©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION PHYSICS (KANNADA ENGLISH)

WAVE MOTION

Multiple Choice Questions Level I

1. A progressive sound wave of frequency 500

Hz is travelling through air with speed 350
m / s. A compression maxima appears at a place at a given instant. The minimum time interval after which the rerefaction maxima occurs at the same point is :
A. 250 s
B. $\frac{1}{250} \mathrm{~s}$
C. $\frac{1}{500} \mathrm{~s}$
D. $\frac{1}{1000} \mathrm{~s}$.

Answer: D

2. The temp. at which the speed of sound in air becomes double its value at $0^{\circ} \mathrm{C}$ is :
A. $273^{\circ} \mathrm{C}$
B. $546^{\circ} \mathrm{C}$
C. $819^{\circ} \mathrm{C}$
D. $1092^{\circ} \mathrm{C}$

Answer: C

3. The velocity of sound in air at 9 atmosphere

 pressure and that at 1 atm. Pressure would beA. 1:1
B. 9:1
C. 1:9
D. 3:1

Answer: A

- Watch Video Solution

4. The velocity of sound in diatomic gas is 300 m / s, the root mean square velocity of molecules is of order of:
A. $440 \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $4000 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$.

Answer: A

5. An echo repeats two syllables. If the velocity
of sound is $330 \mathrm{~m} / \mathrm{s}$. then the distance of reflecting surface is :
A. 16.5 m
B. 33.0 m
C. 66 m
D. 99 m

Answer: C

6. A man standing symertrically between parallel cliffs, claps his hands and hearing a series of echoes at intervals of s if speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ then the distance between two parallel cliffs is :
A. 340 m
B. 510 m
C. 680 m
D. 270 m .
7. The minimum intensity of audibility of sound is 10^{-12} watt $/ \mathrm{m}^{2}$ intensity of sound is $10^{-9} \mathrm{watt} / \mathrm{m}^{2}$ the intensity level of this sound in decibels is :
A. 1000
B. 100
C. 30
D. 300

Answer: C

D Watch Video Solution

8. The intensity of a sound gets reduced by
20% on passing through two consecutive slabs is:
A. 0.4
B. 0.36
C. 0.3
D. 0.6

Answer: B

D Watch Video Solution

9. If the pressure amplitude in a sound wave is
tripled then the intensity of sounds is
increased by :
A. 9
B. 3
C. 6
D. $\sqrt{3}$.

D Watch Video Solution

10. A boat at anchor is rocked by waves whse crests are 100 cm aprt and whose velocity is 25
cm / s. these waves reach the boat once every :
A. 0.25 s
B. 4 s
C. 25 s
D. 15 s

Answer: B

D Watch Video Solution

11. The minimum distance of the reflector from
the listener to hear the echo of monosyllabe sound is nearly equal to :
A. 16.5 m
B. 33 m
C. 66 m
D. 330 m

Answer: B

D Watch Video Solution

12. The young's modulus of steel is 20×10^{10}
$\mathrm{N} / \mathrm{m}^{2}$. If the density of steel is $7.7 \times 10^{3} \mathrm{~kg} /$ m^{2}, the velocity of longitudinal wave in steel is nearly :
A. $50 \mathrm{~m} / \mathrm{s}$.
B. $500 \mathrm{~m} / \mathrm{s}$
C. $5000 \mathrm{~m} / \mathrm{s}$

D. $50,000 \mathrm{~m} / \mathrm{s}$.

Answer: C

D Watch Video Solution

13. The velocity of sound in gas is $206 \mathrm{~m} / \mathrm{s}$. at
N.T.P. The increase in velocity per ${ }^{\circ} \mathrm{C}$ rise in temp. in this gas is :
A. $0.61 \mathrm{~m} / \mathrm{s} K^{-1}$
B. $0.38 \mathrm{~m} / \mathrm{s} K^{-1}$

C. $0.82 \mathrm{~m} / \mathrm{s} k^{-1}$

$$
\text { D. } 1.26 \mathrm{~m} / \mathrm{s} K^{-1} \text {. }
$$

Answer: B

D Watch Video Solution

14. The equation of a plane Progressive wave is
$Y=1.5 \sin (314 t-12.56 x)$ metres. Then
amaximum particle velocity is :
A. $25 \mathrm{~m} / \mathrm{s}$
B. $471 \mathrm{~m} / \mathrm{s}$
C. $314 \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: B

- Watch Video Solution

15. In above question the wavelength of wave
is :
A. 0.5 m
B. 1.5 m
C. 2.5 m
D. 12.56 m

Answer: A

D View Text Solution
16. In Q No. 27 the frequency of wave is:
A. 150 Hz
B. 50 Hz

C. 30 Hz

D. 10 Hz .

Answer: B

D View Text Solution

17. A sound wave has frequency 500 Hz and velocity $350 \mathrm{~m} / \mathrm{s}$. What is the distance between the two particles having phase diff. of 60°.
A. 0.7 cm
B. 11.6 cm
C. 70 cm
D. 120 cm .

Answer: B

D Watch Video Solution
18. Velocity of sound in air is $300 \mathrm{~m} / \mathrm{s}$. Then the distance between two successive nodes of a stationary wave of frequency 1000 Hz is :
A. 10 cm
B. 20 cm
C. 15 cm
D. 30 cm

Answer: C

D Watch Video Solution

19. A fork of unkown frequency when sounded with another fork of frequency 256 produces 4
beats/s. he first fork is loaded with wax. It
again produces 4 beats/s. when sounded together with fork of 256 Hz frequency then the frequency of first tunning fork is :
A. 260 Hz
B. 252 Hz
C. 252 or 260 Hz
D. None of these

Answer: A

D Watch Video Solution
20. Two tunning forks of frequencies 250 and 256 Hz produce beats. If a maxima is produced
just now after how much time the minima is produced at the same place :

$$
\begin{aligned}
& \text { A. } \frac{1}{18} \mathrm{~s} \\
& \text { B. } \frac{1}{24} \mathrm{~s} \\
& \text { C. } \frac{1}{6} \mathrm{~s} \\
& \text { D. } \frac{1}{12} \mathrm{~s} .
\end{aligned}
$$

Answer: D

D Watch Video Solution
21. 56 tunning forks are arranged in a series that each fork given 4 beats/s with previous one. The frequency of last fork is 3 times that fo first. Then frequency of first fork is :
A. 52 Hz
B. 56 Hz
C. 60 Hz
D. 110 Hz

- Watch Video Solution

22. The fundamental frequency of an open
pipe is N Keeping the pipe vertical, it is submerged in water such that half of it is immersed in water, so fundamental frequency of air column is :
A. N
B. $N / 2$
C. 2 N
D. $3 \mathrm{~N} / 4$.

Answer: A

- Watch Video Solution

23. When a wave undergoes reflection at rarer medium then it undergoes a phase difference of :
A. π
B. $\pi / 2$
C. 2π
D. No change is plase.

Answer: D

D Watch Video Solution

24. The frequency of the third harmonic of a
closed organ pipe is equal to which of overtones:
A. first

B. second

C. third
D. none of above .

Answer: A

D Watch Video Solution

25. A streched string fixed at both ends has n

nodes then the length of string in terms of
wavelength is :
A. $n \frac{\lambda}{2}$
B. $(n+1) \frac{\lambda}{2}$
C. $(n-1) \frac{\lambda}{2}$
D. $\left(n+\frac{1}{2}\right) \frac{\lambda}{2}$

Answer: C

D Watch Video Solution

26. The distance between two points differeing in phase by 60° on a wave having velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency 500 Hz is
A. 0.72 m
B. 0.18 m
C. 0.12 m
D. 0.36 m

Answer: C

D Watch Video Solution

27. A transverse wve given by $Y=0.021 \sin (x+$
$30 t$) is propagating in a string of linear density
$1.3 \mathrm{x}, 10^{-4} \mathrm{~kg} / \mathrm{m}$. If x and y are in metres and
time in seconds, the tension in string is :
A. 2.4 N
B. 1.2 N
C. 0.12 N
D. 240 N

Answer: C
(Watch Video Solution
28. A wave is given by the equation $Y=10^{-4}$ $\sin (60 t+2 x)$ where x and y are in metres and t in second, then wavelength of the wave is:
A. π metre
B. 2π metre
C. $\frac{3 \pi}{2}$ metre
D. 3π metre

Answer: A

D Watch Video Solution
29. A string when stretched with a weight of 9
kg weigth produces a note of frequency 256.

Calculate the weight to produces an octave of
the note.
A. 36 kg wt
B. 9/4 kg wt
C. 18 kg wt
D. 4 kg wt .

Answer: A
30. When sound travels from air to water the quantity that remains unchanged is :
A. speed
B. frequency
C. intensity

D. wavelength

Answer: C
(Watch Video Solution
31. Stationary waves of frequency 200 are
formed in air. If velovity of the wave is $360 \mathrm{~m} / \mathrm{s}$
the shortest distance between antinodes will be :
A. 1.8 m
B. 3.6 m
C. 2.7 m
D. 0.9 m

- Watch Video Solution

32. A string of 0.3 m length is found to resonate in 3 segments (nodes at both ends) when the driving frequency is 20 Hz . The speed of the wave in the spring is :
A. $3 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $9 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

33. An engine standing at the platform blows a whistle of frequency $305 \mathrm{vib} / \mathrm{sec}$. if the velocity of sound be $1220 \mathrm{~km} / \mathrm{h}$, the frequency of the whistle as heard by a man towards the engine with a speed of $20 \mathrm{~km} / \mathrm{h}$ is :
A. 300 vib/s
B. $305 \mathrm{vib} / \mathrm{s}$

C. $310 \mathrm{vib} / \mathrm{s}$

D. $320 \mathrm{vib} / \mathrm{s}$

Answer: C

D Watch Video Solution

34. The wavelength of light coming from a star shifts towards the violet end of the spectrum .
A. receding from the earth
B. approaching the earth

C. neither approaching nor receding from

 the earth
D. sometimes aproaching and sometimes

receding from the earth .

Answer: B

D Watch Video Solution

35. A star emitting light of $5000 \AA$ is receding away from earth with a velocity of $300 \mathrm{~km} / \mathrm{s}$.
the apparent wavelength of light is :
A. $5000 \AA ̊$
B. $5005 \AA$
C. $5050 \AA$
D. $4096 \AA$

Answer: B

D Watch Video Solution
36. The air column in a pipe which is closed at one end will be in resonance with a vibrating
tuning fork at a frequency 250 Hz . If the length of the air column is :
A. 33 cm
B. 62 . cm
C. 45 cm
D. 12.5 cm .

Answer: A

D Watch Video Solution
37. At what speed should a source of sound
moves so that observer find that apparent
frequency equal to half of the original frequecy?
A. $\frac{v}{2}$
B. 2v
C. $\frac{v}{4}$
D.v

Answer: D

38. If the amplitude of sound is doubled and
the frequency reduced to one-fourth, the intensity of sound at the same point will be:
A. increasing by a factor of 2
B. decreasing by a factor of 2
C. decreasing by a factor 4
D. unchanged .

Answer: C
39. A wave is represented by the equation
$\mathrm{y}=7 \sin \left(7 \pi t-0.04 \pi x+\frac{\pi}{3}\right)$
where x is in metre and t is in second. The speed of the wave is :
A. $175 \mathrm{~m} / \mathrm{s}$
B. $49 \mathrm{~m} / \mathrm{s}$
C. $49 / \pi \mathrm{m} / \mathrm{s}$
D. $0.28 \pi \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

40. What is frequency of radio waves transmitted by a station, if the wavelength of these waves is 300 m ?
A. 1 MHz
B. 10 Hz
C. 1 GHz
D. 100000 Hz .

Answer: A

D Watch Video Solution

41. A transverse wave is represented by the equation $\mathrm{y}=y_{0} \frac{2 \pi}{\lambda} \sin (\mathrm{vt}-\mathrm{x})$. For what value of λ is the particle velocity equal to two times the wave velocity?
A. $\lambda=2 \pi y_{0}$
B. $\lambda=2 \pi y_{0} / 3$
C. $\lambda=2 \pi y_{0} / 2$

D. $\lambda=2 \pi y_{0}$.

Answer: D

D Watch Video Solution

42. In a sinusoidal wave, the time required for
a particular point to move from maximum displacement to zero displacement is 0.170 s .
the frequency of the wave is:
A. 1.47 Hz
B. 0.36 Hz
C. 0.73 Hz
D. 2.94 Hz

Answer: A

D Watch Video Solution

43. the wavelengths of two waves are 50 and 51 cm respectively. If the temperature of the room is $20^{\circ} \mathrm{C}$, then what will be the number
of beats produced per second by these waves, when the speed of sound at $0^{\circ} \mathrm{C}$ is $332 \mathrm{~m} / \mathrm{s}$?
A. 14
B. 10
C. 24
D. none of these

Answer: A
(Watch Video Solution
44. A transverse wave is represented by the equation $\mathrm{y}=y_{0} \frac{2 \pi}{\lambda} \sin (\mathrm{vt}-\mathrm{x})$. For what value of λ is the particle velocity equal to two times the wave velocity?

$$
\begin{aligned}
& \text { A. } \lambda=y_{0} / 2 \\
& \text { B. } \lambda=2 y_{0} \\
& \text { C. } \lambda=\frac{2 \pi y_{0}}{2} \\
& \text { D. } \lambda=y_{0} / 4
\end{aligned}
$$

Answer: C

45. The phase difference between two waves
represented
$y_{1}=10^{-6} \sin \left[100 t+\frac{x}{50}+0.5\right] \mathrm{m}$
$y_{2}=10^{-6} c o\left[100 t+\frac{x}{50}\right] \mathrm{m}$
Where x is in metre and t in seconds, is :
A. 0.5 radian
B. 1.07 radian
C. 1.5 radian
D. 2.07 radian.

Answer: B

D Watch Video Solution

46. The time of reverberation of a room a is one seond. What will be the time of reverberation of room having all the dimensions double of those of room A:
A. 1 s
B. 2 s
C. 4 s

D. $1 / 2 \mathrm{~s}$

Answer: B

D Watch Video Solution

47. Two monoatomic ideal gases 1 and 2 of molecular masses m_{1} and m_{2} respectively are enclosed in separate containers ketp at the same temperature. The ratio of the speed of sound in gas 1 t that in gas 2 is :

$$
\text { A. } \sqrt{\frac{m_{1}}{m_{2}}}
$$

B. $\frac{m_{1}}{m_{2}}$
C. $\sqrt{\frac{m_{2}}{m_{1}}}$
D. $\frac{m_{2}}{m_{1}}$

Answer: C

D Watch Video Solution

48. Twp pulses in a stretched string whose centers are initially 8 cm aprt moving towards each other as shown in fig. The speed of each pulse is $2 \mathrm{~cm} / \mathrm{s}$. After 2 seconds, the total
energy of the pulses will be :

A. zero
B. purely potential
C. purely kinetic
D. partly kinetic x partly potenial .

Answer: C
49. A stationary sound wave has frequency 165

Hz (speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$), then distance between two consecutive nodes is:
A. 2 m
B. 0.5 m
C. 1 m
D. 4 m

Answer: C

50. A wave y a $\sin (\omega t-k x)$ on a string meets
with another wave producing a node at $x=0$.
Then the equation of the unknown wave is :

$$
\begin{aligned}
& \text { A. } \mathrm{y}=\mathrm{a} \sin (\omega t+k x) \\
& \text { B. } \mathrm{y}=\mathrm{a} \sin (\omega t-k x) \\
& \text { C. } \mathrm{y}=-\mathrm{a} \sin (\omega t+k x) \\
& \text { D. } \mathrm{y}=-\mathrm{a} \sin (\omega t-k x)
\end{aligned}
$$

Answer: C

51. A tuning fork produces 4 beats $/ \mathrm{sec}$. with another fork of frequency 288 cps . A little wax is placed on the unknown fork and it then produces 2 beats $/ \mathrm{sec}$. the unknown frequency is :
A. 286 cps
B. 284 cps
C. 292 cps
D. 290 cps

Answer: C
52. Tube A has both ends open, while tube B
has one end closed, otherwise they are identical. The ratio of fundamental frequency of tube A and B is :
A. 1:2
B. 2:1
C. 1:4
D. $4: 1$

Answer: B

- Watch Video Solution

53. A source of sound of frequency 600 Hz is
placed inside water. The speed of sound in
water is $1500 \mathrm{~m} / \mathrm{s}$, and in air it is $300 \mathrm{~m} / \mathrm{s}$. the
frequency of sound recorded by an observer who is standing in air is :
A. 200 Hz
B. 120 Hz

C. 3000 Hz

D. 600 Hz

Answer: D

D Watch Video Solution

54. When two tuning forks (fork 1 and fork 2)
are sounded simultaneously, 4 beats second
are heard. Now some tape is attached on the prong of the fork 2. When the tuning forks are sounded again, 6 beats per second are heard.

If the frequency of fork 1 is 200 Hz , then what was the original frequency of fork 2 ?
A. 204 Hz
B. 196 Hz
C. 202 Hz
D. 200 Hz

Answer: B

D Watch Video Solution
55. A whistle producting sound waves of frequencies 9500 Hz and above is approaching a stationary person with $\mathrm{v} m s^{-1}$. The velocity of sound in air is $300 \mathrm{~ms}^{-1}$. If a person can hear frequencies upto $10,000 \mathrm{~Hz}$, the maximum value of v upto which he can hear the whistle is :
A. $15 \sqrt{2} m s^{-1}$
B. $\frac{15}{\sqrt{2}} m s^{-1}$
C. $15 m s^{-1}$

D. $30 m s^{-1}$

Answer: C

D Watch Video Solution

56. In the experiment to determine the speed of sound using a resonace column,
A. prongs of the tuning fork are kept in a vertical plane.
B. prongs of the tuning fork are kept in a
horizontal plane.
C. in one of the two resonances observed,
the length of the resonating air column
is close to the wavelength of sound in
air
D. in one of the two resonances observed,
the length of the resonating air column
is close to half of the wavelength of
sound in air.

D Watch Video Solution

57. The equation of wave on a string of linear mass density $0.04 \mathrm{~kg} \mathrm{~m}{ }^{-1}$ is given by
$\mathrm{y}=0.02(\mathrm{~m}) \sin \left[2 \pi\left(\frac{t}{0.04(s)}-\frac{x}{0.50(m)}\right)\right]$
The tension in the string is :
A. 6.25 N
B. 4.0 N
C. 12.5 N

D. 0.5 N

Answer: A

- Watch Video Solution

58. When two progressive waves $y_{1}=4 \sin (2 x-$ 6t) and $\quad y_{2}=3 \sin \left(2 x-6 t-\frac{\pi}{2}\right) \quad$ are
superimposed, the amplitude of the resultant wave is
A. 5 m
B. 10 m
C. 20 m
D. 40 m

Answer: B

- Watch Video Solution

59. A transverse wave is represented by the equation $\mathrm{y}=y_{0} \frac{2 \pi}{\lambda} \sin (v t-\mathrm{x})$. For what value of λ is the particle velocity equal to two times the wave velocity?
A. $\lambda=\pi y_{0}$
B. $\lambda=\pi y_{0} l^{2}$
C. $\lambda=x y_{0} l^{3}$
D. $\lambda=2 \pi y_{0}$.

Answer: A

D Watch Video Solution

60. A stone is dropped into a lake from a tower

500 metre high. The sound of the splash will
be heard by the man approximately after :
A. 10 seconds
B. 14 seconds
C. 21 seconds
D. 11.5 seconds.

Answer: D

D Watch Video Solution

61. The equation of a plane progressive is given by $y=0.025 \sin (100 t+0.25 x)$. The frequency of this wave would be :
A. 50 Hz
B. 100 Hz
C. $\frac{50}{\pi} \mathrm{~Hz}$.
D. None of these.

Answer: C

D Watch Video Solution
62. The equation of travelling wave is $y=60$
$\cos (1800 t-6 x)$, where y is in microns, t in
seconds and x in metres. The ratio of
maximum particle velocity to velocity of wave propagation is :

A. 3.6
B. 3.6×10^{-6}
C. $\left(3.6 \times 10^{-11}\right)$
D. 3.6×10^{-4}.

Answer: D
(Watch Video Solution
63. The tension in a piano wire is 10 N . What
should be the tension in the wire to produces
a note of double the frequency?
A. 5 N
B. 20 N
C. 40 N
D. 80 N

Answer: C

D Watch Video Solution
64. Two sound waves having a phase difference of 60° have path difference of :
A. 2λ
B. $\lambda / 2$
C. $\lambda / 3$
D. $\lambda / 6$

Answer: D
(Watch Video Solution
65. A siren emitting sound of frequency 800 Hz
is going away from a static listener with a speed of $30 \mathrm{~m} / \mathrm{s}$. The frequency of sound
heard by listener is (velocity of sound $=300$ $\mathrm{m} / \mathrm{s})$:
A. 727.3 Hz
B. 481.2 Hz
C. 644.8 Hz
D. 286.5 Hz .

Answer: A
66. The velocities of sound at the same temperature in two monoatomic gases of densities ρ_{2} and ρ_{2} are v_{1} and v_{2} respectively. If $\rho_{2} / \rho_{2}=4$, then value of v_{1} / v_{2} is:
A. 1/4
B. $1 / 2$
C. 2
D. 4

Answer: C

- Watch Video Solution

67. In a stationary waves are variation in pressure at nodes is :
A. twice that due to one wave
B. thrice that due to one wave
C. zero
D. maximum.

Answer: D

D Watch Video Solution

68. A whistle revolves in a circle with angular
speed $\omega=20 \mathrm{rad} / \mathrm{sec}$ using a string of length

50 cm . If the frequency of sound from the whistle is 385 Hz , what is the minimum
frequency heard by an observer which is far away from the centre. Velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$
A. 385 Hz
B. 394 Hz
C. 374 Hz
D. 333 Hz

Answer: C

D Watch Video Solution
69. The equation of wave travelling in a string
can be written as $\mathrm{y}=3 \cos \pi(100 \mathrm{t}-\mathrm{x})$. Its
wavelength is :
A. 2 cm
B. 5 cm
C. 100 cm
D. None

Answer: A

- Watch Video Solution

70. Quality of sound depends upon:
A. frequency
B. overtones
C. amplitude
D. none of these

Answer: B

D Watch Video Solution
71. If foundamental frequency of closed pipe is

50 Hz , then frequency of second overtione is:
A. 100 Hz
B. 250 Hz
C. 50 Hz
D. 150 hz

Answer: B

- Watch Video Solution

72. The waves produced by a motorboat, sailing in water, are :
A. stationary
B. longitudinal
C. transverse
D. both (b) and (c)

Answer: D

D Watch Video Solution

73. When tuning fork is vibrating the vibration

 of two tuning prongs :A. differ in phase by $\pi / 4$
B. differ in phase by π
C. are in same phase
D. differ in phase $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

74. A source of sound S is moving with a velocity $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer.

The observer measures the frequency of the source as 1000 Hz . What will be the apparent
frequency of the source when it is moving away from the observer after crossing him : the velocity of soudn in the medium is $350 \mathrm{~m} / \mathrm{s}$
A. 1333 Hz
B. 1143 Hz
C. 857 Hz
D. 750 Hz

Answer: D

Multiple Choice Questions Level li

1. A stone is dropped into a well and sound of impact of stone with water is heard after 2.056 second of the release of stone from top If g $980 \mathrm{~cm} / \mathrm{s}^{2}$ and velocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

Then depth of well is :
A. 19.6 m
B. 9.8 m
C. 30 m

D. 7 m

Answer: A

D Watch Video Solution

2. A road runs between two parallel rows of buildings. A motorist moving with speed of 36 km / h sounds the horn. He hears the echo one second after he sounds the horn. He hears the echo one second after he sounded the horn. If
speed of sound is $330 \mathrm{~m} / \mathrm{s}$ then distance between two rows of buildings is :
A. 330 m
B. $2 \sqrt{(165)^{2}-(5)^{2}} \mathrm{~m}$
C. 165 m
D. $\sqrt{(165)^{2}-(5)^{2}} \mathrm{~m}$

Answer: B
3. There are three source of sound of equal intensities with frequencies 400,401 and 402 Hz . The no. of beats per second is :
A. 0
B. 1
C. 2
D. 3

Answer: B

D Watch Video Solution
4. The velocity of sound in gas in which two waves of wavelength 1.0 m and 1.01 m produces 4 beats/s is :
A. $360 \mathrm{~m} / \mathrm{s}$
B. $404 \mathrm{~m} / \mathrm{s}$
C. $1010 \mathrm{~m} / \mathrm{s}$
D. $440 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
5. A tunning fork produces 4 beats $/ \mathrm{s}$ both with

50 and 40 cm of a stretched wire of sonometer. The frequency of fork is :
A. 36 Hz
B. 50 Hz
C. 90 Hz
D. 110 Hz

Answer: A

- Watch Video Solution

6. A tunning fork of frequency 500 Hz is sounded on a resonance tube. The first \& second resonances are obtained at 17 cm and 52 cm . The velocity of sound in m / s :
A. 170
B. 350
C. 520
D. 850

Answer: B
7. A whistling engine is approaching a stationary observer with velocity $110 \mathrm{~m} / \mathrm{s}$. The velocity of sound is $330 \mathrm{~m} / \mathrm{s}$. The ratio of frequencies as heard by observer at the time of approaching and passing of engine is :
A. $4: 3$
B. 3:6
C. 4:1
D. 2:1

Answer: D

D Watch Video Solution

8. The spectral line for a given element in light received from a distance star is shifted towards longer wavelength by 0.32 \% . What is
velocity of star if C $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
A. $9.6 \times 10^{4} \mathrm{~m} / \mathrm{s}$
B. $9.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$
C. $9.6 \times 10^{3} \mathrm{~m} / \mathrm{s}$
D. $9.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$.

Answer: D

- Watch Video Solution

9. Two sources of intensities ratio $25: 1$
interfere. The ratio of intensities at maxima
and minima will be :
A. $9: 4$
B. 1:5
C. $2: 1$
D. 5:1

Answer: A

D Watch Video Solution

10. A fork gives 5 beats with a 40 cm length of sonometre wire. If the length of the wire is
shortened by 1 cm , the number of beats is still the same. The frequency of the fork is :
A. 385 Hz
B. 600 Hz
C. 395 Hz
D. 400 Hz

Answer: C

D Watch Video Solution

11. A certain string will resonate to several frequencies, the lowest of which is 200 Hz .

What are the next three higher frequency to which it resonates?
A. $400,600,800$
B. $100,200,300$
C. 50, 150,300
D. $200,250,300$

Answer: A

D Watch Video Solution
12. A man is watching two trains one leaving and other approaching with equal velocities of
$4 m s^{-1}$. If they sound their whistles each of natural frequency 240 hz , the number of beats
heard per seceond by the mas will be (velocity of sound in air $320 m s^{-1}$):
A. 6
B. 12
C. 4
D. None of these.

Answer: A

D Watch Video Solution

13. A motor cyclist moving with $30 \mathrm{~km} / \mathrm{h}$ blows
a whistle of 476 Hz towards a cliff. If velocity of
sound is $1220 \mathrm{Km} / \mathrm{h}$, the apparent frequency of the echo heard by him is :
A. 250 Hz
B. 500 Hz
C. 425 Hz
D. 476 Hz .

Answer: B

D Watch Video Solution

14. The vibrations of 4 air columns are as
shown in the fig. the ratio of the frequencies A,

B, C, D is :

A. $12: 6: 3: 4$
B. $1: 2: 4: 3$
C. $4: 2: 3: 1$
D. $6: 2: 3: 4$

Watch Video Solution

15. A wave of frequency 100 Hz travels along a string towards its fixed end. When this wave travels back, after reflection, a node is formed at a distance 10 cm from the fixed end. The speed of the wave (reflected and incedent) is :
A. $5 m^{-1}$
B. $20 m^{-1}$
C. $100 \mathrm{~ms}^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

16. A column of air and a tuning fork give 4
beats per second the fork giving lower frequency note at 15° C. When the temperature falls to $10^{\circ} \mathrm{C}$ the number of beats per second is reduced by one. What is the frequency of fork ?
A. 256 Hz
B. 220 Hz

C. 110 Hz

D. 440 Hz .

Answer: C

D Watch Video Solution

17. An unknown frequency x produces 8 beats per second with a frequency of 250 Hz 12 betas with 270 Hz source, then x is :
A. 258 hz
B. 242 hz
C. 262 Hz
D. none of these

Answer: A

D Watch Video Solution
18. If an open organ pipe is sounded with a
tuning fork having frequency 256 Hz
A. $360 \mathrm{~m} / \mathrm{s}$
B. $512 \mathrm{~m} / \mathrm{s}$
C. $524 \mathrm{~m} / \mathrm{s}$
D. all of these

Answer: A
(Watch Video Solution
19. A toothed wheel is rotated at 120 r.p.m and a post-card is placed aginest the teeth. How many teeth (frequency) must the wheel have to produce a note whse pitch is same as that of a tunning fork of frequency $256 /$ second ?
A. 256
B. 120
C. 64
D. 32

- Watch Video Solution

20. A source of sound gives five beats per second, when sounded with another source of
frequency $100 s^{-1}$. The second harmonic of the source, together with a source of frequency $205 s^{-1}$ gives five beats per second. What is the frequency of the source ?
A. $105 s^{-1}$
B. $205 s^{-1}$
C. $95 s^{-1}$

D. $100 s^{-1}$.

Answer: A::C

D Watch Video Solution

21. Two whistles $A \& B$ produces notes of
frequencies 660 Hz and 596 Hz respectively.

There is a listener at the middle point of the line joining them. Both the whistles B and the listener start moving with speed $30 \mathrm{~m} / \mathrm{s}$ away
from the whistle A. If speed of sound be 330
m / s, how many beats will be heard by the listener?
A. 2
B. 4
C. 6
D. 8

Answer: B
(Watch Video Solution
22. A string oscilating at foudamental
frequency under a tension of 225 N produces 6
beats per second with a sonometer. If the
tension is 256 N then again oscillating at
fundamental note it produces beats per
second with the same sonometer. What is the frequency of the sonometer?
A. 256
B. 225
C. 280

D. 186

Answer: D

D Watch Video Solution

23. Two sirens situated one kilometer apart are producing sound of frequency 330 Hz . An observer starts moving from one siren to the other with a speed of $2 \mathrm{~m} / \mathrm{s}$. if the speed of sound be $330 \mathrm{~m} / \mathrm{s}$. What will be the beat frequency heard by the observer ?
A. 8
B. 4
C. 6
D. 1

Answer: B

D Watch Video Solution

24. Standing waves are produced in a 10 m
long stretched string. If the string vibrates in 5

frequency is :

A. 2 Hz
B. 4 Hz
C. 5 Hz
D. 10 Hz

Answer: C
(Watch Video Solution
25. The apparent frequency of a note is 200 Hz .

When a listener is moving with a velocity of 40
$m s^{-1}$ towards a stationary source. When he moves away from the same source with the same speed, the apparent frequency of the same note is 160 Hz . The velocity of sound in air in $\mathrm{m} / / \mathrm{s}$ is
A. 360
B. 330
C. 320
D. 340

Answer: A

D Watch Video Solution

26. A pipe open at both ends produces a note of frequency f_{1}. When the pipe is kept with $\frac{3}{4}$ th of its length in water, it produces a note of frequency f_{2} The ratio $\frac{f_{1}}{f_{2}}$ is :
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{1}{2}$
D. 2

Answer: C

D Watch Video Solution

27. A wire is made by welding two wires (radius
r and $2 r$) at one of its end. On using this
combined wire in the sonometer, under
tension T the welding point is just in middle of
the bridges. On vibrating stationary waves are produced. If welding points is a node then the ratio
A. $2: 3$
B. $2: 5$
C. $3: 2$
D. $1: 2$

Answer: D

D View Text Solution
28. A car sounding its horn at 480 Hz moves
towards a high wall at a speed of $20 \mathrm{~ms}^{-1}$. If
the speed of sound is $340 \mathrm{~ms}^{-1}$, the frequency
of the reflected sound heard by the passenger
sitting in the car will be nearest to
A. 480 Hz
B. 540 Hz
C. 510 Hz
D. 570 Hz

Answer: B

- Watch Video Solution

29. Statement -I : Sound waves cannot propagate through vecuum but ligth can .

Satement -II : Sound waves cannot be polarised but light can be polarised.
A. Statement - is true, Statement -II is true
and

Statement -I is correct explanation for

Statement -II.
B. Statement-I is true, Statement-II is true
and

Statement -II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false and

D. Statement-I is false, Statement-II is false.

Answer: B

30. Statement -I : When we statrt filling the empty bucket with water, then the pitch of sound waves produced keeps on decreasing Statement-II : The frequency of boy's voice is usually greater than that of girls's voice.
A. Statement I- is true, Statement -II is true
and

Statement -I is correct explanation for

Statement -II.
B. Statement-I is true, Statement-II is true
and

Statement -II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false and

D. Statement-I is false, Statement-II is false.

Answer: D

31. Statement-I : The velocity of sound in a medium increases with the presence of moisture.

Statement -II : Velocity of sound does not depend upon the nature of medium .
A. Statement -I is true, Statement -II is true
and

Statement -I is correct explanation for

Statement -II.
B. Statement-I is true, Statement-II is true
and

Statement -II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false and

D. Statement-I is false, Statement-II is false.

Answer: C

32. Statement-I : sound waves of frequency
less than 20 Hz is not audiable to human beings.

Statement-II : infra sonic waves are produced during earthquakes.
A. Statement -I is true, Statement -II is true
and

Statement -I is correct explanation for

Statement -II.
B. Statement-I is true, Statement-II is true
and

Statement -II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false and

D. Statement-I is false, Statement-II is false.

Answer: B

33. Statement -1 : During thunderstoms light is
seen much eartear than the hearing of sound.

Statement-II : Speed of light is much more thant speed of sound.
A. Statement -1 is true, Statement -II is true and

Statement -I is correct explanation for

Statement -II.
B. Statement-I is true, Statement-II is true
and

Statement -II is not correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false
and

D. Statement-I is false, Statement-II is false.

Answer: A

D Watch Video Solution

34. Read the following paragraph and answer the following questions :

In a reaonance tube apparatus a tunning fork of unknown frequency after striking with a rubber pad is held near the open end of resonance tube. The airm column of resonance
tube can be varied. For definite length of air column is resonance tube. the airm column of resonance tube can be varied. For definite length of air column in resonance tube, standing waves are set up due to superposition of sound arives travelling in
oppositc directions. the smallest value of length of air column which intensity of sound is maximum is 10 cm . Take speed of sound 344 m / s.

The frequency of tunning fork used in the above experiment is :
A. 533 Hz
B. 860 Hz
C. 960 Hz
D. 1090 Hz .

- Watch Video Solution

35. Read the following paragraph and answer the following questions:

In a reaonance tube apparatus a tunning fork of unknown frequency after striking with a rubber pad is held near the open end of resonance tube. The airm column of resonance tube can be varied. For definite length of air column is resonance tube. the airm column of resonance tube can be varied. For definite length of air column in resonance tube,
standing waves are set up due to superposition of sound arives travelling in oppositc directions. the smallest value of length of air column which intensity of sound is maximum is 10 cm . Take speed of sound 344 m / s.

The frequency of second overtone is :
A. 2580 Hz
B. 1720 Hz
C. 4300 Hz
D. 3420 Hz .

Answer: C

- Watch Video Solution

36. Read the following paragraph and answer the following questions :

In a reaonance tube apparatus a tunning fork of unknown frequency after striking with a rubber pad is held near the open end of resonance tube. The airm column of resonance tube can be varied. For definite length of air column is resonance tube. the airm column of
resonance tube can be varied. For definite
length of air column in resonance tube, standing waves are set up due to superposition of sound arives travelling in oppositc directions. the smallest value of length of air column which intensity of sound is maximum is 10 cm . Take speed of sound 344 m / s.

Find the number of times, intensity is maximum in time interval of 1 sec .
A. 4
B. 6
C. 8
D. 0

Answer: A

D View Text Solution

37. Read the following paragraph and answer the following questions:

In a reaonance tube apparatus a tunning fork of unknown frequency after striking with a rubber pad is held near the open end of
resonance tube. The airm column of resonance
tube can be varied. For definite length of air column is resonance tube the airm column of resonance tube can be varied. For definite length of air column in resonance tube, standing waves are set up due to superposition of sound arives travelling in oppositc directions. the smallest value of
length of air column which intensity of sound
is maximum is 10 cm . Take speed of sound 344 m / s.

Find wave velocity of sound :
A. $100 \mathrm{~m} / \mathrm{s}$
B. $192 \mathrm{~m} / \mathrm{s}$
C. $200 \mathrm{~m} / \mathrm{s}$
D. $96 \mathrm{~m} / \mathrm{s}$

Answer: C

D View Text Solution
38. Read the following paragraph and answer the following questions:

In a reaonance tube apparatus a tunning fork
of unknown frequency after striking with a rubber pad is held near the open end of resonance tube. The airm column of resonance tube can be varied. For definite length of air column is resonance tube the airm column of resonance tube can be varied. For definite length of air column in resonance tube, standing waves are set up due to superposition of sound arives travelling in oppositc directions. the smallest value of length of air column which intensity of sound is maximum is 10 cm . Take speed of sound 344 m / s.

Find the number of times $y_{1}+y_{2}=0$ at $\mathrm{x}=0$ in 1 sec .
A. 100
B. 46
C. 192
D. 95

Answer: D

D View Text Solution
39. An aluminium rod of length 90 cm is clamped at its midpoint and is set into
longitudinal vibrations by stroking it with resined cloth. Assume that the rod vibrates in
its fundamental mode of vibration . The density of aluminium is $2600 \mathrm{~kg} / \mathrm{m}^{3}$ and its

Young's modulus is $7.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.

The speed of sound in aluminium is :
A. $548 \mathrm{~m} / \mathrm{s}$
B. $5480 \mathrm{~m} / \mathrm{s}$
C. $54.5 \mathrm{~m} / \mathrm{s}$
D. $5.48 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

40. An aluminium rod of length 90 cm is
clamped at its midpoint and is set into
longitudinal vibrations by stroking it with resined cloth. Assume that the rod vibrates in
its fundamental mode of vibration. The
density of aluminium is $2600 \mathrm{~kg} / \mathrm{m}^{3}$ and its
Young's modulus is $7.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.

The wavelength of sound produced in the rod is :
A. 80 cm
B. 120 cm
C. 100 cm
D. 180 cm

Answer: D
41. An aluminium rod of length 90 cm is clamped at its midpoint and is set into longitudinal vibrations by stroking it with resined cloth. Assume that the rod vibrates in its fundamental mode of vibration . The density of aluminium is $2600 \mathrm{~kg} / \mathrm{m}^{3}$ and its Young's modulus is $7.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
the frequency of the sound produced in air is :

A. 3050 Hz

B. 305 Hz

C. 30.5 Hz
D. 3.05 Hz

Answer: A

D Watch Video Solution

42. An aluminium rod of length 90 cm is
clamped at its midpoint and is set into
longitudinal vibrations by stroking it with resined cloth. Assume that the rod vibrates in
its fundamental mode of vibration . The density of aluminium is $2600 \mathrm{~kg} / \mathrm{m}^{3}$ and its

Young's modulus is $7.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.

The wavelength of sound produced in air is :
A. 11.1 cm
B. 111 cm
C. 1.11 cm
D. 0.111 cm

Answer: A
43. A siren placed at a railwary platform is emitting sound of frequency 5 k Hz . A passenger sitting in a moving train approaches the siren. During his return journey in a different train B, he records a frequency of 6.0 K Hz . While approaching the same siren. The ratio of velocity of train B to the velocity of train A is :
A. $242 / 252$
B. 43957
C. 2
D. 44141

Answer: C

D Watch Video Solution

44. A tuning fork of known frequency 256 Hz makes 5 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats/s when the tension in the
piano string is slightly increased. The frequency of the piano string before increasing the tension was:
A. $(256+2) \mathrm{Hz}$
B. (256-5) Hz
C. (256-2) Hz
D. $(256+5) \mathrm{Hz}$

Answer: B

D Watch Video Solution
45. A mctal wire of linear mass density $9.8 / \mathrm{m}$ is stretched with a tension of 10 kg wt between two rigid supports 1 metre apart. The wire passes at its middle point between the poles of a permanent magnet and it vibreates in resonance when carrying an alternating current of frequency n. the frequency n of alternating source is :
A. 50 Hz
B. 200 Hz
C. 100 hz

D. 25 Hz

Answer: A

D Watch Video Solution

46. the displacement y of a particle in a medium can be expressed as
$\mathrm{y}=10^{-6} \sin \left(100 t+20 x+\frac{\pi}{4}\right) \mathrm{m}$ where t is in seconds and x in metre

The speed of wave is :
A. $2000 \mathrm{~m} / \mathrm{s}$
B. $50 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $5 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

47. An observer moves towards a stationary source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 0.2
B. 0.05
C. 0.005
D. zero

Answer: A

D Watch Video Solution

48. Paragraph : A particle vibrates in S.H.M. along a straight line. Its velocity is $4 \mathrm{~cm} / \mathrm{s}$
when its displacement is 3 cm and velocity is 3
cm / s when displacement is 4 cm .

Two simple harmonic motions are represented
by the equations $y_{1}=0.1 \sin (100 \pi t+\pi / 3)$
and $\mathrm{y}=0.1 \cos \pi t$. The phase difference of the
velocity of particle 1 with respect to the
velocity of particle 2 is :

> A. $\frac{\pi}{6}$
> B. $\frac{-\pi}{3}$
> C. $\frac{\pi}{3}$
> D. $\frac{-\pi}{6}$

- Watch Video Solution

49. A string is stretched between fixed points separated by 75 cm . It is observed to have a resonant frequencies of 420 Hz and 315 Hz .

There are no other resonant frequences between these two. Then the lowest resonant frequency for this string is :
A. 105 Hz
B. 1.05 Hz
C. 1050 Hz

D. 10.5 Hz

Answer: A

D Watch Video Solution

50. A sound absorber attenuates the sound
level by 20 dB . The intensity decreases by a
factor of :
A. 10000
B. 10

C. 100

D. 1000

Answer: C

D Watch Video Solution

51. A wave travelling along the x-axis is described by the equation $y(x, t)=0.005 \cos$
$(\alpha x-\beta t)$. If the wavelength and the time period of the wave are 0.08 m and 2.0 s ,
respectively, then α and β in appropriate units are :
A. $\alpha=25.00 \pi, \beta=\pi$
B. $\alpha=\frac{0.08}{\pi}, \beta=\pi \frac{2.0}{\pi}$
C. $\alpha=\frac{0.04}{\pi}, \beta=\pi \frac{1.0}{\pi}$
D. $\alpha=12.50 \pi, \beta=\frac{\pi}{2.0}$

Answer: A

D Watch Video Solution

52. Three sound waves of equal amplitudes
have frequencies $(v-1), v,(v+1)$. They
surperpose to give beats. The number of beats
produced per second will be :
A. 3
B. 2
C. 1
D. 4

Answer: C
53. A motor cycle starts from rest and accelerates along a straight path at $2 \mathrm{~m} / \mathrm{s}^{2}$. At the starting point of the motoer cycle there is
a stationary electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at 94% of its value when the motor cycle was at rest ? (speed of sound $=330 \mathrm{~ms}^{-1}$)
A. 146 m
B. 196 m

C. 49 m

$$
\text { D. } 98 \text { m }
$$

Answer: D

D Watch Video Solution

54. A transvers sinusoidal wave move along a string in the positive x-direction at a speed of
$10 \mathrm{~cm} / \mathrm{s}$. The wavelength of the wave is 0.5 m and its amplitude is 10 cm . At a particular time t, the snap-shot of the wave is shown in
figure . The velocity of point P when its displacement is 5 cm is :

A. $\frac{\sqrt{3 \pi}}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
B. $-\frac{\sqrt{3 \pi}}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
C. $\frac{\sqrt{3 \pi}}{50} \hat{i} \mathrm{~m} / \mathrm{s}$
D. $-\frac{\sqrt{3 \pi}}{50} \hat{i} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

55. A 20 cm long string, having a mass of 1.9 g ,
is fixed at both the ends. The tesion in the string is 0.5 N . The string is set into vibrations using an external vibrator of frequency 100 Hz .

Find te separation (in cm) between the successive nodes on the string .

B. 10 cm

C. 15 cm
D. 20 cm

Answer: A

D Watch Video Solution

56. A hollow pipe of length 0.8 m is closed at one end. At its open end a 0.5 m long uniform string as vibrating in its second harmonic and
of te pipe. If the tension in the wire is 50 N and the speed of sound is $320 \mathrm{~ms}^{-1}$ the mass of the string is :
A. 5 grams
B. 10 grams
C. 20 grams
D. 40 grams

Answer: B

- Watch Video Solution

57. A source of sound producing wavelength

50 cm is moving away from a stationay
observer with $\left(\frac{1}{5}\right)^{t h}$ speed of sound. Then what is the wavelength of sound received by the observer?
A. 55 cm
B. 40 cm
C. 60 cm
D. 80 cm

- Watch Video Solution

58. A train moving towards a hill at a spped 72 $\mathrm{km} / \mathrm{her}$ sounds a whistle of frequency 500 Hz .

A wind is blowing from the hill at a speed of 36 $\mathrm{km} / \mathrm{hr}$. If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$, the frequency heard by a man on the hill is
A. 532.5 Hz
B. 565.0 Hz
C. 516.0 Hz

D. None of the these .

Answer: A

- Watch Video Solution

59. A vibrating tuning fork generates a wave given by $\mathrm{y}=0.1 \sin \pi(0.1 \mathrm{x}-2 \mathrm{t})$, Where x and y
are in metre and t is in second. The distance travelled by the wave while the fork completes

30 vibrations is :
A. 600 m
B. 36 m
C. 20 m
D. 200 m

Answer: A

- Watch Video Solution

60. If the tension and diameter of a sonometer
wire of fundamental frequency vare doubled
and density is halved, then its fundamental
frequency will become
A. v/4
B. v
C. $\sqrt{2} v$
D. $\mathrm{v} / \sqrt{2}$

Answer: B

D Watch Video Solution

61. A string in a musical instrument is 50 cm
long and its fundamental frequency is 800 Hz .

If a frequency of 1000 Hz is to be produced,
then required length of string is :
A. 62.5
B. 50 cm
C. 40 cm
D. 37.5 cm

Answer: C
(Watch Video Solution
62. An observer moves towards a stationary source of sound with speed $\frac{1}{5}$ th of the speed of sound. The wavelength and frequency of sound emitted are λ and f respectively. The apparent frequency and wavelength recorded by the observer are respectively :
A. $1.2 \mathrm{f}, 1.2 \lambda$
B. f,1.2 λ
C. $1.2 f, \lambda$
D. $0.8 f, 0.8 \lambda$.

Answer: C

D Watch Video Solution

63. A person hears the sound of a jet aeroplane after it has passed over his head.

The angle of the jet plane with the horizontal when the sound appears to be coming vertically downwards is 60°. If the velocity of sound is v, then the velocity to the jet plane is
A. V
B. $v \sqrt{3}$
C. 2 v
D. $\sqrt{2} \mathrm{v}$.

Answer: B

D Watch Video Solution

64. A stone is hung in air from a wire which is
stretched over a sonometer. The bridges of
the sonometer are 40 cm apart when the wire
is in unison with a tuning fork of frequency
65. When the stone is completely immersed in water, the length between the bridges is 22 cm for re-establishing unison. The specific gravity of the material of the stone is :

$$
\begin{aligned}
& \text { A. } 256 \times \frac{40}{22} \\
& \text { B. } \frac{(40)^{2}}{(40)^{2}+(22)^{2}} \\
& \text { C. } \frac{(40)^{2}}{(40)^{2}-(22)^{2}} \\
& \text { D. } 256 \times \frac{22}{40}
\end{aligned}
$$

65. The intensity of a sound wave while passing through an elastic medium falls down by 10% as it covers one meter distance through the medium. If the initial intensity of the sound wave was 100 db its value after it has passed through 3 meter thickness of the medium will be
A. 60 decibel
B. 72.9 decibel

C. 81 decibel

D. 70 decibel.

Answer: B

D Watch Video Solution

66. A string of length 0.4 m and mass $10^{-2} \mathrm{~kg}$
is tightly clamped at its ends. The tension in
the string is 1.6 N . Identical wave pulses are produced at one end in equal intervals of
times Δt. the minimum value of Δt, which
allows constructive interference between
successive pulses, is :
A. 0.05 s
B. 0.20 s
C. 0.40 s
D. 0.10 s

Answer: D
(Watch Video Solution
67. An organ pipe enclosed at one end has
fundamental frequency of 1500 Hz . The maximum number of overtones generated by
this pipe which a normal person can hear, is :
A. 6
B. 11
C. 9
D. 13

Answer: A
68. The amplitude of wave distance propagating in the positive X -direction is given by $\mathrm{y}=\frac{1}{(1+x)^{2}}$ at time $\mathrm{t}=0$ and $\mathrm{y}=$ 1 $1+(x-1)^{2}$ at $\mathrm{t}=1$ seconds here x and y are
in metre. The shape of wave disturbance does not change during propagation. The velocity of wave is :
A. $2 m s^{-1}$

$$
\text { B. } 15 m s^{-1}
$$

C. $1 m s^{-1}$
D. $0.5 m s^{-1}$

Answer: D

- Watch Video Solution

69. A stationary wave on a stretched string has
an equation given by $\mathrm{y}=10 \sin \frac{2 \pi x}{3} \cos 8 \pi \mathrm{t}$,
where x and y are in cm and t is in second.
Then separation between the two adjacent nodes is given by :
A. 1.5 cm
B. 3 cm
C. $\frac{1}{3} \mathrm{~cm}$
D. $\frac{1}{6} \mathrm{~cm}$

Answer: A

D Watch Video Solution

70. The wave described by $y=0.25 \mathrm{sin}$
$(10 \pi x-2 \pi t)$ where x and y are in metres and
t in seconds, is a wave travelling along the :
A. + ve x -direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$.
B. + ve x-direction with frequency 1 Hz
and wavelength $\lambda=0.2 \mathrm{~m}$.
C. - ve x-direction with amplitude 0.25 m
and wavelength $\lambda=0.2 \mathrm{~m}$
D. - vex-direction with frequency 1 Hz .

Answer: B

D Watch Video Solution

71. The driver of a car travelling with speed 30 $\mathrm{m} / \mathrm{sec}$ towards a hill sounds a horn of frequency 600 Hz . If the velocity of sound in air $330 \mathrm{~m} / \mathrm{s}$, the frequency of reflected sound as heard by driver is :
A. 555.5 Hz
B. 720 Hz
C. 500 Hz
D. 550 Hz

- Watch Video Solution

72. Each of the two strings of length 51.6 cm and 49.1 cm are tensioned separately by 20 N
force. Mass per unit length of both the strings
is same and equal to $1 \mathrm{~g} / \mathrm{m}$. When both the strings vibrate simultaneously the number of beats is :
A. 7
B. 8
C. 3
D. 5

Answer: A

D Watch Video Solution

73. Two sources of sound placed close to each
other, are emitting progressive waves given by
$y_{1}=4 \sin 600 \pi t$ and $y_{2}=5 \sin 608 \pi t$

An observer located near these two sources of sound will hear :
A. 4 beats per sound with intensity ratio 81
: 1 between waxing and waning
B. 4 beats per sound with intensity ratio 25
: 16 between waxing and waning
C. 8 beats per sound with intensity ratio 25
: 16 between waxing and waning
D. 8 beats per sound with intensity ratio 81
: 1 between waxing and waning

Answer: A

Multiple Choice Questions Level if

1. The transverse displacement $y(x, t)$ of a wave on a string is given by $y(x, t)=$ $e^{-\left(a x^{2}+b t^{2}+2 \sqrt{\mathrm{abxt}}\right)}$. This represents a :
A. wave moving in $-x$ direction with speed

$$
\sqrt{\frac{b}{a}}
$$

B. Standing wave of frequency \sqrt{b}
C. Standing wave of frequency $\frac{1}{\sqrt{b}}$

D. wave moving in $+x$ direction with speed

$$
\sqrt{\frac{a}{b}}
$$

Answer: A

D Watch Video Solution

2. A travelling wave represented by $y=A \sin$
$(\omega t-k x)$ is superimposed on another wave
represented by $\mathrm{y}=\mathrm{A} \sin (\omega t+k x)$. the resultant is :
A. A wave travelling along $+x$ direction
B. A wave travelling along - x direction
C. A standing wave having nodes at $\mathrm{a}=\frac{n \lambda}{2}$

$$
\text { , n = 0, 1, } 2 \ldots
$$

D. A standing wave having nodes at $\mathrm{x}=$

$$
\left(n+\frac{1}{2}\right) \frac{\lambda}{2}, \mathrm{n}=0,1,2 \ldots . .
$$

Answer: D

D Watch Video Solution

3. Statement-1 :

Two longitudinal waves given by equations: y_{1}
(x, t)
$=\quad 2$
a
\sin
$(\omega t-k x)$ and $y_{2}(x, t)=a \sin (2 \omega t-2 k x)$
will have equal intensity .

Statement -2 :

Intensity of waves of given frequency in same medium is proportional to square of amplitude only .
A. Satement-I is true, statement -II is false.
B. Statement ו- is true, Statement -II is true,

Statement -II is the correct explanation of Statement -I.
C. Statement $-I$ is true, Statement $-I I$ is true,

Statement -II is not the correct
explanation of Statement -I.

D. Statement-I is false, Statement-II is true.

Answer: A

D Watch Video Solution

4. A police car with a siren of frequency 8 khz is moving with uniform velocity $36 \mathrm{~km} / \mathrm{hr}$ towards a tall building which reflects the sound waves. The speed of sound in air is 320 m / s. The frequency of the siren heard by the car driver is
A. 8.50 kHz
B. 8.25 kHz
C. 7.75 kHz
D. 7.50 kHz

Answer: A

D Watch Video Solution

5. A cylindrical tube, open at both ends has a
fundamental frequency f in air. This tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now
A. $2 f$
B. f

C. fl 2

$$
\text { D. } 3 \text { f } 4
$$

Answer: B

D Watch Video Solution

6. A sonometre wire of length 1.5 m is made of
steel. The tension in it produces an elastic
strain of 1%. What is the fundamental
frequency of steel if density and elasticity of
steel are $7.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $2.2 \times 10^{11} \mathrm{~N} /$ m^{2} respectively?
A. 178.2 Hz
B. 200.5 Hz
C. 770 Hz
D. 188.5 Hz

Answer: A

- Watch Video Solution

7. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column is the pipe whose frequencies lie below 1250 Hz . The velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
A. 4
B. 12
C. 8
D. 6

- Watch Video Solution

8. A train is moving on a straight track with
speed $20 \mathrm{~ms}^{-1}$. It is blowing its whistle at the
frequency of 1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound $=320 \mathrm{~ms}^{-1}$) close to :
A. 12%
B. 0.18
C. 0.24

D. 0.06

Answer: A

- Watch Video Solution

Recent Competitive Questions

1. A bat flies at steady speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$
emitting a sound of $f=90 \times 10^{3}$. Hz it is
flying horizontally towards a vertical wall. The frequency of the reflected sound as detected

by the bat will be

(Take velocity of sound in air as $330 \mathrm{~m} \mathrm{~s}^{-1}$)
A. $92.1 \times 10^{3} \mathrm{~Hz}$
B. $89.1 \times 10^{3} \mathrm{~Hz}$
C. $88.1 \times 10^{3} \mathrm{~Hz}$
D. $87.1 \times 10^{3} \mathrm{~Hz}$

Answer: A
(Watch Video Solution
2. A clsoed organ pipe and an open organ pipe of same length produce 2 beats /second while vibrating in their fundamental modes. The length of the open organ pipe is halved and that of closed pipe is doubled. Then the number of beats produced per second while vibrating in the fundamental mode is :
A. 8
B. 7
C. 2
D. 6

Answer: B

D Watch Video Solution

3. A uniform wire of length L, diameter D and
density ρ is stretched under a tension T. The correct relation between its fundamental frequency ' f ', the length L and the diameter
D is

$$
\text { A. } f \propto \frac{L}{D^{2}}
$$

B. $f \propto \frac{1}{D^{2}}$
C. $f \propto \frac{1}{L D}$
D. $f \propto \frac{1}{L \sqrt{D}}$

Answer: C

D Watch Video Solution

4. The equation of a wave is given by
$y=10 \sin \left(\frac{2 \pi}{45} t+\alpha\right)$
If the displacement is 5 cm at $\mathrm{t}=0$,then the total phase at $\mathrm{t}=7.5 \mathrm{sec}$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. π.

Answer: B

D Watch Video Solution

5. Two tuning forks, A and B produce notes of frequencies 258 Hz and $262 \mathrm{~Hz} . A n$ unknown note sounded with A produces certain
beats.When the same note is sounded with B
,th beat frequeny gets doubled.The unknown
frequency
A. 250 Hz
B. 252 Hz
C. 254 Hz
D. 256 Hz .

Answer: C

D Watch Video Solution
6. A wire under tension vibrates with a fundamental frequency of 600 Hz .If the length of the wire is doubled, the radius is halved and the wire is made to vibrate under one-ninth the tension.Then the fundamental frequency will become
A. 200 Hz
B. 300 Hz
C. 600 Hz
D. 400 Hz

Answer: A

D Watch Video Solution

7. Which of the following is incorrect ?

A. If the wave is longitudinal, it must be a
mechanical wave.
B. If the wave is mechanical , it may OR may
not been transverse wave

C. Mechanical waves cannot propagate in

vacuum

D. Diffraction helps us to distinguish between sound wave and light wave.

Answer: D

D Watch Video Solution

8. Intensity level of sound whose intensity is
$10^{-8} W m^{-2}$ is dB
A. 8
B. 4
C. 40
D. 80

Answer: C

D Watch Video Solution

9. The equations of a transverse wave is given by $y=0.05 \sin \pi(2 t-0.02 x)$, where x, y are in metre and t is in second. The minimum
distance of separation between two particles
which are in phase and the wave velocity are respectively.......
A. $50 m 50 m a^{-1}$
B. $100 \mathrm{~m}, 100 \mathrm{~ms}^{-1}$
C. $50 \mathrm{~m}, 100 m s^{-1}$
D. $100 \mathrm{~m}, 50 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution
10. The frequency of the second overtone of the open pipe is equal to the frequency of first overtone of the closed pipe. The ratio of the lengths of the open pipe and the closed pipe is
A. $2: 1$
B. $1: 2$
C. $1: 3$
D. $3: 1$

Watch Video Solution

11. A person with vibrating tuning fork of frequency 338 Hz is moving towards a vertical wall with a speed of $2 \mathrm{~ms}^{-1}$. Velocity of sound in air is $340 \mathrm{~ms}^{-1}$. The number of beats heard by that person per second is
A. 2
B. 4
C. 6
D. 8

Answer: B

D Watch Video Solution

12. A metallic wire of 1 m length has a mass of
$10 \times 10^{-3} \mathrm{~kg}$. If a tension of 100 N is applied to a wire, what is the speed of transverse wave ?
A. $100 m s^{-1}$
B. $10 m s^{-1}$
C. $200 \mathrm{~ms}^{-1}$

D. $0.1 m s^{-1}$

Answer: A

- Watch Video Solution

13. A train is approaching towards a platform with a speed of $10 \mathrm{~m} \mathrm{~s} s^{-1}$ while blowing a whistle of frequency 340 Hz . What is the frequency of whistle heard by a stationary observer on the platform ? Given speed of sound $=340 \mathrm{~ms}^{-1}$.
A. 330 Hz
B. 350 Hz
C. 340 Hz
D. 360 Hz

Answer: B

D Watch Video Solution
14. A pipe of 30 cm long and open at both the ends produces harmonics. Which harmonic
mode of pipe resonates a 1.1 kHz source ?
Given speed of sound in air $=330 m s^{-1}$.
A. Fifth harmonic
B. Fourth harmonic
C. third harmonic
D. Second harmonic

Answer: D
(Watch Video Solution

15. A streched string is vibrating in the second

 overtone, then the number of nodes and antinodes between the ends of the string are respectivelyA. 3 and 2
B. 2 and 3
C. 4 and 3
D. 3 and 4

Answer: B
16. When two tunning forks A and B are sounded together, 4 beats per second are
heard. The frequency of the fork B is 384 Hz .

When one of the prongs of the fork A is filled and sounded with B, the beat frequency increases, then the frequency of the fork A is
A. 388 Hz
B. 389 Hz
C. 380 Hz
D. 379 Hz .

Answer: A

D Watch Video Solution

17. If the surface is a perfect reflector. The change in momentum of the wave after falling on the surface is :
A. P
B. 2 P

C. $1 / 2 \mathrm{P}$

$$
\text { D. }-2 \mathrm{P}
$$

Answer: D

D Watch Video Solution

18. A steel wire has a lengh of 90 cm which is
under a constant tension of 100 N . The speed
of the transverse waves that can be produced
in the wire will be (take the mass of the steel
wire be $6 \times 10^{-3} \mathrm{~kg}$),
A. $50 \mathrm{~m} / \mathrm{s}$.
B. $50 \mathrm{~cm} / \mathrm{s}$
C. $1 / 3 \sqrt{6} \mathrm{~m} / \mathrm{s}$
D. $50 \sqrt{6} \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

