©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MODERN PUBLISHERS CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

SOLVED EXAMPLES

1. Write Lewis dot symbols for the following atoms and ions:
(i) O (ii) O^{2-} (iii) $M g^{2+}$ (iv) P^{3-} (v) $B r$

- Watch Video Solution

2. Write Lewis dot symbols for the following atoms and ions :
(i) S and S^{2-}
(ii) P and P^{3-}
(iii) $A l$ and $A l^{3+}$
(iv) H and H^{-}
(v)
$N a$ and $N a^{+}$
3. Give the Lewis structures and empirical formulae for the ionic compounds formed between the following pairs of elements :
(i) $B a, C l$ (ii) $N a, S$ (iii) $A l, F$ (iv) $M g, N$ (v) $N a, P$

- Watch Video Solution

4. Use Lewis symbols to show electron transfer between the following atoms to form cations and anions :
(i) K and S (ii) Ca and O (iii) Al and N

- View Text Solution

5. Draw Lewis structures for the following molecules and identify the atoms in each of the following which do not obey octet rule :
$\mathrm{H}_{2} \mathrm{~S} \quad \mathrm{SF}_{2} \quad \mathrm{BF} \mathrm{F}_{3} \quad \mathrm{SO}_{2} \quad \mathrm{PCl}_{3}$
6. Calculate the formal charge on each atoms in nitrite ion .

- Watch Video Solution

7. Calculate the formal charge on
(i) Cl in HClO_{4}
(ii) S in HSO_{4}^{-}

- Watch Video Solution

8. Sketch the bond moments and resultant dipole moments in
(i) SO_{2} (ii) cis - and trans of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$

- Watch Video Solution

9. Calculate the percentage ionic and covalent character of HF molecule having bond distance $=0.92 \AA$ and dipole moment $=1.78 D$

- Watch Video Solution

10. The dipole moment of HBr molecule is 0.78 D and the bond distance is $1.41 \AA$. Calculate the fractional charges δ on H and Br atoms in HBr (electronic charge, $e=4.8 \times 10^{-1} \mathrm{esu}$).

- View Text Solution

11. The dipole moment of lithium hydride is $1.962 \times 10^{-29} \mathrm{~cm}$ and interatomic distance between Li and H in the molecule is 0.1592 nm .

Calculate the percentage ionic character of the molecule.

- Watch Video Solution

12. What is the total number of sigma and pi bond in the following molecules:
(i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(ii) $\mathrm{H}_{3} \mathrm{C}-\stackrel{H}{\mathrm{C}} \stackrel{\stackrel{H}{\mathrm{C}}=}{\stackrel{1}{\mathrm{C}}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

- Watch Video Solution

13. Which hybrid orbitals are used by carbon atoms in the following molecules?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$,(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$,(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$,
(d) $\mathrm{CH}_{3}-\mathrm{CHO}$,(e) $\mathrm{CH}_{3}-\mathrm{CHO}$ (f) $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

14. Is there any change in hybridisation of the B and N atom as a result of the following reaction?
$\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{~F}_{3} \mathrm{~B} . \mathrm{NH}_{3}$

- Watch Video Solution

15. Label the molecular orbitals formed by the following combinations of atomic orbitals (Assume z - axis as internuclear axis):
(i) $2 s+2 s$
(ii) $2 p_{x}-2 p_{x}$
(iii) $2 p_{z}+2 p_{z}$
(iv) $1 s-1 s$
(v) $2 p_{y}+2 p_{y}$.

- Watch Video Solution

16. Arrange the following species in the decreasing order of their bond dissociation enthalpies :
O_{2}, O_{2}^{+}and O_{2}^{-}
17. With the help of molecular orbital theory predict which of the following species are diamagnetic ?
$\mathrm{H}_{2}^{+}, \mathrm{O}_{2} \mathrm{O}_{2}^{2+}$

- Watch Video Solution

18. Explain why N_{2} has a greater bond dissociation energy than N_{2}^{+}while O_{2} has lesser bond dissociation energy than O_{2}^{+}.

- Watch Video Solution

19. Which of the two peroxide ion or superoxide ion has larger bond length ?

- Watch Video Solution

1. Write Lewis dot symbols for atoms of the following elements: $M g, N a, B$, $O, N, B r$.

- Watch Video Solution

2. Write the Lewis dot symbols of the following ions :
$\mathrm{Li}^{+}, \mathrm{Cl}^{-}, \mathrm{O}^{2-}, \mathrm{Mg}^{2-}$ and N^{3-}

- Watch Video Solution

3. Draw Lewis dot symbols for the following elements:
(i) Magnesium
(ii) Phosphorus
(iii) Chlorine
(iv) Boron
(v) Xenon (vi) Silicon

- Watch Video Solution

4. Draw Lewis dot symbols for the elements of third period of the periodic table.

- Watch Video Solution

5. Draw the Lewis structures for the following ionic compounds :
(i) $\mathrm{Li}_{2} \mathrm{O}$ (ii) CaCl_{2} (iii) LiF

- Watch Video Solution

6. Draw the Lewis structures for $\mathrm{K}_{2} \mathrm{O}$ and MgCl_{2}.

- Watch Video Solution

7. Draw Lewis dot structures for the following molecules:
(a) CCl_{4}
(b) $\mathrm{F}_{2} \mathrm{O}$
(c) $P F_{3}$
(d) F_{2}
(e) ClF_{3}
(f) NCl_{3}
(g) HONO

- Watch Video Solution

8. The skeleton structure for acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ is :
$H \quad \underset{H}{H}{\underset{H}{C}}_{\underset{H}{C}} \quad$ O.
Draw its Lewis structure.

Watch Video Solution

9. Draw Lewis structures for the following molecules and ions :
$\mathrm{AlI}_{3}, \quad \mathrm{SiCl}_{4}, \quad \mathrm{CO}_{3}^{2-}, \quad \mathrm{HCOOH}$

- Watch Video Solution

10. Write the Lewis structures for
(i) CO
(ii) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$ (urea)
(iii) $\mathrm{H}_{2} \mathrm{CCH}_{2}$ (ethene)
(iv) HNO_{3}
11. Which molecule is polar in each of the following pairs ?
(i) $H F, F_{2}$
(ii) $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
(iii) n_{2}, NH_{3}
(iv) $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

12. Which of the following hydrogen halides has the most polar bond ?
(i) $H F$
(ii) HCl
(iii) HBr
(iv)HI.

- Watch Video Solution

13. Which of the following moleules have electric dipoles ?
(i) CCl_{4}
(ii) $\mathrm{CHCl}_{3} \quad$ (iii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(i v) \mathrm{CH}_{3} \mathrm{Cl} \quad(v) \mathrm{CH}_{4}$

- Watch Video Solution

14. Predict the dipole moment of :
(i) a molecule of the type $A X_{2}$ having a linear geometry.
(ii) a molecule of the type $A X_{4}$ having tetrahedral geometry.
(iii) a molecule of the type $A X_{2}$ having angular geometry.
(iv) a molecule of the type $A X_{4}$ having square planar geometry.

- Watch Video Solution

15. Arrange the following sets of molecules in the decreasing order of bond angle :
(i) $\mathrm{SF}_{6}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$
(ii) $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}$
(iii) $\mathrm{AlCl}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{BeH}_{2}, \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

16. Out of the following data assign the correct bond angle associated with each of the given compounds.

Compounds
Bond angles
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CCl}_{4}, \mathrm{BF}_{3} \quad 180^{\circ}, 109^{\circ} 28^{\prime}, 104.5^{\circ}$,
$\mathrm{BeF}_{2}, \mathrm{AlCl}_{3}, P F_{5}, S F_{6} \quad 107^{\circ}, 120^{\circ}, 90^{\circ}$
$\mathrm{NH}_{3}, \mathrm{CH}_{4}$

Watch Video Solution

17. Give one example each of molecules which have the following geometries:
(a) Linear
(b) Trigonal bipyramidal
(c) Tetrahedral.

- Watch Video Solution

18. If z - axis is the internuclear axis, which of the following combinations are not allowed ?
(i) 2 s and 2 s (ii) 1 s and $2 p_{x}$ (iii) $2 p P_{y}$ and $2 p_{y}$
(iv) $2 p_{x}$ and $2 p_{z}$ (v) $2 p_{z}$ and $2 p_{z}$ (vi) $2 s$ and $2 p_{z}$
(vii) $2 p_{x}$ and $2 p_{y}$.
19. Which out of O_{2}^{+}and O_{2}^{-}is more stable?

- Watch Video Solution

20. Arrange the following in the increasing order of bond length :
$O_{2}, O_{2}^{-}, O_{2}^{+}$

- Watch Video Solution

21. Calculate the bond order in
(i) H_{2}^{+}(ii) H_{2}^{-}and H_{2}^{2-} have the same bond order?

- Watch Video Solution

22. Which two of $\mathrm{H}_{2}^{+}, \mathrm{H}_{2}^{-}$and H_{2}^{2-} have the same bond order ?
23. Compare bond order in N_{2} and N_{2}^{+}.

- Watch Video Solution

24. Calculate bond order in N_{2} and N_{2}^{+}.

- Watch Video Solution

25. Calculate the bond order of He_{2}^{+}molecular ion.

- View Text Solution

26. Write which out of O_{2}^{+}and O_{2}^{-}is more stable.
27. Indicate which one from O_{2}^{-}and O_{2}^{2-} may exhibit paramagnetism?

- Watch Video Solution

28. Arrange the following in the decreasing order of their boiling points $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$

- Watch Video Solution

29. Do o-nitrophenol and p-nitrophenol have hydrogen bonding in their molecules? Explain which of the two has higher boiling point?

- Watch Video Solution

Conceptual Questions (1)

1. Out of MgO and NaCl , which has higher lattice energy and why?
2. Why is NaCl a bad conductor of electricity in the solid state?

- Watch Video Solution

3. Use Lewis dot symbols to show electron transfer between the following atoms to form cations and anions :
(a) Na and Cl
(b) K and S
(c) $C a$ and O
(d) $A l$ and N
(e) $L i$ and H

- Watch Video Solution

4. Write Lewis dot symbols for the following elements :
$M g, N a, B, O, N, B r$
5. Write Lewis symbol for the following atoms and ions :
S and $S^{2-}, \quad A l$ and $A l^{3+}, \quad H$ and H^{-}

- View Text Solution

6. Write Leiws dot symbols for O and O^{2-}

- Watch Video Solution

7. Which of the two is more hard $: M g O$ or $C a O$? The internuclear distances of MgO and CaO are 2.05 and $2.40 \AA$ respectively.

- Watch Video Solution

8. Why does NaCl give a white precipitate with AgNO_{3} solution but $C C l_{4}$ does not ?

- Watch Video Solution

9. Calculate the formal charge on each atom in
$: \ddot{O}-\ddot{S}=O:$

- Watch Video Solution

10. Identify the compound/compounds in which S does not obey octet rule :
$S O_{2}, S O_{3}, S F_{4}, S F_{6}, S F_{2}, H_{2} S$

- Watch Video Solution

11. How is lattice enthalpy related to stability of an ionic compound?
12. Give one example of a molecule not obeying octet rule.

- Watch Video Solution

Conceptual Questions (2)

1. Out of σ and π - bonds, which one is stronger and why?

- Watch Video Solution

2. Which of the following molecules will have zero dipole moment:
$\mathrm{SiCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{BF}_{3}, \mathrm{NH}_{3}$?

- Watch Video Solution

3. Why $N F_{3}$, is pyramidal while $B F_{3}$ is triangular planar, though both are tetra atomic molecules?

Watch Video Solution

4. Which of the following has larger bond angle in each pair ?
(i) $\mathrm{CO}_{2}, \mathrm{BF}_{3}(i i) \mathrm{NH}_{3}, \mathrm{CH}_{4}(i i i) \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}(i v) \mathrm{SF}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$.

- Watch Video Solution

5. How many σ and π bonds are present in naphthalene?

- Watch Video Solution

6. Draw resonating structures of (i) nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) and (ii) hydrazoic acid $\left(H N_{3}\right)$ molecule.
7. Arrange $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and CH_{4} in the decreasing order of bond angle.

- Watch Video Solution

8. Benzene ring has alternate single and double bonds, yet all the $C-C$ bonds are of equal lengths. Why?

- Watch Video Solution

9. Arrange the following bonds in order of increasing polarity:
$P-H, H-O, C-C l$

- View Text Solution

10. Arrange the following carbon atoms numbered
$C-1, C-2$ and $C-3$ in the decreasing order of s - character :

- Watch Video Solution

11. Select the molecule or ion having larger property mentioned in each of the following pairs :
(a) $\mathrm{NF}_{3}, \mathrm{NH}_{3}$: dipole moment
(b) $\mathrm{NH}_{3}, \mathrm{PH}_{3}$: bond angle
(c) $\mathrm{CO}_{3}, B F_{3}$: bond angle

- Watch Video Solution

12. What type of hybridisation is involved in carbon atoms of benzene?

- Watch Video Solution

13. Indicate4 whether the following statement is TRUE or FALSE. Justify your answer in not more than three lines.

The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

(D) Watch Video Solution

14. Which of the following has maximum bond angle ?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$

- View Text Solution

15. CO_{2} is non - polar while $\mathrm{H}_{2} \mathrm{O}$ is polar. What conclusion do you draw about their structures from these?

- Watch Video Solution

16. Select the correct choice (no reasons)
(a) Which of the two is more hard: MgO or CaO ?
(b) Which of the two has more ionic character : HCl or HBr ?

Watch Video Solution

17. Arrange the following in order of increasing ionic character :

$\mathrm{C}-\mathrm{H}, \mathrm{F}-\mathrm{H}, \mathrm{Br}-\mathrm{H}, \mathrm{Na}-\mathrm{I}, \mathrm{K}-\mathrm{F}$ and $\mathrm{Li}-\mathrm{Cl}$

- Watch Video Solution

18. Arrange the bonds in order of increasing ionic character in the molecules: LiF, $\mathrm{K}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{SO}_{2}$ and ClF_{3}.

- Watch Video Solution

19. Out of $C S_{2}$ and $O C S$ which have higher dipole moment and why?

- Watch Video Solution

20. Which type of hybridisation explain the trigonal bipyramidal shape of $S F_{4}$?
21. Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ may be represented by the following structures
$\overline{:} N=N^{+}=\ddot{O}: \leftrightarrow: N \equiv N^{+}-\ddot{O}:^{-} \leftrightarrow \stackrel{2}{2}^{-} \ddot{N}-N^{+} \equiv O:^{+}$
(a)
(b)
(c)

Which of these contributes least?

- Watch Video Solution

Conceptual Questions (3)

1. In going from O_{2} to O_{2}^{+}, the bond dissociation energy increases and bond length decreases. Do we expect the same behaviour for the change N_{2} to N_{2}^{+}?

- Watch Video Solution

2. Which of the two : O_{2}^{-}or O_{2}^{2-} has higher bond order and why?

- View Text Solution

3. Why is the energy of $\pi 2 p_{x}$ and $\pi 2 p_{y} M O s$ lower than $\sigma 2 p_{x} M O$ in N_{2} molecule?

- Watch Video Solution

4. Which out of O_{2}^{+}and O_{2}^{-}is more stable on the basis of bond order calculations?

- Watch Video Solution

5. Use molecular orbital theory to explain why the $B e_{2}$ molecules do not exist?

- Watch Video Solution

6. Compare the relative stability of the following species and indicate their magnetic properties:
$\mathrm{O}_{2}, O_{2}^{\oplus}, O_{2}^{\ominus}$ (superoxide), O_{2}^{-2} (peroxoide).

- Watch Video Solution

7. What is the effect of the following processes on the bond order of N_{2} and O_{2} ?
(a) $N_{2} \rightarrow N_{2}^{+}+e^{-}$
(b) $O_{2} \rightarrow O_{2}^{+}+e^{-}$

- Watch Video Solution

8. List two main conditions for forming hydrogen bonds.

- Watch Video Solution

9. Why does formic acid exist as dimer? What is its one consequence?

- Watch Video Solution

10. Select the molecule in each of the following having higher property mentioned
(i)F.... . $\mathrm{H}-,-H \ldots \ldots \mathrm{O}$: stronger hydrogen bond
(ii) $\mathrm{CH}_{4}, \mathrm{SiH}_{4} \quad:$ boiling point
(iii) $\mathrm{HF}, \mathrm{HCl} \quad$: boiling point
(iv)Ice, water : density

- Watch Video Solution

11. How can one non - polar molecule induced a dipole in a nearby non polar molecule?

- View Text Solution

12. Considering z - axis as the internuclear axis, which of the following will not form sigma bond?
(a) $2 s$ and $2 s$
(b) $2 p_{y}$ and $2 p_{y}$
(c) $2 s$ and $2 p_{z}$
(d) $2 p_{x}$ and $2 p_{z}$ (e)
$2 p_{z}$ and $2 p_{z}$.

- Watch Video Solution

13. Which of the following substances exhibit bonding? Draw the hydrogen bonds between two moleculas of the substance where appropriate : (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ii) $\mathrm{CH}_{3} \stackrel{O}{\mathrm{C}}-\mathrm{CH}_{3}$ (iii) $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}}-\mathrm{OH}}{ }$ (iv) $\mathrm{CH}_{3}-\stackrel{\stackrel{-}{\mathrm{C}}-\mathrm{NH}_{2}}{ }$

- Watch Video Solution

NCERT FILE (NCERT)(Textbook Exercises)

1. Explain the formation of a chemical bond.

- Watch Video Solution

2. Write Lewis dot symbols for atoms of the following elements: $M g, N a$, $B, O, N, B r$.
3. Write Lewis symbols for the following atoms and ions:
S and $S^{2-}, A l$, and $A l^{3+}, H$ and H^{\ominus}

- Watch Video Solution

4. Draw the Lewis structures for the following molecules and ions:
$\mathrm{H}_{2}{\mathrm{~S}, \mathrm{SiCl}_{4}, \mathrm{BeF}_{2}, \mathrm{CO}_{3}^{2-}, \mathrm{HCOOH}}$

- Watch Video Solution

5. Define octet rule. Write its significance and limitations.

- Watch Video Solution

6. Write the favourable factors for the formation of ionic bond.
7. Discuss the shape of the following molecules using the $V S E P R$ model:

$B e C l ~ l_{2}, B C l_{3}, S i C l_{4}, A s F_{5}, H_{2} S, P H_{3}$

- Watch Video Solution

8. Although geometries of NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ molecules are distorted tetrahedral, bond angle in water is less than that of ammonia. Discuss.

- Watch Video Solution

9. How do you express the bond strength in terms of bond order?

- Watch Video Solution

10. Define the bond length.
11. Explain the important aspects of resonance with reference to the CO_{3}^{2-} ion.

- Watch Video Solution

12. $\mathrm{H}_{3} \mathrm{PO}_{3}$ can be represented by structures I and II shown below. Can these two structures be taken as the canonical forms of the resonance hybride representing $\mathrm{H}_{3} \mathrm{PO}_{3}$? If not, give resonance hybrid representing $\mathrm{H}_{3} \mathrm{PO}_{3}$? If not, give reasons for the same.

- Watch Video Solution

13. Write the resonance structures for $\mathrm{SO}_{3}, \mathrm{NO}_{2}$, and $\mathrm{NO}_{3}^{\ominus}$.

- Watch Video Solution

14. Use Lewis symbols to show electron transfer between the following atoms to form cations and anions: (a) K and S (b) Ca and O (c) Al and N .

- Watch Video Solution

15. Although both CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are triatomic molecules, the shape of $\mathrm{H}_{2} \mathrm{O}$ molecules in bent while that of CO_{2} is linear. Explain this on the basis of dipole moment.

- Watch Video Solution

16. APPLICATION OF DIPOLE MOMENT

- Watch Video Solution

17. Define electronegativity. How does it differ from electron gain enthalpy
18. Explain with the help of suitable example polar covalent bond.

- Watch Video Solution

19. Arrange the bonds in order of increasing ionic character in the molecules : $\mathrm{LiF}, \mathrm{K}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{SO}_{2}$ and ClF_{3}.

- Watch Video Solution

20. The skeletal structure of $\mathrm{CH}_{3} \mathrm{COOH}$ as shown below is correct, but some of the bonds are shown incorrectly. Write the correct Lewis structure for acetic acid.

- Watch Video Solution

21. Apart from tetrahedral geometry, another possible geometry for CH_{4} is square planar with the four H atoms at the corners of the square and the C atom at its centre. Explain why CH_{4} is not square planar?

- Watch Video Solution

22. Explain why BeH_{2} molecule has a zero dipole moment although the $B e-H$ bonds are polar?

(Watch Video Solution

23. Which out of NH_{3} and NF_{3} has higher dipole moment and why?

- Watch Video Solution

24. What is meant by hybridisation of atomic orbitals? Describe the shape of $s p, s p^{2}, s p^{3}$ hybrid orbitals.

Watch Video Solution

25. Describe the change in hybridisation (if any) of the $A I$ atom in the following:
$A l C l_{3}+C l^{\ominus} \rightarrow A l C l l_{4}^{\ominus}$

- Watch Video Solution

26. Is there any change in hybridisation of the B and N atom as a result of the following reaction?
$B F_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{~F}_{3} \mathrm{~B} . \mathrm{NH}_{3}$

- Watch Video Solution

27. Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ molecules.

Watch Video Solution

28. What is the total number of sigma and pi bonds in the following molecules?
(a) $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) $\mathrm{C}_{2} \mathrm{H}_{4}$

- View Text Solution

29. Considering x - axis as the internuclear axis which out of the following will not form a sigma bond and why? (a) 1 s and 1 s (b) 1 s and $2 p_{x}$ (c) $2 p_{y}$ and $2 p_{y}$ (d) sand 2 s .

- View Text Solution

30. Which hybrid orbitals are used by carbon atoms in the following molecules ?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(d) $\mathrm{CH}_{3}-\mathrm{CHO}$
(e) $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

31. What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one example of each type.

- Watch Video Solution

32. Distinguish between a sigma and a pi bond.
33. Explain the formation of H_{2} molecule on the basis of valance bond theory.

Watch Video Solution

34. Use molecular orbital theory to explain why the $B e_{2}$ molecules do not exist?

- Watch Video Solution

35. Compare the relative stability of the following species and indicate their magnetic properties :
$O_{2}, O_{2}^{+}, O_{2}^{-}$(superoxide), O_{2}^{2-} (peroxide).

- View Text Solution

36. Write the significance of a plus and a minus sign shown in representing the orbitals.

- View Text Solution

37. Describe the hybridisation in case of PCl_{2}. Why are the axial bonds longer as compared to equatorial bonds ?

- Watch Video Solution

38. Define hydrogen bond. Is it weaker or stronger than the van der Waals forces?

- Watch Video Solution

39. What is meant by the term bond order? Calculate the bond order of :
N_{2}, O_{2}, O_{2}^{+}and O_{2}^{-}.

NCERT (Exemplar Problems) (Multiple Choice Questions (Type-I))

1. Isostructural species are those which have the same shape and hybridisation. Among the given identify the isostructural pairs.
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$
C. $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: B

- Watch Video Solution

2. Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule.

Which of the following has the highest dipole moment?
A. CO_{2}
B. $H I$
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{2}

Answer: C

- Watch Video Solution

3. Hydrogen bonds are formed in many compounds e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}$. The boiling point of such compounds depends to a extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points above compounds is
A. $s p, s p^{3}$ and $s p^{2}$
B. $s p, s p^{2}$ and $s p^{3}$
C. $s p^{2}, s p$ and $s p^{3}$
D. $s p^{2}, s p^{3}$ and $s p$

Answer: C

- Watch Video Solution

4. In PO_{4}^{3-} ion the formal charge on the oxygen atom of P -O bond is
A. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$

Answer: B

- Watch Video Solution

5. In NO_{3}^{-}ion the formal charge on the oxygen atom of $N-O$ bond is
A. +1
B. -1
C. -0.75
D. +0.75

Answer: C

- Watch Video Solution

6. In NO_{3}^{-}ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are :
A. 2,2
B. 3,1
C. 1, 3
D. 4,0

Answer: D

7. Which of the following species has tetrahedral geometry?
A. BH_{4}^{-}
B. $\mathrm{NH}_{2}{ }^{-}$
C. CO_{3}^{2-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$

Answer: A

Watch Video Solution
8. Number of π bonds and σ bonds in the following structure is :

A. 6,19
B. 4,20
C. 5,19
D. 5,20

Answer: C
9. Which of the following molecules/ions does not contain unpaired electrons?
A. N_{2}^{+}
B. O_{2}
C. O_{2}^{2-}
D. B_{2}

Answer: C

- Watch Video Solution

10. In which of the following molecule/ion all the bonds are not equal?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $C_{2} H_{4}$
D. SiF_{4}

Answer: C

- Watch Video Solution

11. In which of the following substances will hydrogen bond be strongest?
A. HCl
B. $\mathrm{H}_{2} \mathrm{O}$
C. $H I$
D. $H_{2} S$

Answer: B

- Watch Video Solution

12. If the electronic configuration of an element is $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$, four electrons involved in chemical bond formation will be \qquad
A. $3 p^{6}$
B. $3 p^{6}, 4 s^{2}$
C. $3 p^{6}, 3 d^{2}$
D. $3 d^{2}, 4 s^{2}$

Answer: D

- Watch Video Solution

13. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
B $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
$\begin{array}{llllll}C & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
The bond between B and C will be
A. 90°
B. 120°
C. 180°
D. 109°

Answer: B

- Watch Video Solution

14. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
$\begin{array}{llllll}B & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3} \\ C & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
Stable form of A may be represented by the formula.
A. A
B. A_{2}
C. A_{3}
D. A_{4}

- Watch Video Solution

15. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
$\begin{array}{llllll}B & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
C $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
Stable form of C may be represented by the formula
A. C
B. C_{2}
C. C_{3}
D. C_{4}

Answer: B

16. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
$\begin{array}{llllll}B & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
$\begin{array}{llllll}C & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
The molecular formula of the compound formed from B and C will be
A. $B C$
B. $B_{2} C$
C. $B C_{2}$
D. $B C_{3}$

Answer: D

- Watch Video Solution

17. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these
configuration.
$A 1 s^{2} \quad 2 s^{2} \quad 2 p^{6}$
$B \quad 1 s^{2} \quad 2 s^{2} \quad 2 p^{6} \quad 3 s^{2} \quad 3 p^{3}$,
$C \quad 1 s^{2} \quad 2 s^{2} \quad 2 p^{6} \quad 3 s^{2} \quad 3 p^{5}$
The bond between B and C will be
A. ionic
B. covalent
C. hydrogen
D. coordinate

Answer: B

D Watch Video Solution

18. Which of the following order of energies of molecular orbitals of N_{2} is correct?
A. $\left(\pi 2 p_{y}\right)<\left(\sigma 2 p_{z}\right)<\left(\pi^{*} 2 p_{x}\right) \approx\left(\pi^{*} 2 p_{y}\right)$
B. $\left(\pi 2 p_{y}\right)>\left(\sigma 2 p_{z}\right)>\left(\pi^{*} 2 p_{x}\right) \approx\left(\pi^{*} 2 p_{y}\right)$
C. $\left(\pi 2 p_{y}\right)>\left(\sigma 2 p_{z}\right)<\left(\pi^{*} 2 p_{x}\right) \approx\left(\pi^{*} 2 p_{y}\right)$
D. $\left(\pi 2 p_{y}\right)>\left(\sigma 2 p_{z}\right)<\left(\pi^{*} 2 p_{x}\right) \approx\left(\pi^{*} 2 p_{y}\right)$

Answer: A

- Watch Video Solution

19. Comprehension given below is followed by some multiple choice question, Each question has one correct options. Choose the correct option.

Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding molecular orbital (BMO) and anti-bonding molecular orbital (ABMO). Energy of anti-bonding orbital is raised above the parent atomic orbitals that have combined and hte energy of the bonding orbital is lowered than the parent atomic orbitals.
energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order
$\sigma 1 s<\sigma^{\star} 1 s<\sigma^{\star} 2 s<\left(\left(\pi 2 p_{x}\right)=\left(\pi 2 p_{y}\right)\right)<\sigma 2 p_{z}<\left(\pi^{\star} 2 p_{x}=\pi^{\star} 2 p_{y}\right)$
and For oxygen and fluorine order of enregy of molecules orbitals is given below.
$\sigma 1 s<\sigma^{\star} 1 s<\sigma 2 s<\sigma^{\star} 2 s<\sigma p_{z}<\left(\pi 2 p_{x} \approx \pi 2 p_{y}\right)<\left(\pi^{\star} 2 p_{x} \approx \pi^{\star} 2 p y\right)$
Different atomic orbitalsof one atom combine with those atoms orbitals
of the second atom which have comparable energies and proper orientation.

Further, if the overlapping is head on, the molecular orbital is called sigma, σ andif the overlap is lateral, the molecular orbital is called pi, π.

The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals.

However, the order for filling is not the same for all molecules or their ions. Bond order is one of the most important parameters to compare the strength of bonds.
67) Which of the following pair is expected to have the same bonod order?
A. $B e_{2}$ is not a stable molecule.
B. He_{2} is not stable but He_{2}^{+}is expected to exist.
C. Bond strength of N_{2} is maximum amongst the homonuclear diatomic molecules belogning to the second period.
D. The order of energies of molecular orbitals in N_{2} molecule is

Answer: D

- Watch Video Solution

20. Which of the following options represents the correct bond order ?
A. $O_{2}^{-}>O_{2}>O_{2}^{+}$
B. $O_{2}^{-}<O_{2}<O_{2}^{+}$
C. $O_{2}^{-}>O_{2}<O_{2}^{+}$
D. $O_{2}^{-}<O_{2}>O_{2}^{+}$

Answer: B

21. The electronic configuration of the outermost shell of the most electronegative element is
A. $2 s^{2} 2 p^{5}$
B. $3 s^{2} 3 p^{5}$
C. $4 s^{2} 4 p^{5}$
D. $5 s^{2} 5 p^{5}$

Answer: A

Watch Video Solution

22. Amongst the following elements (whose electronic configuration an given below) the one having highest ionization energy is
A. $[N e] 3 s^{2} 3 p^{1}$
B. $[N e] 3 s^{2} 3 p^{2}$
C. $[N e] 3 s^{2} 3 p^{2}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$

Answer: B

- Watch Video Solution

NCERT (Exemplar Problems) (Multiple Choice Questions (Type-II))

1. Which of the following have identical bond order?
A. $C N^{-}$
B. NO^{+}
C. O_{2}^{+}
D. O_{2}^{2-}

Answer: A: B

2. Which of the following attain the linear structure ?
A. BaCl_{2}
B. NCO^{+}
C. NO_{2}
D. $C S_{2}$

Answer: A:D

- Watch Video Solution

3. CO is isoelectronic with
A. NO^{+}
B. N_{2}
C. SnCl_{2}
D. NO_{2}^{-}

- Watch Video Solution

4. Which of the following species have the same shape?
A. CO_{2}
B. CCl_{4}
C. O_{3}
D. NO_{2}^{-}

Answer: C::D

- Watch Video Solution

5. Which of the following statements are correct about CO_{3}^{2-} ?
A. The hybridisation of central atom is $s p^{3}$.
B. Its resonance structure has one $C-O$ single bond and two $C=O$ double bonds.
C. The average formal charge on each oxygen atom is 0.67 units.
D. All $C-O$ bond lengths are equal.

Answer: C::D

- Watch Video Solution

6. Which among the following are diamagnetic?
A. N_{2}
B. N^{2-}
C. O_{2}
D. O_{2}^{2-}

Answer: A::D

7. Species having same bond order are
A. N_{2}
B. N_{2}^{-}
C. $F_{2}{ }^{+}$
D. O_{2}^{-}

Answer: C::D

- Watch Video Solution

8. Which of the following statements are not correct?
A. NaCl being an ionic compound is a good conductor of electricity in the solid state.
B. In canonical structures, there is a difference in the arrangement of atoms.
C. Hybrid orbitals form stronger bonds than pure orbitals.
D. VSEPR theory can explain the squre planar geometry of $X e F_{4}$.

Answer: A::B

D Watch Video Solution

NCERT (Exemplar Problems) (Short Answer Type Questions)

1. Interpret the non-linear shape of $H_{2} S$ molecule and non-planar shape of $P C l_{3}$ using valence shell electron pair repulsion (VSEPR) theory.
(Atomic number : $H=1, P=15, S=16, C l=17$)

- Watch Video Solution

2. Using molelcular orbital theory, compare the bond energy and magnetic character of O_{2}^{+}and O_{2}^{-}species.

- Watch Video Solution

3. Explain the shape of $B r F_{5}$

- Watch Video Solution

4. Structures of molecules of two compounds are given below :

(I)

(II)
(a) Which of the following compounds will have intermolecular hydrogen bonding and which compound is expected to show intramolecular

hydrogen bonding?

(b) Which of the above two compounds will show higher melting point?
(c) Which of the above compounds will form hydrogen bond with water easily and be more soluble in it?

- Watch Video Solution

5. Why does type of overlap given in the following figure not result in bond formation?

- Watch Video Solution

6. Explain why $P C l_{5}$ is trigonal bipyramidal whereas $I F_{5}$ is square pyramidal ?
7.

have same hybridization at oxygen yet they have different bond angles.
Which one has greater bond angle? Give reason.

- Watch Video Solution

8. Write Lewis structure of the following compounds and show format charge on each atom.
$\mathrm{HNO}_{3}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

9. The energy of $\sigma 2 p_{z}$, molecular orbital is greater than $\pi 2 p_{x}$ and $\pi 2 p_{y}$ molecular orbitals in nitrogen molecule. Write the complete sequence of
energy levels in the increasing order of energy in the molecule. Compare the relative stability and the magnetic behaviour of the following species. $N_{2}, N_{2}^{+}, N_{2}^{-}, N_{2}^{2+}$

- Watch Video Solution

10. What is the effect of the following processes on the bond order of N_{2} and O_{2} ?
(a) $N_{2} \rightarrow N_{2}^{+}+e^{-}$
(b) $O_{2} \rightarrow O_{2}^{+}+e^{-}$

- Watch Video Solution

11. Give reasons for the following :
(i) Covalent bonds are directional while ionic bonds are non-directional.
(ii) Water molecule has bent structure whereas carbon dioxide molecule is linear.
(iii) Ethyne molecule is linear.
12. What is an ionic bond ? With two suitable examples, explain the diference between an ionic and a covalent bond ?

- Watch Video Solution

13. Arrange the following bonds in order of increasing ionic character giving reason.
$\mathrm{N}-\mathrm{H}, \mathrm{F}-\mathrm{H}, \mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$

- Watch Video Solution

14. Explain why CO_{3}^{2-} ion cannot be represented by a single Lewis structure. How can it be best represented ?

- Watch Video Solution

15. Predict the hybridisation of each carbon in the molecule of organic compound given below. Also indicate the total number of sigma and pi bonds in this molecule.

$\mathrm{HC} \equiv \mathrm{C}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$
OH

- Watch Video Solution

16. Group the following as linear and non-linear molecules:
$\mathrm{H}_{2} \mathrm{O}, \mathrm{HOCl}, \mathrm{BeCl}_{2}, \mathrm{Cl}_{2} \mathrm{O}$

- Watch Video Solution

17. Elements X, Y and Z have 4,5 and 7 valence electrons respectively, (i)

Write the molecular formula of the compounds formed by these elements
individually with hydrogen (ii) which of these compounds will have the highest dipolw moment ?

- Watch Video Solution

18. Draw the resonating structure of
(i) Ozone molecule
(ii) Nitrate ion.

Watch Video Solution

19. Presict the shapes of the following molecules on the basis of hybridisation.
$\mathrm{BCl}_{3}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$

- Watch Video Solution

20. All the $\mathrm{C}-\mathrm{O}$ bonds in carbonate in $\left(\mathrm{CO}_{3}^{2-}\right)$ are equal in length. Explain.

- Watch Video Solution

21. What is meant by the term average bond enthalpy? Why is there difference in bond enthalpy of O-H bond in ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?

- Watch Video Solution

NCERT (Exemplar Problems) (Matching Type Questions)

1. Match the species in Column I with the type of hybrid orbitals in

Column II.

(Watch Video Solution

2. Match the species in Column I with the geometry/shape in Column II.

Column I Column II
(i) $\mathrm{H}_{3} \mathrm{O}^{+}$
(a) Linear
(ii) $\mathrm{HC} \equiv \mathrm{CH}$
(b) Angular
(iii) ClO_{2}^{-}
(c) Tetrahedral
(iv) NH_{4}^{+}
(d) Trigonal bipyramidal
(e) Pyramidal

- Watch Video Solution

3. Match the species in Column I with the bond order in Column II.

D Watch Video Solution

4. Match the items given in column i with example given in Column II

Column I	Column II	
A.	Hydrogen bond	1.
	C	
B.	Resonance	2.
LiF		
C.	Ionic solid	3.
H_{2}		
D.	Covalent solid	4.
	HF	
		5.

- Watch Video Solution

5. Match the shape of molecules in Column 1 with the type of hybridisation in Column II.

Column I
(a)Tetrahedral
(b)Trigonal
(c)Linear
(d)Trigonal bipyramidal

Column II
(i) $s p^{2}$
(ii) $s p$
(iii) $s p^{3}$
(iv) $s p^{3} d$

- Watch Video Solution

NCERT (Exemplar Problems) (Assertion and Reason Type Questions)

1. Assertion (A): Sodium chloride formed by the action of chlorine gas on sodium metal is a stable compound.

Reason: (R) This is because sodium and chloride ions acquire octet in sodium chloride formation.

- Watch Video Solution

2. Assertion (A): Though the central atom of both NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ molecules are $s p^{3}$ hybridised, yet $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle is greater thant that of $\mathrm{H}-\mathrm{O}-\mathrm{H}$.

Reason (R) : This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.

- Watch Video Solution

3. Assertion (A): Among the two O-H bonds in $\mathrm{H}_{2} \mathrm{O}$ molecule, the energy required to break the first $\mathrm{O}-\mathrm{H}$ bond and the other $\mathrm{O}-\mathrm{H}$ bond is the same.

Reason (R) This is because the electronic environment around oxygen is the same even after brekage of one $\mathrm{O}-\mathrm{H}$ bond.

- Watch Video Solution

NCERT (Exemplar Problems) (Long Answer Questions)

1. a) Discuss the significance/applications of dipole moment.
b) Represent diagrammatically the bond moments and the resultant dipole moment in $\mathrm{CO}_{2}, \mathrm{NF}_{3}$ and CHCl_{3}

- Watch Video Solution

2. Use the molecular orbital energy level diagram to show that N_{2} would be expected to have a triple bond. F_{2}, a single bond and $N e_{2}$, no bond.

- Watch Video Solution

3. Briefly describe the valence bond theory of covalent bond formation by taking an example of hydrogen. How can you interpret energy changes taking place in the formation of dihydrogen?

- Watch Video Solution

4. Describe hybridisation in the case of $P C l_{5}$ and $S F_{5}$ The axial bonds are longer as compared to rwuatorial bonds in $P C l_{5}$ whereas in $S F_{6}$ both axial bonds and equatorial bonds and have the same bond length. Explain.

- Watch Video Solution

5. (i) Discuss the concept of hybridisation. What are its different types in a carbon atom.
(ii) What is the type of hybridisation of carbon atoms marked with star.
(a) $\stackrel{*}{\mathrm{C}} \mathrm{H}_{2}=\mathrm{CH}-\stackrel{\stackrel{O}{C}}{\mathrm{C}}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{CH}_{3}-\stackrel{*}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{OH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{O}{* \|}}{\mathrm{C}}-\mathrm{H}$
(d) $\stackrel{*}{\mathrm{C}} \mathrm{H}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(e) $\mathrm{CH}_{3}-\stackrel{*}{\mathrm{C}} \equiv \mathrm{CH}$
6. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic called bonding molecular orbital (BMO) and anti - bonding molecular orbital (ABMO). Energy of anti - bonding molecular orbital (BMO) and anti - bonding molecular orbital ABMO). Energy of anti bonding orbitals is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals. Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order : $\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\left(\pi 2 p_{x} \approx \pi 2 p_{y}\right)<\sigma 2 p_{z}<\left(\pi^{*} p 2 p_{x} \approx \pi^{*} 2 r\right.$ and for oxygen and fluorine order of energy of molecular orbitals is given as
$\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\left(\pi 2 p_{x} \cong 2 \pi 2 p_{y}\right)<\left(\pi^{*} 2 p_{x} \cong \pi^{*} 2 p\right.$
Different atomic orbitals of one atom combine with those atomic orbitals
of the second atom which have comparable energies and proper orientation. Further, if the overlapping is head on, the molecular orbital is called 'sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according
to the same rules as followed for filling of atomic orbitals. However, the order for filling is not the same for all moleculas or their ions. Bond order is one of hte most important parameters to compare the strength of bonds.

Which of the following statements is correct?
A. In the formiation of dioxygen from oxygen atoms 10 molecular orbitals will be formed.
B. All the molecular orbitals in the dioxygen will be completely filled.
C. Total number of bonding molecular orbtials will not be same as
total number anti - bonding orbitals in dioxygen.
D. Number of filled bonding orbitals will be same as number of filled anti - bonding orbitals?

Answer: A

- Watch Video Solution

2. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic called bonding molecular orbital (BMO) and anti - bonding molecular orbital (ABMO). Energy of anti - bonding molecular orbital (BMO) and anti - bonding molecular orbital ABMO). Energy of anti bonding orbitals is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals. Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order : $\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\left(\pi 2 p_{x} \approx \pi 2 p_{y}\right)<\sigma 2 p_{z}<\left(\pi^{*} p 2 p_{x} \approx \pi^{*} 2 p\right.$ and for oxygen and fluorine order of energy of molecular orbitals is given as
$\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\left(\pi 2 p_{x} \cong 2 \pi 2 p_{y}\right)<\left(\pi^{*} 2 p_{x} \cong \pi^{*} 2 p\right.$
Different atomic orbitals of one atom combine with those atomic orbitals
of the second atom which have comparable energies and proper orientation. Further, if the overlapping is head on, the molecular orbital is called 'sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals. However, the
order for filling is not the same for all moleculas or their ions. Bond order is one of hte most important parameters to compare the strength of bonds.

Which of the following molecular orbitals has maximum number of nodal planes?
A. sigam $^{*} 1 s$
B. $\sigma^{*} 2 p_{z}$
C. $\pi 2 p_{x}$
D. $\pi^{*} 2 p_{y}$

Answer: D

- Watch Video Solution

3. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic called bonding molecular orbital (BMO) and anti - bonding molecular orbital (ABMO). Energy of anti - bonding molecular orbital (BMO) and anti - bonding molecular orbital ABMO). Energy of anti -
bonding orbitals is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals. Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order : $\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\left(\pi 2 p_{x} \approx \pi 2 p_{y}\right)<\sigma 2 p_{z}<\left(\pi^{*} p 2 p_{x} \approx \pi^{*} 2 p\right.$ and for oxygen and fluorine order of energy of molecular orbitals is given as
$\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\left(\pi 2 p_{x} \cong 2 \pi 2 p_{y}\right)<\left(\pi^{*} 2 p_{x} \cong \pi^{*} 2 p\right.$
Different atomic orbitals of one atom combine with those atomic orbitals
of the second atom which have comparable energies and proper orientation. Further, if the overlapping is head on, the molecular orbital is called 'sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals. However, the order for filling is not the same for all moleculas or their ions. Bond order is one of hte most important parameters to compare the strength of bonds.

Which of the following pair is expected to have the same bond order?

$$
\text { A. } O_{2}, N_{2}
$$

B. O_{2}^{+}, N_{2}^{-}
C. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{+}$
D. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{-}$

Answer: B

- Watch Video Solution

4. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic called bonding molecular orbital (BMO) and anti - bonding molecular orbital (ABMO). Energy of anti - bonding molecular orbital (BMO) and anti - bonding molecular orbital ABMO). Energy of anti bonding orbitals is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals. Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order : $\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\left(\pi 2 p_{x} \approx \pi 2 p_{y}\right)<\sigma 2 p_{z}<\left(\pi^{*} p 2 p_{x} \approx \pi^{*} 2 p\right.$ and for oxygen and fluorine order of energy of molecular orbitals is given

$$
\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\left(\pi 2 p_{x} \cong 2 \pi 2 p_{y}\right)<\left(\pi^{*} 2 p_{x} \cong \pi^{*} 2 x\right.
$$

Different atomic orbitals of one atom combine with those atomic orbitals of the second atom which have comparable energies and proper orientation. Further, if the overlapping is head on, the molecular orbital is called 'sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals. However, the order for filling is not the same for all moleculas or their ions. Bond order is one of hte most important parameters to compare the strength of bonds.

In which of the following molecules, $\sigma 2 p_{z}$ molecular orbital is filled after $\pi 2 p_{x}$ and $\pi 2 p_{y}$ molecular orbitals?
A. O_{2}
B. $N e_{2}$
C. N_{2}
D. F_{2}

Answer: C

D Watch Video Solution

Revision Exercises (Objective Questions)(Passage Based Questions)

1. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding and antibonding MOs. The molecular orbitals are filled with electrons following the same rules as followed for filling of atomic orbitals. The molecular orbitals electronic configurations help us to calculate bond order when which give important information about bond strength and bond length.

Why are H_{2}^{+}ions more stable than H_{2}^{-}ions, though they have the same bond order?

- Watch Video Solution

2. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding and antibonding $M O s$. The molecular orbitals are filled with electrons following the same rules as followed for filling of atomic orbitals. The molecular orbitals electronic configurations help us to calculate bond order when which give important information about bond strength and bond length.

Considering Z - axis as internuclear axis, which one of the following will be for sigma antibonding MO?
(i) $2 p_{y}+2 p_{y}$
$2 p_{x}-2 p_{y}$
(iii) $2 s+2 p_{z}$
(iv) $2 p_{z}-2 p_{z}$

- Watch Video Solution

3. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding and antibonding MOs. The molecular orbitals are filled with electrons following the same rules as followed for filling of atomic orbitals. The
molecular orbitals electronic configurations help us to calculate bond order when which give important information about bond strength and bond length.

Why does $B e_{2}$ molecule not exist?

- Watch Video Solution

4. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding and antibonding MOs. The molecular orbitals are filled with electrons following the same rules as followed for filling of atomic orbitals. The molecular orbitals electronic configurations help us to calculate bond order when which give important information about bond strength and bond length.

Which out oof O_{2}^{+}and O_{2}^{-}is more stable?

- Watch Video Solution

5. Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding and antibonding MOs. The molecular orbitals are filled with electrons following the same rules as followed for filling of atomic orbitals. The molecular orbitals electronic configurations help us to calculate bond order when which give important information about bond strength and bond length.

Which has smaller bond length No or NO^{+}?

- Watch Video Solution

6. Hybridisation helps us to understand the geometry of the molecules.

This is because hybridised orbitals are directed in space in some preferred directions to have stable arrangement, which determine the geometry. The common hybridisation are sp (linear), $s p^{2}$ (trigonal planar), $s p^{3}$ (tetrahedral), $s p^{3} d$ (trigona bipyramidal), $s p^{3} d^{2}$ (octahedral) and $s p^{3} d^{3}$ (pentagonal bipyramidal). The presence of lone pairs in addition to bond pairs distort the geometry because
lone pair - lone pair repulsion $>$ lone pair - bond repulsion $>$ bo

Which d - orbitals are involved in $s p^{3} d^{2}$ hybridisation in $S F_{6}$ molecule?

- Watch Video Solution

7. Hybridisation helps us to understand the geometry of the molecules.

This is because hybridised orbitals are directed in space in some preferred directions to have stable arrangement, which determine the geometry. The common hybridisation are sp (linear), $s p^{2}$ (trigonal planar), $s p^{3}$ (tetrahedral), $s p^{3} d$ (trigona bipyramidal), $s p^{3} d^{2}$ (octahedral) and $s p^{3} d^{3}$ (pentagonal bipyramidal). The presence of lone pairs in addition to bond pairs distort the geometry because lone pair - lone pair repulsion $>$ lone pair - bond repulsion $>$ bo

Give an example of molecule involving $s p^{3}$ hybridisation.

- Watch Video Solution

8. Hybridisation helps us to understand the geometry of the molecules.

This is because hybridised orbitals are directed in space in some preferred directions to have stable arrangement, which determine the geometry. The common hybridisation are sp (linear), $s p^{2}$ (trigonal planar), $s p^{3}$ (tetrahedral), $s p^{3} d$ (trigona bipyramidal), $s p^{3} d^{2}$ (octahedral) and $s p^{3} d^{3}$ (pentagonal bipyramidal). The presence of lone pairs in addition to bond pairs distort the geometry because lone pair - lone pair repulsion $>$ lone pair - bond repulsion $>$ bo

Give an example of a molecule involving $s p^{3} d$ hybridisation of the central atom and two lone pairs.

- Watch Video Solution

9. Hybridisation helps us to understand the geometry of the molecules.

This is because hybridised orbitals are directed in space in some preferred directions to have stable arrangement, which determine the geometry. The common hybridisation are sp (linear), $s p^{2}$ (trigonal planar), $s p^{3}$ (tetrahedral), $s p^{3} d$ (trigona bipyramidal), $s p^{3} d^{2}$ (octahedral) and
$s p^{3} d^{3}$ (pentagonal bipyramidal). The presence of lone pairs in addition to bond pairs distort the geometry because lone pair - lone pair repulsion $>$ lone pair - bond repulsion $>$ bo

What is the hybridisation and shape of $X e F_{4}$ molecule?

- Watch Video Solution

10. Hybridisation helps us to understand the geometry of the molecules.

This is because hybridised orbitals are directed in space in some preferred directions to have stable arrangement, which determine the geometry. The common hybridisation are sp (linear), $s p^{2}$ (trigonal planar), $s p^{3}$ (tetrahedral), $s p^{3} d$ (trigona bipyramidal), $s p^{3} d^{2}$ (octahedral) and $s p^{3} d^{3}$ (pentagonal bipyramidal). The presence of lone pairs in addition to bond pairs distort the geometry because lone pair - lone pair repulsion $>$ lone pair \quad bond repulsion $>$ bo:

Do $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ involve same hybridisation of the central atom?

Revision Exercises (Objective Questions)(True or False Questions)

1. Ionic compounds are bad conductors of electricity in the solid state.

- Watch Video Solution

2. The shape of $S F_{6}$ molecule is octahedral whereas that of $I F_{7}$ is square pyramidal.

- Watch Video Solution

3. The bond order of $C O$ molecule is 2.5.'

- Watch Video Solution

4. As $N-F$ bond is more polar than $N-H$ bond, $N F_{3}$ molecule has higher dipole moment than NH_{3}.

Watch Video Solution

5. The bond angle follows the order:
$\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$

- Watch Video Solution

6. The dipole moment of cis $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ isomer is more than that of trans isomer.

- Watch Video Solution

7. N_{2}^{+}has greater bond dissociation enthalpy than N_{2} molecule.
8. Out of MgO and $\mathrm{CaO}, \mathrm{MgO}$ is harder.

- Watch Video Solution

9. The d - orbital involved in $d s p^{2}$ hybridisation si $d_{x^{2}-y^{2}}$.

- Watch Video Solution

10. The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

Revision Exercises (Objective Questions)(Fill in the blanks Questions)

1. During the change : $O_{2} \rightarrow O_{2}^{+}+e^{-}$, bond order changes from to
2. Ortho nitrophenol has hydrogen bond while p-nitrophenol has hydrogen bond.

- Watch Video Solution

3. In $S F_{4}$ molecule, S involves \qquad hybridisation.

- Watch Video Solution

4. The d - orbitals involved in $s p^{3} d^{2}$ hybridisation are \qquad and

- Watch Video Solution

5. The shape of ClF_{3} molecule is
6. Out of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}, \mathrm{BeF}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the linear molecules are

- Watch Video Solution

7. The shape of $B r F_{5}$ molecule is \qquad

- Watch Video Solution

8. The number of lone pairs and bond pairs in XeF_{4} molecule are and

- Watch Video Solution

9. The bond order in O_{2}^{+}species is \qquad
10. Out of $H F, H C l, H B r$ and $H I$, the lowest boiling point is of and highest boiling point is of \qquad

- Watch Video Solution

Revision Exercises (Objective Questions)(Assertion Reason Questions)

1. Assertion : lonic compounds tend to be non-volatile

Reasoning : Intermolecular forces in these compounds are weak.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.
2. Assertion : The dipole moment helps to predict whether a molecule is polar or non- polar.

Reason : The dipole moment helps to predict geometry of molecule.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

3. Assertion(A) - $B F_{3}$ molecule is planar but $N F_{3}$ is pyramidal

Reason(R)- N atom is smaller than B
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

D Watch Video Solution

4. Assertion : CO_{2} is non - polar while $\mathrm{H}_{2} \mathrm{O}$ is polar, though both are triatomic.

Reason : CO_{2} is linear while $\mathrm{H}_{2} \mathrm{O}$ is angular.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

5. Assertion:- NO_{3}^{-}is planar while NH_{3} is pyramidal Reason:- N in NO_{3}^{-}is $s p^{2}$ and in NH_{3} it is $s p^{3}$ hybridised with one ione pair.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

6. Assertion : Both $B F_{3}$ and $P F_{5}$ do not obey octet rule.

Reason : Both are electron deficient molecules.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

7. Assertion : Bond angle in $\mathrm{H}_{2} \mathrm{O}$ is less than that in $\mathrm{H}_{2} \mathrm{~S}$.

Reason : Electronegativity of O is more than that of S.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: D

8. Assertion : $\mathrm{C}_{2} \mathrm{H}_{2}$ molecule is linear.

Reason : In $\mathrm{C}_{2} \mathrm{H}_{2}$ carbon atoms remain unhybridized.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

9. Assertion : $X e F_{2}$ has linear geometry.

Reason : $X e F_{2}$ involves $s p^{3} d$ hybridisation of Xe atom.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: B

- Watch Video Solution

10. Which one is covalent bond ?
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: B

- Watch Video Solution

Revision Exercises (Objective Questions)(Very Short Answer Questions)

1. Why are the noble gases monoatomic?

- Watch Video Solution

2. Can a non-polar molecule have polar covalent bonds?
3. Give one example each for a compound with (a) an ionic bond (b) a covalent bond.

- Watch Video Solution

4. Write Lewis dot structure of HCOOH .

- Watch Video Solution

5. Which hybrid orbitals are used by Carbon atoms in the following molecules ?

$$
C H_{3}-\mathrm{CH}=\mathrm{CH}_{2}
$$

- Watch Video Solution

6. Calculate the formal charge on each atoms in nitrite ion .
7. Out of $C S_{2}$ and $O C S$ which have higher dipole moment and why?

- Watch Video Solution

8. An element A has the electronic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ and another element B has the electronic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$.

What type of bond is formed between A and B ? Give its Lewis structure.

- Watch Video Solution

9. Define resonance.

- Watch Video Solution

10. How does the hybridisation of carbon atom in $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ change when it is when it is hydrogenated to $\mathrm{CH}_{3} \mathrm{CH}_{3}$?
11. Give two examples of molecules containing coordinate bond.

- Watch Video Solution

12. What are the shapes of (i) BF_{3} and (ii) NH_{3} molecules?

- Watch Video Solution

13. Which of the two bonds : ionic or covalent is directional?

- Watch Video Solution

14. Can a π - bond be formed without the formation of a σ - bond.

How many $\sigma-$ and π - bonds are formed in acetylene?
15. Draw Lewis structure of O^{2-} and N^{3-} ions.

- Watch Video Solution

16. Give bond angles in $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ and $S F_{6}$ molecules.

- Watch Video Solution

17. Write the favourable factors for the formation of ionic bond.

- Watch Video Solution

18. Define electric dipole moment. Write its SI unit ?

- Watch Video Solution

19. How many σ - and π - bonds are present in naphthalene?
20. Out of NaCl and MgO which has higher lattice energy ?

- Watch Video Solution

21. What do you understand by bond pairs and lone pairs of electrons?

Illustrate by giving one example of each type.

- Watch Video Solution

22. Define electronegativity and dipole moment.

- Watch Video Solution

23. Give one example each of a tetraatomic molecule which is
(i) Polar
(ii) Non - polar.

- Watch Video Solution

24. Give one example each of a molecule having
(i) 6 bond pairs
(ii) 7 bond pairs around the central atom.

- Watch Video Solution

25. What is the total number of sigma bonds and pi bonds in

$$
H_{3} C-\underset{H}{C}=\underset{H}{C}-C \equiv C-H
$$

- Watch Video Solution

26. What shapes are associated with $s p^{3} d$ and $s p^{3} d^{2}$ hybrid orbitals?
27. How is paramagnetic character of a compound related to the number of unpaired electrons?

- Watch Video Solution

28. Which out of H_{2}^{-}and H_{2}^{+}is more stable and why?

- Watch Video Solution

29. Which d - orbitals are involved in $s p^{3} d^{2}$ hybridisation in $S F_{6}$?

- View Text Solution

30. Write the molecular orbital configuration of a molecule having bond order of three.

- Watch Video Solution

31. Which out of O_{2}^{+}and O_{2}^{-}is more stable?

- Watch Video Solution

32. Arrange the following molecular species in order of increasing stability:
$N_{2}, N_{2}^{+}, N_{2}^{2-}, N_{2}^{2+}$

- Watch Video Solution

33. What is the shape of $S F_{6}$ molecule?

- Watch Video Solution

34. Give one example of a molecule involving ${ }^{`} \mathrm{sp}^{\wedge}(3) \mathrm{d}^{\wedge}(2)$ hybridisation.

- Watch Video Solution

35. Although chlorine has the same electronegativity as nitrogen, it does not form hydrogen bonding. Explain.

- Watch Video Solution

36. Why does formic acid exist as dimer?

- Watch Video Solution

37. $K H F_{2}$ exists while $K H C l_{2}$ does not. Explain.

- Watch Video Solution

38. State the type of hybrid orbitals associated with (i) P in PCl_{5} and (ii) S in $S F_{6}$.

- Watch Video Solution

39. Which out of O_{2}^{-}and O_{2}^{2-} has higher bond order and why ?

- Watch Video Solution

40. What is the effect of the following ionization processes on the bond order in C_{2} and O_{2} ?
(i) $C_{2} \rightarrow C_{2}^{+}+e^{-}$
(ii) $O_{2} \rightarrow O_{2}^{+}+e^{-}$

- Watch Video Solution

41. What is the effect on the interatomic bond length of the following ionization processes?
(i) $N_{2} \rightarrow N_{2}^{+}+e^{-}$
(ii) $C_{2} \rightarrow C_{2}^{+}+e^{-}$

- Watch Video Solution

42. Which one of the following has higher bond order?
N_{2}, N_{2}^{+}or N_{2}^{-}

- Watch Video Solution

43. Draw a diagram showing the formation of bonding and anti - bonding molecular orbitals by LCAO in homonuclear hydrogen molecule.

- Watch Video Solution

44. Out of water and ice which has lesser density?

- Watch Video Solution

45. Do N_{2}^{+}and O_{2}^{+}have same bond order?
46. Define the bond length.

- Watch Video Solution

Revision Exercises (Objective Questions)(Short Answer Questions)

1. Explain the formation of a chemical bond.

- Watch Video Solution

2. Explain the formation of a covalent bond. State two factors which influence the formation of a covalent bond.

- Watch Video Solution

3. Write the favourable factors for the formation of ionic bond.
4. Define octet rule. Write its significance and limitations.

- Watch Video Solution

5. What do you understand by a chemical bond? Why do atoms combine to form compounds?

- Watch Video Solution

6. Draw Lewis symbols for the following elements :
$B, G e, S i, A r, C a, K, A s, B r$.

- Watch Video Solution

7. Give one example of a compound containing double bond and one containing a triple bond.
8. Explain that whereas H_{2} and F_{2} are non-polar, HF is polar.

- Watch Video Solution

9. Draw the orbital representation of the molecules:
$\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3}.

- Watch Video Solution

10. Write the Lewis dot structures of (a) CCl_{4} (b) PH_{3} (c) BCl_{3}. Is the octet roule obeyed in these structures?

- Watch Video Solution

11. Draw the shapes of the following hybrid orbitals :
$s p, s p^{2}, s p^{3}$

(D) Watch Video Solution

12. Considering X axis as the internuvlear axis, which out of the following will form a sigma bond
(a) $1 s$ and $l s$ (b) $l s$ and $2 p_{x}$
(c) $2 p_{y}$ and $2 p_{y}$ (d) $2 p_{x}$ and $2 p_{y}$
(e) $1 s$ and $2 s$.

- Watch Video Solution

13. Give the Lewis dot structures of $\mathrm{NH}_{3}, \mathrm{CH}_{4}$ and SO_{3}.

- Watch Video Solution

14. Draw electron dot structures of the following :
(i) $O F_{2}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{2}$
(iii) PCl_{3}
(iv) $\mathrm{H}_{2} \mathrm{O}_{2}$.

- Watch Video Solution

15. What is octet rule? List important exceptions to octet rule.

- Watch Video Solution

16. Give the number and types of various bonds in acetylene molecule.

Name the type of oerlap responsible for each bond.

- Watch Video Solution

17. Draw dipole moment diagrams showing polarity of individual bonds and resultant dipole of the following :
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) CO_{2}
(iii) $B e F_{2}$
(iv) $B F_{3}$.

- Watch Video Solution

18. Which one is covalent bond ?

- Watch Video Solution

19. Which plot best repersent the potential energy (E) of two hydrogen atoms as they approach one another to form a hydrogen molecule?

Watch Video Solution

20. The dipole moment of hydrogen halides decreases form HF to HI .

Explain this trend.
21. Write the formal charges of the atoms in
(i) hydroxide ion
(ii) carbonate ion
(iii) nitrite ion.

- Watch Video Solution

22. Sketch the bond moments and resultant dipole moments in the following molecules :
$\mathrm{PCl}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{NF}_{3}$

- Watch Video Solution

23. Write the resonance structures for $\mathrm{SO}_{3}, \mathrm{NO}_{2}$, and $\mathrm{NO}_{3}^{\ominus}$.
24. What is polar covalent bond? Explain with example.

- Watch Video Solution

25. Out of the following resonating strictures for CO_{2} molecule, which are important for describing the bonding in the molecule and why ?
$\ddot{O}=\underset{(I)}{C}=\ddot{O}: \quad \stackrel{+}{O}=\underset{(I I)}{C}-\ddot{O}^{-} \quad \ddot{O}^{-}=\underset{(I I I)}{C}-\stackrel{O}{O}_{O}^{O} \quad \ddot{O}^{-}-\underset{(I V)}{C}$

- Watch Video Solution

26. Which of the two : KCl or Cl_{2} has higher boiling point and why?

- Watch Video Solution

27. Presence of a lone pair of electrons distorts the geometry of a covalent molecule. Explain.
28. Define hyvridisation. Discuss the bonding in acetylene molecule on the basis of hybrdisation.

- Watch Video Solution

29. Write the resonance structures for $\mathrm{SO}_{3}, \mathrm{NO}_{2}$, and $\mathrm{NO}_{3}^{\ominus}$.

- Watch Video Solution

30. APPLICATION OF DIPOLE MOMENT

(Watch Video Solution

31. Name the two bonds present in oxygen molecule and compare their strengths.
32. Three elements have the following Lewis symbols :
$\dot{A} \quad . \dot{B} \quad: \ddot{C}$.
(a) Place the elements in the appropriate group of the periodic table.
(b) Which elements are most likely to form ions? What is the expected charge on the ions?
(c) Write the formulae and Lewis structures of the covalent compounds formed between :
(i) A and B
(ii) A and C .

- Watch Video Solution

33. Distinguish between a sigma and a pi bond.

- Watch Video Solution

34. Define lattice enthalpy. How is it related to the stability of an ionic compound?

Watch Video Solution

35. Write the stability order of Resonating Structures:

- Watch Video Solution

36. Discuss the shape of CO_{2} molecule on the basis of hybridisation.
37. How do you account for equal bond lengths in ozone molecule?

- Watch Video Solution

38. Define dipole moment. How does this help to predict the geometries of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} ?

- Watch Video Solution

39. Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ molecules.

- Watch Video Solution

40. Explain the important aspects of resonance with reference to the CO_{3}^{2-} ion.

(D) Watch Video Solution

41. Explain with the help of suitable example polar covalent bond.

- Watch Video Solution

42. In each of the following pairs, predict which has higher value of the property mentioned:
(i) $\mathrm{HF}, \mathrm{HCl} \quad$: Polar character
(ii) $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O} \quad$: Bond angle
(iii) $\mathrm{KCl}, \mathrm{KF} \quad$: Lattice enthalpy
(iv) $\mathrm{NF}_{3}, \mathrm{NH}_{3} \quad: \quad$ Dipole moment
(v) $C_{2} H_{2}, C_{2} H_{4} \quad: \quad \mathrm{s}$ - character in the hybridisation of carbon

- Watch Video Solution

43. Explain the term dipole moment. Name two molecules which have dipole moment and two molecules which do not have dipole moment. What is the significance of dipole moment?
44. Using the concept of hybridisation, explain the shapes of $B F_{3}, C_{2} H_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ molecules.

- Watch Video Solution

45. The electronic configurations of five neutral atoms are given below :
$A: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
B: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
$C: 1 s^{2} 2 s^{2} 2 p^{1}$
$D: 1 s^{2} 2 s^{2} 2 p^{3}$
$E: 1 s^{2} 2 s^{2} 2 p^{6}$
Write the empirical formula for the substances containing :
(i) A and D
(ii) B and D
(iii) D and D
(iv) E and E .
46. Each carbon - oxygen bond is CO_{2} molecule is polar and the molecule is no-polar. Explain.

- Watch Video Solution

47. Which out of NH_{3} and NF_{3} has higher dipole ment and why ?

- Watch Video Solution

48. Draw elecctron dot representation of :
(i) acetylene
(ii) ammonia.

- Watch Video Solution

49. What is dipole moment ? How does it affect the polarity of the molecule ? Which of the following molecules do you expect to be polar?

$$
\mathrm{CO}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{NH}_{3} \text { and } \mathrm{CO}_{2}
$$

- Watch Video Solution

50. Explain the formation of H_{2} molecule on the basis of valance bond theory.

- Watch Video Solution

51. Each carbon - oxygen bond in carbon dioxide molecule is polar but the molecule itself is non - polar. Explain.

- Watch Video Solution

52. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ both are triatomic molecules but there is large difference in their dipole moment values. Explain.

- Watch Video Solution

53. Explain the following :
(a) HCl is a covalent compound but it ionises in the solution.
(b) The molecule of MgCl_{2} is linear whereas that of SnCl_{2} is angular.

- Watch Video Solution

54. Write the important conditions required for the linear combination of atomic orbitals to form molecular orbitals.

- Watch Video Solution

55. Why is that in the $S F_{4}$ molecule, the lone pair of electrons occupies an equatorial position in the overall trigonal pyramidal arrangement in preferencr to an axial position ?

- Watch Video Solution

56. Explain the important aspects of resonance with reference to the CO_{3}^{2-} ion.

- Watch Video Solution

57. Describe the hydribisation in case of $P C l_{5}$. Why are the axial bonds longer as compared to equatorial bonds?

- Watch Video Solution

58. Explain how valence bond theory accounts for
(i) a carbon-carbn double bond ($\mathrm{C}=\mathrm{C}$)
(ii) a carbon -carbon triple bond ($\mathrm{C}=\mathrm{C}$)

- Watch Video Solution

59. What do you understand by a molecular orbital?

What is the maximum number of electrons that can occupy a molecular orbital?

- Watch Video Solution

60. What do you understand by bonding and antibonding molecular orbitals? Calculate the bond order for O_{2}^{+}and O_{2}.

- Watch Video Solution

61. CONDITIONS FOR COMBINATIONS OF ATOMIC ORBITALS

- Watch Video Solution

62. Draw molecular orbital energy level diagram for nitrogen molecule.

D Watch Video Solution

63. Using MO diagram and occupancy of electrons in orbitals, arrange the following molecular species in increasing order of their stabilities:
(i) H_{2}
(ii) H_{2}^{-}
(iii) H_{2}^{+}
64. Use the molecular orbital energy level diagram to show that N_{2} would be expected to have a triple bond. F_{2}, a single bond and $N e_{2}$, no bond.

Watch Video Solution

65. Is it correct to say that bond order always increases when an electron is lost?

- Watch Video Solution

66. Compare the relative stability of the following species and indicate their magnetic properties:
$O_{2}, O_{2}^{\oplus}, O_{2}^{\ominus}$ (superoxide), O_{2}^{-2} (peroxoide).

- Watch Video Solution

67. Arrange the following species in order of increasing stability and give reasons: $L i_{2}, L i_{2}^{+}, L i_{2}^{-}$.

- Watch Video Solution

68. How does molecular orbital theory account for the following?
(a) Bond order of N_{2} is greater than N_{2}^{+}but the bond order of O_{2} is less than that of O_{2}^{+}.
(b) $B e_{2}$ does not exist.

- Watch Video Solution

69. Sketch the shapes of MOs obtained by the overlap of
(i) two s-orbitals
(ii) end on overlap of two p - orbitals.

- Watch Video Solution

70. What is hybridisation? What type of hybridisation are possible in the following geometries?
(i) Square planar
(ii) Trigonal bipyramidal
(iii) Octahedral.

- Watch Video Solution

71. On the basis of hybridisation, discuss the structures of
(i) PCl_{5}
(ii) $I F_{7}$
(iii) $S F_{6}$.

- Watch Video Solution

72. Calculate the bond order of O_{2}^{-}and O_{2}^{2-} ions on the basis of M.O. theory and explain their magnetic properties.
73. Explain the following :
(i) O_{2}^{-}is paramagnetic but O_{2}^{2-} is not.
(ii) N_{2} has higher bond order than $N O$.

- Watch Video Solution

74. Compare the relative stability of the following species and comment on their magnetic (diamagnetic or paramagnetic) behaviour :
O_{2}^{-}and N_{2}^{+}

- Watch Video Solution

Revision Exercises (Objective Questions)(Short Answer Questions)(Fill in the blanks:)

1. During the process : $O_{2}+e^{-} \rightarrow O_{2}^{-}$, the electron in added to the
\qquad
2. The bond order in O_{2}^{+}istahn in O_{2}.

- Watch Video Solution

3. In O_{2} has double bond, F_{2} has single bond and $N e_{2}$ has no bond.

- Watch Video Solution

Revision Exercises (Objective Questions)(Long Answer Questions)

1. Explain the formation of H_{2} molecule on the basis of valance bond theory.

- Watch Video Solution

2. Discuss the orital stuctures of the following molecules on the basis of hybridisation.
(i) $\mathrm{NH}_{3}(i i) \mathrm{C}_{2} \mathrm{H}_{2}(i i i) \mathrm{CO}_{2}$.

- Watch Video Solution

3. What type of bonding would you expect between the following pairs of elements?
(i). Calcium and Oxygen
(ii). Carbon and Chlorine
(iii). Hydrogen and chlorine

- Watch Video Solution

4. What is electronegativity? How is this useful in understanding the nature of elements?
5. Discuss the shapes of the following molecules of the basis of VSEPR theory :
(i) CH_{4}
(ii) $P F_{5}$
(iii) NH_{3}
(iv) $\mathrm{H}_{2} \mathrm{O}$
(v) $S F_{6}$.

- Watch Video Solution

6. Select correct statement(s) regarding σ and π bonds :

- Watch Video Solution

7. What is lattice energy?

- Watch Video Solution

8. Discuss the shape of the following molecules using the $V S E P R$ model:

$B e C l 2, B C l_{3}, S i C l_{4}, A s F_{5}, H_{2} S, P H_{3}$

- Watch Video Solution

9. What are $S I$ units of dipole moment?

- Watch Video Solution

10. TYPES OF HYBRIDISATION

- Watch Video Solution

11. With the help of molecular orbital theory, show that N_{2} molecule has triple bond, O_{2} molecule has double bond while F_{2} molecule has single bond. Compare their bond strengths.
12. The EAN of Ni in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is

- Watch Video Solution

HIGHER ORDER THINKING SKILLS

1. Which is expected to have the highest melting point :
$\mathrm{NH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ or PH_{3} ? Explain why?

- Watch Video Solution

2. Which of the following has higher dipole moment and why?

But -1- ene or But -1- yne
3. Explain why melting point of NaCl is higher than that of AlCl_{3}.

- Watch Video Solution

4. Silver halides have law solubilities in water as compared to alkali metal halides. Explain.

- Watch Video Solution

5. Which homonuclear diatomic molecule besides O_{2} is paramagnetic?

- Watch Video Solution

6. Distinguish between antibonding and nonbonding orbitals.

- Watch Video Solution

7. Anhydrous AlCl_{3} is covalent but $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is ionic in nature. How would you account for this?

- Watch Video Solution

8. Cu^{+}and Na^{+}are of same size but CuCl is insoluble while NaCl is soluble in water. Explain.

- Watch Video Solution

9. The geometry of I_{3}^{-}is

- Watch Video Solution

10. The type of bonds present in $\mathrm{NH}_{4} \mathrm{Cl}$ are

- Watch Video Solution

11. Which one has high boiling point and why?

Ethyl alcohol or dimethyl ether.

- Watch Video Solution

12. $X e F_{2}$ molecule is linear molecule but it is $s p^{3} d$ hybridized. Why?

- Watch Video Solution

13. Bonds presents in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

14. The following are aresome statement about oxides of VA group element
I) $\mathrm{N}_{2} \mathrm{O}$ molecule is linear
II) NO_{2} molecule is angular
III) $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule is angular

The correct combination is

- Watch Video Solution

15. The bond order in O_{2}^{-}ion is

- Watch Video Solution

16. Explain, why o-hydroxybenzaldehyde is a liquid at room temperature while p-hydroxybenzaldehyde is a high melting solid?

- Watch Video Solution

17. A gaseous compound of nitrogen and oxygen is paramagnetic in nature. When it is cooled below $0^{\circ} \mathrm{C}$ its molecular mass increases and paramagnetism is lost. The behaviour is reversed on heating. The compound is
18. Draw three possible geometrical structures of $\mathrm{PBr}_{2} \mathrm{Cl}_{3}$ and predict which of these have dipole moments.

- Watch Video Solution

19. Bond angle in PH_{4}^{+}is higher than that in PH_{3}. Why ?

- Watch Video Solution

20. Why does PCl_{5} exist as $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$in the crystalline state?

- Watch Video Solution

21. Explain the observations that the bond length in N^{+}is $0.02 \AA$ larger than in N_{2} while the bond length in $N O^{+}$is $0.09 \AA$ less than in $N O$.
22. IF molecular axis is X then which of the following overlapping will form π bond?
$p_{z}+p_{z}, p_{x}+p_{x}, p_{x}, p_{y}, s+p_{z}, p_{y}+p_{y}$

Watch Video Solution

OBJECTIVE TYPE QUESTIONS (A. MULTIPLE CHOICE QUESTIONS)

1. Which of the following molecules is not an exception to octet rule?
A. $B F_{3}$
B. $P F_{5}$
C. CO_{2}
D. $I F_{7}$

Answer: C

2. Which of the following has maximum covalent character?
A. LiI
B. $L i F$
C. LiCl
D. LiBr .

Answer: A

- Watch Video Solution

3. Which of the following has highest lattice energy
A. $L i F$
B. $N a F$
C. $K F$
D. $R b F$.

Answer: A

- Watch Video Solution

4. Which of the following molecule has net dipole moment?
A. CCl_{4}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. $B F_{3}$
D. NH_{3}.

Answer: D

- Watch Video Solution

5. The percentage ionic character of a bond having $1.275 \AA$ its length hand 1.03 D its dipole moment is:
A. 10%
B. 15%
C. 16.83%
D. 18.8%

Answer: C

- Watch Video Solution

6. The correct order of dipole moment is :
A. $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{3} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$.

- Watch Video Solution

7. Formal charge on two O atoms in

A. $-1,+1$
B. $-1,0$
C. $0,+1$
D. $-1,-1$

Answer: B

8. Which of the following ions has the maximum polarising power?
A. $N a^{+}$
B. $M g^{2+}$
C. Ca^{2+}
D. $A l^{3+}$

Answer: D

- Watch Video Solution

9. Which of the following is not correct resonating structure for carbon dioxide?
A. $O=C=O$
B. ${ }^{-} O-C \equiv O^{+}$
C. ${ }^{+} O-C \equiv O^{-}$
D. ${ }^{+} O \equiv C-O^{-}$

- Watch Video Solution

10. The bond angles in molecules $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$ and CO_{2} are in the order :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}>\mathrm{CO}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CO}_{2}<\mathrm{CH}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{CO}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}<\mathrm{CH}_{4}>\mathrm{CO}_{2}$.

Answer: C

- Watch Video Solution

11. The hybridisation of C involved in acetylene is :
A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. $d s p^{2}$

Answer: C

- Watch Video Solution

12. For which of the following hybridisation the bond angle is maximum ?
A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. $d s p^{2}$.

Answer: B

13. The angle between the covalent bonds is maximum in :
A. CH_{4}
B. $B F_{3}$
C. $P F_{3}$
D. NH_{3}.

Answer: B

- Watch Video Solution

14. The percentage s-character of the hybrid orbitals in methane, ethene and ethyne are respectively
A. $25,50,75$
B. $25,33,75$
C. $25,33,50$
D. $100,50,25$.

Answer: C

- Watch Video Solution

15. CO_{2} is isostructural with
A. SnCl_{2}
B. ZnCl_{2}
C. HgCl_{2}
D. $C_{2} H_{4}$

Answer: C

- Watch Video Solution

16. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x^{2}-y^{2}}, d_{x z}$
B. $d_{z^{2}}, d_{z x}$
C. $d_{x y}, d_{y z}$
D. $d_{x^{2}-y^{2}}, d_{z^{2}}$

Answer: D

- Watch Video Solution

17. Which of the following has highest bond angle?
A. NO_{2}^{+}
B. NO_{2}
C. NO_{2}
D. NO_{3}.

D Watch Video Solution

18. Which of the following molecules does not contain a lone pair of electrons?
A. NH_{3}
B. $P F_{5}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $S F_{4}$

Answer: B

D Watch Video Solution

19. In which of the following, the central atoms has two lone pairs of electrons
A. $S F_{4}$
B. $B r F_{5}$
C. SO_{2}
D. XeF_{4}

Answer: D

- Watch Video Solution

20. What typs of hybridisation is possible in square planar molecules?
A. $s p^{3} d$
B. $d s p^{3}$
C. $d s p^{2}$
D. $s p^{3} d^{2}$.

Answer: C

21. $P C l_{5}$ molecule has the following geometry :
A. Trigonal bipyramidal
B. Octahedral
C. Square planar
D. Planar triangular.

Answer: A

- Watch Video Solution

22. In which of the following molecules are all the bonds not equal ?
A. $B F_{3}$
B. AlF_{3}
C. $N F_{3}$
D. ClF_{3}

Answer: D

- Watch Video Solution

23. Which of the following molecules/ins does not contain unpaired electrons?
A. N_{2}^{+}
B. O_{2}^{2-}
C. O_{2}
D. B_{2}

Answer: B

24. The bond order in O_{2}^{-}ion is
A. 1
B. $1 \frac{1}{2}$
C. 2
D. $2 \frac{1}{2}$

Answer: B

- Watch Video Solution

25. If molecular axis is Z then which of the following overlaping is not possible
A. $2 p_{z}+2 s$
B. $2 p_{y}-2 p_{y}$
C. $2 p_{x}-2 p_{x}$
D. $2 p_{x}+2 p_{y}$

Answer: D

D Watch Video Solution

26. Which of the following is paramagnetic?
A. O_{2}^{-}
B. $C N^{-}$
C. CO
D. NO^{+}.

Answer: A

Watch Video Solution
27. Which one of the following pairs consists of only paramagnetic species
A. $O_{2}, N O$
B. $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{2-}$
C. $C O, N O$
D. $\mathrm{NO}, \mathrm{NO}^{+}$

Answer: A

- Watch Video Solution

28. The correct order of bond order values among the following
(i) NO^{-}(ii) NO^{+}
(iii) NO (iv) NO^{2+}
(v) NO^{2-}
A. $(i)<(i v)<(i i i)<(i i)<(v)$
B. $(v)=(i i)<(i)<(i v)<(i i i)$
C. $(v)<(i)<(i v)=(i i i)<(i i)$
D. $(i i)<(i i i)<(i v)<(i)<(i v)$

Answer: C

- Watch Video Solution

29. Which of the following is not paramagnetic?
A. O_{2}
B. N_{2}^{+}
C. B_{2}
D. O_{2}^{2-}

Answer: D

30. The maximum bond strengths is in:
A. O_{2}^{+}
B. O_{2}^{-}
C. O_{2}
D. O_{2}^{2-}

Answer: A

- Watch Video Solution

31. which of the following hydrogen bond is strongest in vapour phase ?
A. $S-H \cdot \cdots \cdot O$
B. $O-H \cdot \cdots S$
C. $F-H \cdot \cdots F$
D. $F-H \cdot \cdots O$

Answer: C

32. strongest hydrogen bonding is shown by
A. $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
B. HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
D. SiH_{4} and $S i C l_{4}$

Answer: B

- Watch Video Solution

33. Which of the following has highest boiling point?
A. NH_{3}
B. PH_{3}
C. SbH_{3}
D. AsH_{3}

D Watch Video Solution

34. Which of the following has lowest boiling point?
A. $H F$
B. HCl
C. Hl
D. HBr

Answer: B

Watch Video Solution
35. Which of the following statement is not true about amorphous solids?
A. Water has more density than ice.
B. Each water molecule is linked to four water molecules tetrahedrally
C. In water, each O atom is bonded to $2-\mathrm{H}$ atoms by hydrogen bonds.
D. Water has minimum denisity at 277 K .

Answer: D

- Watch Video Solution

OBJECTIVE TYPE QUESTIONS (B. MULTIPLE CHOICE QUESTIONS)

1. In which of the following pairs, the two species are isostructural :
A. BrO_{3}^{-}and XeO_{3}
B. SF_{4} and XeF_{4}
C. SO_{3}^{2-} and NO_{3}^{-}
D. $B F_{3}$ and $N F_{3}$

- Watch Video Solution

2. The correct order of $\mathrm{C}-\mathrm{O}$ bond length among $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$.

Answer: A

- Watch Video Solution

3. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?
A. $N_{2}^{2-}<N_{2}^{-}<N_{2}$
B. $N_{2}<N_{2}^{2-}<N_{2}^{-}$
C. $N_{2}^{-}<N_{2}^{2-}<N_{2}$
D. $N_{2}^{-}<N_{2}<N_{2}^{2-}$

Answer: A

- Watch Video Solution

4. In which of the following molecular/ions $\mathrm{BF}_{2}, \mathrm{NO}_{2}^{-}, \mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ the correct atom is $s p^{2}$ hybridized?
A. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
B. NO_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
C. BF_{3} and NO_{2}^{-}
D. NO_{2}^{-}and NH_{2}^{-}

Answer: C

5. In which one of the following species, the central atom has the tuype of hybdridiztion which is not the same as that present in other three?
A. $S b C l_{5}^{2-}$
B. PCl_{5}
C. $S F_{4}$
D. I_{2}^{-}

Answer: A

- Watch Video Solution

6. Which of the following species does not exist under normal condition ?
A. B_{2}
B. $L i_{2}$
C. $B e_{2}^{+}$
D. $B e_{2}$

Answer: D

- Watch Video Solution

7. Among the following molecules : $\mathrm{SO}_{2}, \mathrm{SF}_{4}, \mathrm{ClF}_{3}, \mathrm{Br} \mathrm{F}_{5}$, and XeF_{4}, which of the following shapes does not describe any of the molecules mentioned?
A. Bent
B. Trigonal bipyramidal
C. See saw
D. T-shape

Answer: B

8. Which of the following has the minimum bond length ?
A. O_{2}^{+}
B. O_{2}^{-}
C. O_{2}^{2-}
D. O_{2}

Answer: A

- Watch Video Solution

9. Which of the two ions from the list given below that have the geometry that is explained by the same hybridisation or orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{SCN}^{-}-$
A. NO_{2}^{-}and NO_{3}^{-}
B. NH_{4}^{+}and NO_{3}^{-}
C. SCN^{-}and NH_{2}^{-}
D. NO_{2}^{-}and NH_{2}^{-}

Answer: A

- Watch Video Solution

10. The pair of species with the same bond order is:
A. O_{2}^{2-}, B_{2}
B. $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$
C. NO, CO
D. N_{2}, O_{2}

Answer: A

11. Which of the following species contains three bond pairs and one lone pair around the central atom
A. $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{3}$
C. NH_{2}^{-}
D. PCl_{3}

Answer: D

- Watch Video Solution

12. Which of the following pairs is isostractural (i.e having the same shape and hybridization ?
A. $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
B. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}\right]$
C. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
D. $\left[B F_{4}^{-}\right.$and $\left.N H_{4}^{+}\right]$

Answer: D

- Watch Video Solution

13. Bond order of 1.5 is shown by:
A. O_{2}^{+}
B. O_{2}^{-}
C. O_{2}^{2-}
D. O_{2}

Answer: B

- Watch Video Solution

14. Which of the following is a polar molecule
A. $S i F_{4}$
B. XeF_{4}
C. $B F_{3}$
D. $S F_{4}$

Answer: D

- Watch Video Solution

15. Which of the following is paramagnetic?
A. $C N^{-}$
B. NO^{+}
C. $C O$
D. O_{2}^{-}

Answer: D

16. Which one of the following molecules contains no π - bond ?
A. $S O_{2}$
B. NO_{2}
C. CO_{2}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

17. The bond orders for O_{2}^{+}and C_{2} respectively are
A. 2.5, 2
B. 3, 2
C. 2, 2.5
D. 2,3

Answer: A

- Watch Video Solution

18. Which of the following molecules has the maximum dipole moment ?
A. CO_{2}
B. CH_{4}
C. NH_{3}
D. NF_{3}

Answer: C

- Watch Video Solution

19. Which of the following species has plane tringular shape ?
A. N_{3}
B. NO_{3}^{-}
C. NO_{2}^{-}
D. CO_{2}

Answer: B

- Watch Video Solution

20. Which of the following sets of molecules contains the same number of lone pairs of electrons in the central atom ?
A. $\mathrm{SO}_{2}, \mathrm{ClF}_{3}, \mathrm{BrF}_{3}$
B. $\mathrm{SF}_{4}, \mathrm{NH}_{3}, \mathrm{O}_{3}$
C. $\mathrm{ClF}_{3}, \mathrm{XeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{SF}_{4}, \mathrm{NH}_{3}$
21. Which one of the following does not match with respect to the shape of the molecule?
A. NH_{3} - Trigonal pyramidal
B. $S F_{4}-$ Tetrahedral
C. $\mathrm{H}_{2} \mathrm{~S}$ - Tetrahedral
D. XeF_{4} - Square planar

Answer: B,C

- Watch Video Solution

22. Find the pair that has the same bond order with diamagnetic and paramagnetic properties respectively.
A. F_{2} and O_{2}
B. N_{2} and O_{2}^{2-}
C. $L i_{2}$ and B_{2}
D. B_{2} and O_{2}

Answer: C

- Watch Video Solution

23. Decreasing order of stability of $O_{2}, O_{2}^{-}, O_{2}^{+}$and O_{2}^{2-} is
A. $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
B. $O_{2}^{-}>O_{2}^{2-}>O_{2}^{+}>O_{2}$
C. $O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-}$
D. $O_{2}^{2-}>O_{2}^{-}>O_{2}>O_{2}^{+}$

Answer: C

24. In which of the following pairs, both the species are not isostructural?
A. $\mathrm{NH}_{3}, P \mathrm{H}_{3}$
B. $\mathrm{XeF}_{4}, \mathrm{XeO}_{4}$
C. $\mathrm{SiCl}_{4}, \mathrm{PCl}_{4}^{+}$
D. `diamond, silicon carbide

Answer: B

- Watch Video Solution

25. Which of the following pairs of ions are isoelectronic and isostructural?
A. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
B. $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$

D Watch Video Solution

26. The correct bond order in the following species is:
A. $O_{2}^{+}<O_{2}^{-}<O_{2}^{2+}$
B. $O_{2}^{-}<O_{2}^{+}<O_{2}^{2+}$
C. $O_{2}^{2+}<O_{2}^{+}<O_{2}^{-}$
D. $O_{2}^{2+}<O_{2}^{-}<O_{2}^{+}$

Answer: B

- Watch Video Solution

27. Maximum bond angle at nitrogen is present in which of the following
A. NO_{2}^{+}
B. NO_{3}^{-}
C. NO_{2}
D. NO_{2}^{-}

Answer: A

- Watch Video Solution

28. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false-
A. The $H-O-H$ bond angle in $H_{2} O$ is smaller than the $H-N-H$ bond angle in NH_{3}.
B. The $H-C-N$ bond angle in CH_{4} is larger than the $H-N-H$ bond angle in NH_{3}.
C. The $H-C-H$ bond angle in CH_{4} is larger than the $H-C-H$ bond angle in NH_{3}, and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°.
D. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}.

Answer: D

- Watch Video Solution

29. Predict the correct order among the following-
A.
bond - bond pair > lone pair - bond pair > lone pair - lone pair
B.
lone pair-bond pair > bond pair - bond pair > lone pair - lone pain
C.

$$
\text { lone pair - lone pair }>\text { lone pair }- \text { bond pair }>\text { bond pair }- \text { bond pais }
$$

D.

$$
\text { lone pair - lone pair }>\text { bond pair }- \text { bond pair }>\text { lone pair }- \text { bond pais }
$$

Answer: C

- Watch Video Solution

30. Which one of the following compounds shows the presence of intramolecular hydrogen bond ?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. $H C N$
C. Cellulose
D. Concentrated acetic acid

Answer: C

31. The correct geometry and hybridisation for XeF_{4} are
A. octahedral, $s p^{3} d^{2}$
B. trigonal bipyramidal $s p^{3} d$
C. planar triangle, $s p^{3} d^{3}$
D. planar trianglar, $s p^{3} d^{3}$

Answer: D

- Watch Video Solution

32. The hybridization of atomic orbitals of nitrogen is $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$, and NH_{4}^{+}respectively are
A. $s p, s p^{3}$ and $s p^{2}$
B. $s p^{2}, s p^{3}$ and $s p^{3}$
C. $s p, s p^{2}$ and $s p^{3}$
D. $s p^{2}, s p$ and $s p^{3}$

Answer: C

- Watch Video Solution

33. Which of the following pairs of compound is isoelectronic and isostructure?
A. $T e l_{2}, X e F_{2}$
B. $\mathrm{Ibr}_{2}^{-}, \mathrm{XeF} \mathrm{F}_{2}$
C. $I F_{2}, X e F_{2}$
D. $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$

Answer: B

34. The species, having bonds angle of 120° is
A. ClF_{3}
B. NCl_{3}
C. BCl_{3}
D. PH_{3}

Answer: C

Watch Video Solution
35. Which of the following pairs of species have the same bond order
A. $\mathrm{O}_{2}, \mathrm{NO}^{+}$
B. $\mathrm{CN}^{-}, \mathrm{CO}$
C. N_{2}, O_{2}^{-}
D. CO, NO

- Watch Video Solution

36. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
A. $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{3}$
B. $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
C. $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
D. $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$

Answer: A

Watch Video Solution

37. Consider the following species
$C N^{-}, C N^{-}, N O$ and CN.

Which one of these will hqave the highest bond order ?
A. $N O$
B. $C N^{-}$
C. $C N^{+}$
D. $C N$

Answer: B

- Watch Video Solution

38. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom Cl is-
A. one
B. two
C. four
D. three

Answer: B

39. Identify the incorrect statement related to PCl_{5} from the follwing
A. $P C l_{5}$ molecule is non - reactive.
B. Three equatorial $P-C l$ bonds make an angle of 120° with each other.
C. Two axial $P-C l$ bonds make an angle of 180° with each other.
D. Axial $P-C l$ bonds are longer than equatorial $P-C l$ bonds.

Answer: A

- Watch Video Solution

40. Which of the following diatomic molecular species has only π bonds according to Molecular orbital Theory
A. $B e_{2}$
B. O_{2}
C. N_{2}
D. C_{2}

Answer: D

- Watch Video Solution

OBJECTIVE TYPE QUESTIONS (B. MULTIPLE CHOICE QUESTIONS) (JEE (MAIN) \& OTHER STATE BOARDS FOR ENGINEERING ENTRANCE)

1. The types of hybridisation on the five carbon atoms from left to right in the molecule $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$ are
A. $s p^{3}, s p^{2}, s p^{2}, s p^{2}, s p^{3}$
B. $s p^{3}, s p, s p^{2}, s p^{2}, s p^{3}$
C. $s p^{3}, s p^{2}, s p, s p^{2}, s p^{3}$
D. $s p^{3}, s p, s p, s p^{2}, s p^{3}$

- Watch Video Solution

A. 1.5 D
B. 2.25 D
C. 1 D
D. 3 D

Answer: A
3. How many hydrogen-bonded water molecule(s) are associated in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

4. Which one of the following conversions involve change in both hybridisation and shape?

$$
\text { A. } \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

B. $\mathrm{NH}_{2} \rightarrow \mathrm{NH}_{4}^{+}$
C. $B F_{3} \rightarrow B F_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

Answer: C

- Watch Video Solution

5. N_{2} and O_{2} are converted into monocations, N_{2}^{+}and O_{2}^{+}respectively. Which of the following is wrong?
A. In N_{2}^{+}the $N-N$ bond is weakened
B. In O_{2}^{+}, the bond order increases
C. In O_{2}^{+}, paramagnetism decreases
D. $N_{2}{ }^{+}$become diamagnetic

Answer: D

6. The structure of $I F_{7}$ is
A. square pyramid
B. trigonal bipyramid
C. octahedral
D. pentagonal bipyramid

Answer: D

Watch Video Solution

7. Likely bond angles of $S F_{4}$ molecule are :
A. $89^{\circ}, 117^{\circ}$
B. $120^{\circ}, 180^{\circ}$
C. $45^{\circ}, 118^{\circ}$
D. $117^{\circ}, 92^{\circ}$

D Watch Video Solution

8. Which of the following has maximum number of lone pairs associated with $X e$?
A. $X e F_{4}$
B. $X e F_{6}$
C. $X e F_{2}$
D. XeO_{3}

Answer: C

D Watch Video Solution

9. The number and type of bonds between two carbon atoms in calcium
A. one sigma, one pi
B. two sigma, one pi
C. two sigma, two pi
D. one sigma, two pi

Answer: D

- Watch Video Solution

10. The state of hybridization of the central atom and the number of lone pairs over the central atom in POCl_{3} are
A. $s p, 0$
B. $s p^{2}, 0$
C. $s p^{3}, 0$
D. $d s p^{2}, 1$

Answer: C

11. The paramagnetic behaviour of B_{2} is due to the presence of
A. 2 unpaired electrons in $\pi_{b} M O$
B. 2 unpaired electrons in $\pi^{*} M O$
C. 2 unpaired electrons in $\sigma^{*} M O$
D. 2 unpaired electrons $\sigma_{b} M O$

Answer: A

- Watch Video Solution

12. Which of the following compounds shows ionic, covalent and coordinate bonds as well ?
A. NaOH
B. NaCl
C. NaCN
D. $N a N C$

Answer: D

- Watch Video Solution

13. In which of the following pairs, the two species are not isostructural?
A. PCl_{4}^{+}and SiCl_{4}
B. $P F_{5}$ and $B r F_{5}$
C. $A l F_{6}^{3-}$ and $S F_{6}$
D. CO_{3}^{2-} and NO_{3}^{-}

Answer: B

- Watch Video Solution

14. The correct order of bond angle of $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}$ and NO_{2}^{-}is
A. $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{+}$
C. $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}$
D. $\mathrm{NO}_{2}<\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}$

Answer: B

- Watch Video Solution

15. Molecular shape of $S F_{4}, C F_{4}$ and $X e F_{4}$ are
A. the same, with 1,2 and 1
B. the same, with 1,0 and 1
C. different, with 0,1 and 2
D. different, with 1,0 and 2

Answer: D

- Watch Video Solution

16. Allyl cyanide has
A. 9 sigma bonds, 4 pi bonds and no lone pair
B. 9 sigma bonds, 3 pi bonds and one lone pair
C. 8 sigma bonds, 5 pi bonds and one lone pair
D. 8 sigma bonds, 3 pi bonds and two lone pairs

Answer: B

- Watch Video Solution

17. In which of the following pairs of molecules/ions, both the species are not likely to exist ?
A. $H_{2}^{-}, H e_{2}^{2+}$
B. $H_{2}^{+}, \mathrm{He}_{2}^{2-}$
C. $H_{2}^{-}, H e_{2}^{2-}$
D. $H_{2}^{2+}, H e_{2}$

Answer: D

- Watch Video Solution

18. Stability of the species $L i_{2}, L i_{2}^{-}$and $L i_{2}^{+}$increases in the order of
A. $L i_{2}^{-}<L i_{2}<L i_{2}^{+}$
B. $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
C. $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$
D. $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$

Answer: C

19. The structure of XeF_{6} is
A. octahedron
B. trigonal bipyramid
C. pentagonal bipyramid
D. tetragonal bipyramid.

Answer: C

- Watch Video Solution

20. Molecular formulae and shapes of some molecules are given below.

Choose the incorrect match.
Formula - Shape
(a) NH_{3} - Trigonal pyramidal
(b) $\mathrm{SF}_{4} \quad-\quad$ Tetrahedral
(c) ClF_{3} - T-shaped
(d) PCl_{5} - Trigonal bipyramidal
(e) $B F_{3} \quad-\quad$ Trigonal planar
21. Correct order of bond length is
A. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{HCO}_{2}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{CO}_{2}, \mathrm{HCO}_{2}^{-}, \mathrm{CO}, \mathrm{CO}_{3}^{2-}$
c. $\mathrm{CO}_{3}^{2-}, \mathrm{HCO}_{2}^{-}, \mathrm{CO}_{2}, \mathrm{CO}$
D. $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}, \mathrm{HCO}_{2}^{-}$

Answer: C

- Watch Video Solution

22. Which one of the following properties is not shown by $N O$?
A. Its bond orderis 2.5 .
B. It is diamagnetic in gaseous state.
C. It is a neutral oxide.
D. It combines with oxygen to form nitrogen dioxide.

Answer: B

- Watch Video Solution

23. The number of lone pairs of electrons on central atom of $\mathrm{H}_{2} \mathrm{O}, \mathrm{SnCl}_{2}, \mathrm{PCl}_{3}$ and XeF_{2} respectively are :
A. $2,1,1,3$
B. 2,2,1,3
C. $3,1,1,2$
D. $2,1,2,3$

Answer: A
24. The correct order of $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
A. $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
C. $O_{3}>O_{2}>H_{2} O_{2}$
D. $O_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$

Answer: B

- Watch Video Solution

25. Identify the T-shaped molecule in the following :
A. $B F_{3}$
B. NH_{2}
C. $N F_{3}$
D. ClF_{3}

D Watch Video Solution

26. The increassing order of bond order of $O_{2}, O_{2}^{+}, O_{2}^{-}$and $O_{-}(2)^{\wedge}(--)^{\wedge}$ is :
A. $O_{2}^{+}, O_{2}, O_{2}^{-}, O_{2}^{2-}$
B. $O_{2}^{2-}, O_{2}^{-}, O_{2}^{+}, O_{2}$
C. $O_{2}, O_{2}^{+}, O_{2}^{-}, O_{2}^{2-}$
D. $O_{2}^{2-}, O_{2}^{-}, O_{2}, O_{2}^{+}$

Answer: D

Watch Video Solution

27. The species in which the N -atom is in a state of sp hybridisation is
A. NO_{2}^{+}
B. NO_{2}^{-}
C. NO_{3}^{-}
D. NO_{2}

Answer: A

- Watch Video Solution

28. The ground state magnetic property of B_{2} and C_{2} molecules will be
A. B_{2} paramagnetic and C_{2} diamagnetic
B. B_{2} diamagnetic and C_{2} paramagnetic
C. both are diamagnetic
D.

Answer: A

29. Which of the following pairs have identical bond order?
A. CN^{-}and NO^{+}
B. $C N^{-}$and O_{2}^{-}
C. $C N^{-}$and $C N^{+}$
D. NO^{+}and O_{2}^{-}

Answer: A

- Watch Video Solution

30. Which of the following species is not paramagnetic?
A. $N O$
B. $C O$
C. O_{2}
D. B_{2}

- Watch Video Solution

31. What will be the shape of the compound $M B_{4} L_{2}$? Here B is bond pair and L is lone pair.
A. Square planar
B. Octahedral
C. Square pyramid
D. Tetrahedral

Answer: A

- Watch Video Solution

32. What is the hybridisation and geometry of the given species? The species are XeF_{2} and $\mathrm{ICl}_{2}{ }^{-}$
A. $s p^{3} d$ and trigonal bipyramidal
B. $s p^{3} d^{2}$ and square planar
C. $s p^{3} d$ and linear
D. $s p^{3}$ and irregular tetrahedron

Answer: C

D Watch Video Solution

33. Which of the following has the strongest H - bond?
A. $O-H---O$
B. ${ }^{\text {S }} \mathrm{S}-\mathrm{H}-\mathrm{-S}$
C. $F-H--\quad F$
D. $N-H---N$

Answer: C

34. The intramolecular hydrogen bond is present in
A. phenol
B. o-nitrophenol
C. p-nitrophenol
D. p-cresol

Answer: B

- Watch Video Solution

35. According to molecular orbital theory, which of the following will not be a viable molecule?
A. $H e_{2}^{2+}$
B. $H e^{2+}$
C. H_{2}^{-}
D. H_{2}^{2-}

Answer: D

- Watch Video Solution

36. Which of the following compounds contain(s) no covalent bond(s)?
$\mathrm{KCl}, \mathrm{PH}_{3}, \mathrm{O}_{2}, \mathrm{~B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{SO}_{4}$
A. $\mathrm{KCl}, B_{2} \mathrm{H}_{6}, \mathrm{PH}_{3}$
B. $\mathrm{KCl}, \mathrm{H}_{2} \mathrm{SO}_{34}$
C. KCl
D. $\mathrm{KCl}, \mathrm{B}_{2} \mathrm{H}_{6}$

Answer: C

37. Total number of lone pair of electrons in $3 I_{3}^{-}$ion is
A. 3
B. 6
C. 9
D. 12

Answer: C

- Watch Video Solution

38. According to molecular orbital theory, which of the following is true with respect to $L I_{2}+$ and $L i_{2}-$?
A. Both are unstable
B. $L i^{2+}$ is unstable and $L i_{2}^{-}$is stable
C. $L i_{2}^{+}$is stable and $L i_{2}^{-}$is unstable
D. Both are stable

Answer: D

- Watch Video Solution

39. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic ?
A. $N_{2} \rightarrow N_{2}^{+}$
B. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
C. $O_{2} \rightarrow O_{2}^{2-}$
D. $O_{2} \rightarrow O_{2}^{+}$

Answer: B

D Watch Video Solution

40. Two pi and half sigma bonds are present in :
A. N_{2}^{+}
B. N_{2}
C. O_{2}^{+}
D. O_{2}

Answer: A

- Watch Video Solution

41. NO^{+}has bond order
A. 2
B. 2.5
C. 3
D. 3.5

Answer: C

42. The shape of ClO_{3}^{-}is
A. linear
B. triangular planar
C. pyramidal
D. square planar

Answer: C

- Watch Video Solution

43. The two carbon atoms in calcium carbide are held by which of following bonds?
A. ionic bonds
B. two sigma bonds
C. two sigma and one coordinate bond
D. two sigma and two π bonds

Answer: D

(Watch Video Solution

44. Which of the following posses net dipole moment?
A. $S O_{2}$
B. $B F_{3}$
C. $B e C l_{2}$
D. CO_{2}

Answer: A

(Watch Video Solution

45. Which of the following pair contains 2 lone pairs of electrons on the central atom?
A. $I_{2}, H_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NF}_{3}$
C. $\mathrm{XeF}_{4}, \mathrm{NH}_{3}$
D. $\mathrm{SO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{~S}$

Answer: A

- Watch Video Solution

46. According to molecular orbital theory, which of the following is true with respect to $L I_{2}+$ and $L i_{2}-$?
A. Both are unstable
B. $L i_{2}^{+}$is unstable and $L i_{2}^{-}$is stable
C. $L i_{2}^{+}$is stable and $L i_{2}^{-}$is unstable
D. Both are stable

Answer: D

- Watch Video Solution

47. Two pi and half sigma bonds are present in :
A. N_{2}^{+}
B. N_{2}
C. O_{2}^{+}
D. O_{2}

Answer: A

- Watch Video Solution

48. Among the following, the molecule expected to be stabilized by anion formation is : $C_{2}, O_{2}, N O, F_{2}$
A. $N O$
B. C_{2}
C. F_{2}
D. O_{2}

Answer: B

- Watch Video Solution

49. During the change of O_{2} to O_{2}^{-}, the incoming electron goes to the orbital:
A. $\sigma^{*} 2 p_{z}$
B. $\pi 2 p_{y}$
C. $\pi^{*} 2 p_{x}$
D. $\pi 2 p_{x}$

Answer: C

- Watch Video Solution

50. Among the following species, the diamagnetic molecule is:
A. O_{2}
B. NO
C. B_{2}
D. $C O$

Answer: D

- Watch Video Solution

51. Among the following molecules/ions, $\mathrm{C}_{2}^{2-}, \mathrm{N}_{2}^{2-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}$

Which one is diamagnetic and has the shortest bond length?
A. C_{2}^{2-}
B. N_{2}^{2-}
C. O_{2}
D. O_{2}^{2-}

Answer: A

- Watch Video Solution

52. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic ?
A. $N_{2} \rightarrow N_{2}^{+}$
B. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
C. $O_{2} \rightarrow O_{2}^{2-}$
D. $O_{2} \rightarrow O_{2}^{+}$

Answer: B

- Watch Video Solution

53. The ion that has $s p^{3} d^{2}$ hybridization for the central atom, is:
A. $\left[\mathrm{ICl}_{2}\right]^{-}$
B. $\left[I F_{6}\right]^{-}$
C. $\left[I C l_{4}\right]^{-}$
D. $\left[B r F_{2}\right]^{-}$

Answer: C

- Watch Video Solution

1. The molecular shapes of $S F_{4}, C F_{4}$ and $X e F_{4}$ are :
A. the same with 2,0 and 1 lone pairs of electrons respectively
B. the same with 1,1 and 1 lone pairs of electrons respectively
C. different with 0,1 and 2 lone pairs of electrons respectively
D. different with 1,0 and 2 lone pairs of electrons respectively.

Answer: D

- Watch Video Solution

2. The correct order of hybridisation of the central atom in the following species $N H_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, P C l_{5}$ and $B C l_{3}$ is
(At. No. Pt = 78)
A. $d s p^{2}, d s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{2}, d s p^{3}, s p^{2}$
C. $d s p^{3}, s p^{2}, s p^{3}, s d p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}, d s p^{3}$.

Answer: B

- Watch Video Solution

3. Which of the following are isoelectronic and isostructural ?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: A

- Watch Video Solution

4. Total number of lone pair of electrons in XeOF_{4} is:
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

5. Which species has the maximum number of lone pair of electrons on the central atom?.
A. ClO_{3}^{-}
B. XeF_{4}
C. $S F_{4}$
D. $\left[I_{3}\right]^{-}$

- Watch Video Solution

6. The correct stability order of the following resonance structures is
$(I) H_{2} C=\stackrel{+}{N}=\stackrel{-}{N} \quad(I I) H_{2} \stackrel{+}{C}-N=\overline{-}$
$(I I I) H_{2} \stackrel{-}{C}-\stackrel{+}{N}=N \quad(I V) H_{2} \bar{C}-N=\stackrel{+}{N}$
A. $I>I I>I V>I I I$
B. $I>I I I>I I>I V$
C. $I I>I>I I I>I V$
D. $I I I>I>I V>I I$

Answer: B

D Watch Video Solution

7. Assuming that Hund's rule is violated the bond order and magnetic nature of the diatomic molecle B_{2} is
A. 1 and diamagnetic
B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: C

- Watch Video Solution

8. The species having pyramidal shape is
A. SO_{3}
B. BrF_{3}
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer: D

- Watch Video Solution

9. The shapes of $\mathrm{XeO}_{2} F_{2}$ molecule is
A. Trigonal bipyramidal
B. square planar
C. tetrahedral
D. see - saw

Answer: D

OBJECTIVE TYPE QUESTIONS (C. MULTIPLE CHOICE QUESTIONS)

1. Paramagnetic species are
A. O_{2}^{-}
B. N_{2}
C. C_{2}
D. F_{2}

Answer: A: C

- Watch Video Solution

2. The linear structure is possessed by
A. SnCl_{2}
B. $C S_{2}$
C. NO_{2}^{+}
D. $S F_{2}$

Answer: B::C
3. Diamangetic species are
A. N_{2}
B. O_{2}
C. B_{2}
D. O_{2}^{2-}

Answer: A::D

- Watch Video Solution

4. In which of the following pairs, the shapes of the two molecules/ions is same?
A. $\mathrm{H}_{2} \mathrm{O}, S F_{2}$
B. $\mathrm{NH}_{3}, \mathrm{SO}_{2}$
C. $P F_{5}, S b C l_{5}$
D. $X e F_{4}, S F_{4}$

Answer: A:C

- Watch Video Solution

5. In which of the following pairs of molecules/ ions, the central atoms have $s p^{2}$-hybridization?

- Watch Video Solution

6. In which of the following, the geometry is not correctly given?
A. PH_{3} : Trigonal pyramidal
B. SiH_{4} : Tetrahedral
C. ClF_{3} : Trigonal planar
D. $S F_{4}$: Square planar

Answer: C::D

- Watch Video Solution

7. CO_{2} is isostructural with
A. SnCl_{2}
B. $S F_{2}$
C. HgCl_{2}
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: C::D

- Watch Video Solution

8. Hydrogen bonding plays a central role in which of the following phenomena?
A. Ice floats in water.
B. Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions.
C. Formic acid is more acidic than acetic acid.
D. Dimerisation of acetic acid in benzene.

Answer: A::B::D

D Watch Video Solution

9. The compound(s) with two lone pairs of electron on the central atom is (are)
A. $B r F_{5}$
B. $C l F_{3}$
C. XeF_{4}
D. $S F_{4}$

- Watch Video Solution

10. According to molecular orbital theory,
A. C_{2}^{2-} is expected to be diamagnetic
B. O_{2}^{2+} is expected to have a longer bond length than O_{2}
C. N_{2}^{+}and N_{2}^{-}have the same bond order
D. He_{2}^{+}has the same energy as two isolated He atom.

Answer: A: C

- Watch Video Solution

11. Which statements are correct for the peroxide ion ?
(1) It has five completely filled anti - bonding molecular orbitals
(2) It is diamagnetic
(3) It has bond order one
(4) It is isoelectronic with neon
A. It has five completely filled anti - bonding molecular orbitals.
B. It is diamagnetic.
C. IT has bond order one.
D. It is isoelectronic with neon.

Answer: B::C

- Watch Video Solution

12. Each of the following options contains a set of four molecules. Identify the option(s) where all four molecules possess permanent dipole moment at room temperature.
A. $\mathrm{NO}_{2}, \mathrm{NH}_{3}, \mathrm{POCl}_{3}, . \mathrm{CH}_{3} \mathrm{Cl}$
B. $B F_{3}, O_{3}, S F_{6}, X e F_{6}$
C. $\mathrm{BeCl}_{2}, \mathrm{CO}_{2}, \mathrm{BCl}_{3}, \mathrm{CHCl}_{3}$
```
D. \(\mathrm{SO}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{Br} \mathrm{F}_{5}\)
```


Answer: A:D

- Watch Video Solution

OBJECTIVE TYPE QUESTIONS (D. MULTIPLE CHOICE QUESTIONS)

1. Most of the polyatomic molecules except a few such as CO_{2} and CS_{2} are linear or angular with a bond angle generally somewhat greater than 90° A bond angle is defined as the angle between the direction of two covalent bonds since the atoms in molecules are in constant motion with respect to each other they are not expected to have a fixed value of bond angle Repulsion between non-bonded atoms alone does not provide an adequate explanation Hybridisation of bonding orbitals an adequate explanation Hybridisation of bonding orbitals also plays a very important role in detrmining the value of bond angle it has been observed that in hybridisation as the s-character of hybrid orbital increases the bond angle increases

Which of the following hybridisation may have more than one type of bond angle?.
A. The hybridised orbitals are always equivalent in energy and shape.
B. sp hybridised orbitals has more s - character than $s p^{2}$ hybridised orbital.
C. Promotion of electron is essential condition prior to hybridisation.
D. The hybridized orbitals are directed in space in some preferred directions to have minimum repulsion between electron pairs.

Answer: C

- Watch Video Solution

2. NO_{2}^{+}is called
A. $S F_{2}$
B. $\mathrm{H}_{3} \mathrm{O}^{+}$
C. XeF_{2}
D. CO_{3}^{2-}

Answer: C

- Watch Video Solution

3. In order to explain the characteristic geometrical shapes of polyatomic molecules, Pauling introduced the concept of hybridisation. The orbitals undergoing hybridisation should have nearly same energy. There are various types of hybridisations involving s, p and d-type of orbitals. The type of hybridisation gives the characteristic shape of the molecular or ion.

Which of the following has correct placement of lone pairs and bond pairs?

A.
B.

C.

D.

Answer: B

- Watch Video Solution

4. In order to explain the characteristic geometrical shapes of polyatomic molecules, Pauling introduced the concept of hybridisation. The orbitals undergoing hybridisation should have nearly same energy. There are various types of hybridisations involving s, p and d - type of orbitals. The type of hybridisation gives the characteristic shape of the molecular or ion.

Which molecule does not have the same type of hybridisation as P has in $P F_{5}$?
A. ClF_{3}
B. $S F_{4}$
C. XeF_{4}
D. XeF_{2}

Answer: C

- Watch Video Solution

5. In order to explain the characteristic geometrical shapes of polyatomic molecules, Pauling introduced the concept of hybridisation. The orbitals undergoing hybridisation should have nearly same energy. There are various types of hybridisations involving s, p and $d-$ type of orbitals. The type of hybridisation gives the characteristic shape of the molecular or ion.

Which of the following molecule/ion does not have same number of lone pairs?
A. $S F_{4}$
B. PH_{3}
C. ClO_{3}^{-}
D. XeF_{2}

Answer: D

- Watch Video Solution

6. Molecular orbital theory as developed by Hund and Mulliken concerns with the formation of molecular orbitals formed by linear combination of atomic orbitals. The electrons are present in these molecular orbitals. The molecular orbitals are filled. The molecular orbital configuration helps us to calculate bond order which gives information about the number of bonds present between atoms. The bond order is related to bond length and bond strength.

Which of the following combination does ot give σ MO (assume Z-axis as internuclear axis)
A. $2 p_{x}+2 p_{x}$
B. $2 p_{z}+2 s$
C. $2 s+2 s$
D. $2 p_{z}+2 p_{z}$

Answer: A

- Watch Video Solution

7. Molecular orbital theory as developed by Hund and Mulliken concerns with the formation of molecular orbitals formed by linear combination of atomic orbitals. The electrons are present in these molecular orbitals. The molecular orbitals are filled. The molecular orbital configuration helps us to calculate bond order which gives information about the number of bonds present between atoms. The bond order is related to bond length and bond strength.

Which one of the following does not have single electron in a bonding molecular orbital?
A. $C N$
B. B_{2}
C. NO
D. N_{2}^{+}

Answer: C

8. Molecular orbital theory,bond order of molecules
A. $\sigma^{*} 2 s$
B. $\sigma 2 p z$
C. $\pi 2 p x$
D. $\sigma 2 s$

Answer: B

- Watch Video Solution

9. Molecular orbital theory as developed by Hund and Mulliken concerns with the formation of molecular orbitals formed by linear combination of atomic orbitals. The electrons are present in these molecular orbitals. The molecular orbitals are filled. The molecular orbital configuration helps us to calculate bond order which gives information about the number of bonds present between atoms. The bond order is related to bond length
and bond strength.

Which of the following is expected to have largest bond length?
A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: D

- Watch Video Solution

10. Molecular orbital theory as developed by Hund and Mulliken concerns with the formation of molecular orbitals formed by linear combination of atomic orbitals. The electrons are present in these molecular orbitals. The molecular orbitals are filled. The molecular orbital configuration helps us to calculate bond order which gives information about the number of bonds present between atoms. The bond order is related to bond length and bond strength.

Which of the following will have maximum number of electrons in antibonding MOs?
A. N_{2}^{+}
B. O_{2}^{+}
C. F_{2}
D. $B e_{2}$

Answer: C

- Watch Video Solution

OBJECTIVE TYPE QUESTIONS (D. MULTIPLE CHOICE QUESTIONS)(Matching Type Question)

1. Match the orbital overlap figure in List I with the description given in

List II and select the correct answer using the code given below the lists.

Column I		Column II	
(p)		(1)	$\mathrm{p}-\mathrm{d} \pi$-antibonding
(q)		(2)	$d-d \quad \sigma$-bonding
(r)		(3)	$\mathrm{p}-\mathrm{d} \pi$-bonding
(s)		(4)	$d-d \quad \sigma$-antibonding

A. $\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
$\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
C. $\begin{array}{cccc}P & Q & R & S \\ 2 & 3 & 1 & 4\end{array}$
D. $\begin{array}{llll}P & Q & R & S \\ 4 & 1 & 3 & 2\end{array}$

Answer: C

- Watch Video Solution

2. Match the interhalogen compounds of column I with the geometry in column II and assign the correct code

Columen it
(a) $\times x$
(b) $\times x_{3}^{\prime}$
(c) $X X_{5}^{\prime}$
(d) $X X_{7}^{\prime}$

Column :

(i) T-shape

(ii) Pentagonal bipyramidal
(iii) Línear

(iv) Square-pyramidal

(v) Tetrahedral

A. (iii) (i) (iv) (ii)
(P) (Q) (R) (S)
(v) (iv) (iii) (ii)
(P) (Q) (R) (S)
(iv) (iii) (ii) (i)
(P) (Q) (R) (S)
(iii) (iv) (i) (ii)

Answer: A

- Watch Video Solution

OBJECTIVE TYPE QUESTIONS (D. MULTIPLE CHOICE QUESTIONS)(Matrix Match Type Question)

1. Match the molecule in Column I with the shape in Column II

Column I	Column II
(A) SF_{4}	(p) Pyramidal
(B) CiF_{3}	(q) Square planar
(C) XeF_{4}	(r) Sea saw
(D) NH_{3}	(s) T-shaped

- Watch Video Solution

- Watch Video Solution

4. Match the molecule in Column I with the characteristic in Column II

Column I	Column II
(A) B_{2}	(p) paramagnetic
(B) N_{2}	(q) undergoes oxidation
(C) O_{2}^{-}	(r) undergoes reduction
(D) O_{2}	(s) bond order ≥ 2
	(t) mixing of s and p orbitals

0
 Watch Video Solution

5. Match the species in Column I with bond order in Column II.

Column I	Column II	
(A) NO	(p) 1.5	
(B) CO	(q) 2.0	
(C) O_{2}^{-}	(r) 2.5	
(D) O_{2}	(s) 3.0	

- Watch Video Solution

6. Match the items given in Column I with examples given in Column II.

Column I	Column II
(A) Hydrogen bond	$(p) \mathrm{C}$
(B) Resonance	$(q) \mathrm{LiF}$
(C) Ionic solid	$(r) \mathrm{HF}$
(D) Covalent solid	$(s) \mathrm{O}_{3}$

- Watch Video Solution

1. The number of molecules or ions having bond order 2.5 among $\mathrm{O}_{2}^{+}, \mathrm{CN}, \mathrm{NO}, \mathrm{N}_{2}^{+}, \mathrm{CO}^{+}, \mathrm{NO}^{+}, \mathrm{O}_{2}^{-}, \mathrm{CN}^{-}, \mathrm{N}_{2}$, is

- Watch Video Solution

2. Total number of molecular orbitals occupying one or two electrons in O_{2}^{+}is

- Watch Video Solution

3. Total number of coordinate bonds present in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

4. Total number of electrons present in $\pi M O s$ in B_{2} molecule is

- Watch Video Solution

5. The number of molecules having more than one lone pair among the following :
$X e F_{4}, \mathrm{ClF}_{3}, N H_{3}, S F_{4}, \mathrm{XeF}_{2}, \mathrm{Br} \mathrm{F}_{5}, \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

6. Number of molecules having dipole moment among : $\mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}$, trans-1, 2 - dichloroethene, $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CCl}_{4}$ HI^{\prime} is

- Watch Video Solution

7. Find the total number of polar molecules $S F_{4}, P C l_{5}, P C l_{3} F_{2}, S F_{6}, X e F_{2}, N O_{2}^{+}, B F_{2} C l, B F_{3}, P F_{3} C l_{2}$

- Watch Video Solution

8. COCl_{2} is a poisonous gas. The formal charge on O atom is

- Watch Video Solution

9. The number of 90° bond angles present in $S F_{4}$ molecules is

- Watch Video Solution

10. Total number of lone pairs present in the structure of HNO_{3} is

- Watch Video Solution

11. Based on VSEPR theory, the number of 90 degree F -Br-F angles in BrF_{5}, is

- Watch Video Solution

12. A list of species having the formula of $X Z_{4}$ is given below $\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{BrF}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$
and $\left[\mathrm{PtCl}_{4}\right]^{2-}$
Defining shape on the basis of the locatiion of X and Z atoms, the total number of species having a square planar shape is

- Watch Video Solution

13. Among the triatomic molecules/ions
$\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{lCl}_{2}^{-}, l_{3}^{-}$and XeF_{2}, the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d - orbitals (s) is [atomic number of $S=16, C l=17, I=53$ and $\mathrm{Xe}=54$]

- Watch Video Solution

14. Among $H_{2}, \mathrm{He}_{2}^{+}, L i_{2}, B e_{2}, B_{2}, C_{2}, N_{2}, O_{2}^{-}$and F_{2}, the number of diamagnetic species is
(Atomic numbers:
$H=1, H e=2, L i=3, B e=4, B=5, C=6, N=7, O=8, F=9)$
15. The sum of the number of lone pair of electrons on each central atom in the following species is
$\left[\mathrm{TeBr}_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{2+}, S N F_{3}$, and $\left[\mathrm{XeF}_{3}\right]^{-}$
(Atomic number: $\mathrm{N}=7, \mathrm{~F}=9, \mathrm{~S}=16, \mathrm{Br}=35, \mathrm{Te}=52, \mathrm{Xe}=54$)

- Watch Video Solution

UNIT PRACTICE TEST

1. Assertion : Bond length of O_{2} is more than that of O_{2}^{+}.

Reason : Bond order of O_{2}^{+}is more than that of O_{2}.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

- Watch Video Solution

2. The bond angle in $\mathrm{H}_{2} \mathrm{O}$ molecule is less than that of NH_{3} molecule because \qquad .

- Watch Video Solution

3. Which one of the following pairs of species have the same bond order ?
A. O_{2}^{-}and CN^{-}
B. NO^{+}and $C N^{-}$
C. $C N^{-}$and $C N^{+}$
D. NO^{+}and $C N^{+}$

- Watch Video Solution

4. The hybridization of atomic orbitals of nitrogen is $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$, and NH_{4}^{+}respectively are
A. $s p^{3}, s p^{2}$ and $s p$ respectively
B. $s p, s p^{3}$ and $s p^{2}$ respectively
C. $s p^{2}, s p^{2}$ and $s p^{3}$ respectively
D. $s p, s p^{2}$ and $s p^{3}$ respectively

- Watch Video Solution

5. The incorrectly matched pair among the following is :

Molecule Shape
(a) $\mathrm{XeF}_{4} \quad$ Square planar
(b) $\mathrm{ClF}_{3} \quad$ T shaped
(c) $\mathrm{BrF}_{5} \quad$ Trigonal bipyramidal
(d) $X e F_{2}$ Linear

- Watch Video Solution

6. Is there any change in hybridisation of the B and N atom as a result of the following reaction?
$\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{~F}_{3} \mathrm{~B} . \mathrm{NH}_{3}$

- Watch Video Solution

7. Which of the two will have dipole moment?
cis or trans $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}(2)$

- Watch Video Solution

8. Which has higher dipole moment \& why: $N H_{3}, N F_{3}$?

- Watch Video Solution

9. Do ortho- nitrophenol and para - nitrophenol have hydrogen bonding in their molecules? Explain which of the two has higher boiling point?

- Watch Video Solution

10. Giving one example explain the shapes of following molecules:
(i) Molecule containing one lone pair and four bond pairs.
(ii) Molecule containing two lone pairs and three bond pairs.
(iii) Molecule containing two lone pairs and two bond pairs.

- Watch Video Solution

11. Explain the following :
(i) Ionic compounds have high melting and boiling points.
(ii) Ice floats over water.
(iii) BeH_{2} molecule has zero dipole moment although although the $B e-H$ bonds are polar.

- Watch Video Solution

12. Discuss the shapes of following molecules using VSEPR model :
(i) SiCl_{4} (ii) PH_{3} (iii) BeCl_{2}

Which of these is/are polar molecules.

- Watch Video Solution

13. (a) What is resonance ? Write resonance structures of carbon doxide molecule.
(b) Using the concept of hybridisation explain the shapes of
(i) $\mathrm{C}_{2} \mathrm{H}_{4}$ and (ii) $\mathrm{C}_{2} \mathrm{H}_{2}$ molecules.
(c) State the type of hybrid orbitals associated with
(i) P in $P F_{5}$ and
(ii) S in $S F_{6}$
