperctively, What is the percentage error in
the measurement of Q ?
A. 24%
B. 12%
C. 6%
D. 8%

Answer: A
(Watch Video Solution
23. The mass and volume of a block of material are 4.237 g and $2.5 \mathrm{~cm}^{3}$ respectively. The density of material of the block in correct significant figures is :
A. $1.6045 \mathrm{gcm}^{-3}$
B. $1.6 \mathrm{gcm}^{-3}$
C. $1.7 \mathrm{gcm}^{-3}$
D. $1.695 \mathrm{gcm}^{-3}$

Answer: C

24. For the equation $F \propto A^{a} v^{b} d^{c}$, where F is
the force, A is the area, v is the velocity and d
is the density, the values of a, b and c are respectively:
A. $1,2,1$
B. 2, 1, 1
C. 1, 1, 2
D. $0,1,1$

Answer: A

- Watch Video Solution

25. An important milestone in the evolution of
the universe just after the big bang is the Planck time t^{p}, the value of which deponds on three fundamental constants-speed c of light in vacuum, gravitational constant G and Planck's constant h. Then, $t_{p} \propto$
A. $G h c^{5}$
B. $\frac{c^{5}}{G h}$
c. $\frac{G h}{c^{5}}$
D. $\left(\frac{G h}{c^{5}}\right)^{1 / 2}$

Answer: D

- Watch Video Solution

26. The period of oscillation of a simple
pendulum is $T=2 \pi \sqrt{\frac{L}{g}} . L$ is about 10 cm
and is known to 1 mm accurancy. The period of
oscillation is about 0.5 second. The time of 100
oscillation is measured with a wrist watch of 1
s resolution. What is the accurancy in the determination of g ?
A. 3%
B. 2%
C. 5%
D. 4%

Answer: C

27. Which of the following is false regarding significant figures ?
A. All non-zero digits are significant.
B. The zeros appearing in the middle of a
number are significant while those at
the end of a number without a decimal
point are ambiguous.
C. The powers of 10 are counted while
counting the number of significant
figures.
D. Greater the number of significant figures
in a measurement, smaller is the percentage error.

Answer: C

D Watch Video Solution

28. If w, x, y and z are mass, length, time and
current respectively, then $\frac{x^{2} w}{y^{3} z}$ are the
A. Electric potential
B. Capacitance
C. Electric field

D. Permittivity.

Answer: A
29. The volume of a cube in m^{3} is numerically equal to its surface area in m^{2}. The volume of cube is:
A. $1000 m^{3}$
B. $8 m^{3}$
C. $256 \mathrm{~m}^{3}$
D. $216 m^{3}$

Answer: D

D Watch Video Solution
30. If the velocity of light c, Planck's constant
h and gravitation constant G are adopted as
fundamental units of a system, the dimensions of force in the system would be :
A. $G^{4} h^{-1}$
B. $G^{-1} c^{4} h^{0}$
C. $G^{-1} c^{0} h^{4}$
D. $G c^{-1} h^{0}$

Answer: B
31. If force $=\frac{X}{\text { density }}+C$ is dimensionally correct, the dimensions of X are :
A. $M L T^{-2}$
B. $M L T^{-3}$
C. $M L^{2} T^{-3}$

$$
\text { D. } M^{2} L^{-2} T^{-2}
$$

Answer: D

32. The length l, breadth b and thickness t of a block of wood were measured with the help of
a metre scale. The results after calculating the errors are given as
$l=15 \cdot 12 \pm 0 \cdot 01 \mathrm{~cm}, b=10 \cdot 15 \pm 0 \cdot 01 \mathrm{~cm}$
$t=5 \cdot 28 \pm 0 \cdot 01 \mathrm{~cm}$. The percentage error in volume upto proper significant figure is:
A. 0.28%
B. 0.36%
C. 0.48%

D. 0.65%

Answer: B

D Watch Video Solution

33. The density of a cube is measured by measuring mass and the length of its sides. If the maximum error in the measurement of mass and length are 3% and 2% respectively, then the maximum error in the measurement of the density of cube is :
A. 7%
B. 5%
C. 10%
D. 9%

Answer: D

D Watch Video Solution

34. If the error in the measurement of momentum of a particle is $(+100 \%)$, then
the error in the measurement of kinetic energy is :
A. 250%
B. 200%
C. 300%
D. 400%

Answer: C
(Watch Video Solution
35. In the integral
$\int \frac{d x}{\left(2 a x-x^{2}\right)^{1 / 2}}=a n \sin ^{-1}\left(\frac{x}{a}-1\right), \quad$ the
value of n should be (by dimensions):
A. 1
B. -1
C. 0
D. $\frac{1}{2}$

Answer: C
36. If C is the restoring couple per unit radian twist and I is the moment of inertia, then the dimensional representation of $2 \pi \sqrt{\frac{I}{c}}$ will be :
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{0} L^{0} T^{1}\right]$
C. $\left[M^{0} L^{1} T^{-1}\right]$
D. $\left[M^{1} L^{2} T^{-2}\right]$

Answer: B
37. A vernier calliper has 20 divisions on the vernier scale, which coincide with 19 on the main scale. The least count of the instrument is 0.1 mm . The main scale divisions are of :
A. 0.5 mm
B. 1 mm
C. 2 mm
D. $\frac{1}{4} \mathrm{~mm}$

Answer: C

- Watch Video Solution

38. The heat generated in a circuit is given by
$Q=I^{2} R t$, where I is current, R is resistance and t is time. If the percentage errors in measuring I, R and t are $2 \%, 1 \%$ and 1% respectively, then the maximum error in measuring heat will be :
A. 2%
B. 3%
C. 4%

D. 6%

Answer: D

D Watch Video Solution

39. The dimensions of the quantities in one of
the following pairs are the same. Identify the pair:
A. Torque and energy
B. Angular momentum and work

C. Energy and Young's modulus

D. Light year and angular velocity.

Answer: A

- Watch Video Solution

40. Which of the following is the $S I$ unit of poynting vector?
A. $W S^{-1}$
B. $W m^{-2}$
C. $W m^{-2} s^{-1}$
D. $W m^{-3} s^{-1}$

Answer: B

D Watch Video Solution

41. If $x=\frac{\varepsilon_{0} l V}{t}$ where ε_{0} is permittivity of free
space, l is the length, V is the potential difference and t is the time, then dimensions of x are the same as that of:
A. resistance
B. Charge
C. voltage

D. current

Answer: D

D Watch Video Solution

42. The physical quantities not having same dimensions are :
A. speed and $\left(\mu_{0} \in_{0}\right)^{-1 / 2}$
B. torque and work
C. momentum and Planck's constant
D. stress and Young's modulus.

Answer: C

D Watch Video Solution
43. A cube has a side of length $1 \cdot 2 \times 10^{-2} \mathrm{~m}$.
A. $1.7 \times 10^{-6} \mathrm{~m}^{3}$
B. $1.73 \times 10^{-6} \mathrm{~m}^{3}$
C. $1.70 \times 10^{-6} \mathrm{~m}^{3}$
D. $1.732 \times 10^{-6} \mathrm{~m}^{3}$

Answer: A

D View Text Solution

44. In the relation $P=\frac{\alpha}{\beta} e^{-\alpha z / k \theta}$
$P=$ pressure
where $\begin{aligned} & z=\text { distance } \\ & k=\text { Boltzman's constant }\end{aligned}$
$\theta=$ Temperature

The dimensional formula of β will be :
A. $M^{0} L^{2} T^{0}$
B. $M L^{2} T$
C. $M L^{0} T^{-1}$
D. $M^{0} L^{2} T^{-1}$

Answer: A
45. A wire has mass $m=0.3 \pm 0 \cdot 003 g$,
radius $r=0 \cdot 5 \pm 0 \cdot 005 \mathrm{~mm}$ and length
$l=6 \pm 0 \cdot 06 \mathrm{~cm}$.

The maximum percentage error in the measurement of its density is :
A. 1
B. 2
C. 3
D. 4
46. The dimensions of magnetic field in $M, L C$
(Coulomb) are given by :
A. $\left[M L T^{-1} C^{-1}\right]$
B. $\left[M T^{2} C^{-2}\right]$
C. $\left[M T^{-1} C^{-1}\right]$
D. $\left[M T^{-2} C^{-1}\right]$

Answer: C
47. In an experiment the angle are required to be measured using an instrument 29 divisions of the main scale exactly coinecide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half-a-degree $\left(=0.5^{\circ}\right)$ then the least count of the instrument is
A. 1 minute
B. half minute

C. one degree

D. half degree

Answer: A
(D) Watch Video Solution

Multiple Choice Questions Level lif

1. A screw gauge gives the following reading
when used to measure the diameter of a wire.

Main scale reading : 0 mm

Circular scale reading : 52 divisions

Given that 1 mm on main scale corresponds to
100 divisions of the circular scale.

The diameter of wire from the above data is :
A. 0.052 cm
B. 0.026 cm
C. 0.005 cm
D. 0.52 cm

Answer: A
2. A spectrometer gives the following reading when used to measure the angle of a prism.

Main scale reading : 58.5 degree

Vernier scale reading : 09 divisions

Given that 1 division on main scale corresponds to 0.5 degree. Total divisions on
the vernier scale is 30 and match with 29 divisions of the main scale. The angle of the prism from the above data :
A. 59 degree
B. 58.59 degree
C. 58.77 degree
D. 58.65 degree.

Answer: D

D Watch Video Solution

3. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the
current and the voltage difference are 3% each, then error in the value of resistance of the wire is :
A. 3%
B. 6%
C. Zero
D. 1%

Answer: B

D Watch Video Solution
4. Let $\left[\varepsilon_{0}\right]$ denote the dimensional formula of the permittivity of vacuum. If $M=$ mass, L $=$ length, T =time and $A=$ electric current, then :

$$
\begin{aligned}
& \text { A. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{4} A^{2}\right] \\
& \text { B. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{2} T^{-1} A^{-2}\right] \\
& \text { C. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{2} T^{-1} A\right] \\
& \text { D. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{2} A\right]
\end{aligned}
$$

Answer: A

- Watch Video Solution

5. A student measured the length of a rod wrote it as 3.50 cm . Which instrument did he use to measure it ?
A. A screw gauge having 50 divisions in the
circular scale and pitch as 1 mm .
B. A meter scale.
C. A vernier calliper where the 10 divisions
in vernier scale matches with 9 division
in main scale and main scale has 10
divisions in 1 cm .
D. A screw gauge having 100 divisions in
the circular scale and pitch as 1 mm .

Answer: C

D Watch Video Solution

6. The period of oscillation of a simple pendulum is $\mathrm{T}=2 \pi \sqrt{\frac{L}{g}}$. Measuted value of L is
20.0 cm known to 1 mm accuracy and time for

100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution.

What is the accuracy in the determination of g
?
A. 3%
B. 1%
C. 5%
D. 2%

Answer: A

D Watch Video Solution

1. The dimensions of 'resistance' are same as
those of Where h is the Planck's
constant e is the charge .

$$
\begin{aligned}
& \text { A. } \frac{h}{e^{2}} \\
& \text { B. } \frac{h}{e} \\
& \text { C. } \frac{h^{2}}{e^{2}} \\
& \text { D. } \frac{h^{2}}{e}
\end{aligned}
$$

Answer: A

2. If C be the capacitance and V be the electric

 potential ,then the dimensional formula of $C V^{2}$ isA. $M^{1} L^{2} T^{-2} A^{0}$
B. $M^{1} L^{2} T^{-2} A^{-1}$
C. $M^{0} L^{1} T^{-2} A^{0}$
D. $M^{1} L^{-3} T^{1} A^{1}$.

Answer: A
3. The dimensional formula of physical quantity is $M^{a} L^{b} T^{c}$. Then that physical quantity is
A. surface tension if $a=1, b=1, c=-2$
B. force if $a=1, b=1, c=2$
C. angular frequency

$$
a=0, b=0, c=-1
$$

D. spring
constant

$$
a=1, b=-1, c=-2 .
$$

Answer: C

- Watch Video Solution

4. Which one of the following is NOT correct?
A. Dimensional formula of thermal
conductivity (K) is $M^{1} L^{1} T^{-3} K^{-1}$
B. Dimensional formula of potential (V) is

$$
M^{1} L^{2} T^{3} A^{-1}
$$

C. Dimensional formula of permeability of

$$
\text { free space }\left(\mu_{0}\right) \text { is } M^{1} L^{1} T^{-2} A^{-2}
$$

D. Dimensional formula of $R C$ is

$$
M^{0} L^{0} T^{-1}
$$

Answer: D

- Watch Video Solution

5. A physical quantity Q is found to depend on observables x, y and z, obeying relation
$Q=\frac{x^{3} y^{2}}{z}$. The percentage error in the measurements of x, y and z are $1 \%, 2 \%$ and 4% respectively. What is percentage error in the quantity Q ?
A. 4%
B. 3%
C. 11%
D. 1%

Answer: C
6. The ratio of the dimensions of Planck constant and that of moment of inertia has
the dimensions of
A. frequency
B. velocity
C. time
D. angular momentum.

Answer: A

- Watch Video Solution

7. A body accelerates from rest with a uniform

 acceleration a for time t. The uncertainty in a is 8% and the uncertainty in t is 4%. The uncertainty in speed is :A. 32%
B. 12%
C. 8%
D. 20%

Watch Video Solution

