© ${ }^{\text {T doubtnut }}$

CHEMISTRY

BOOKS - MODERN PUBLISHERS CHEMISTRY (HINGLISH)

REDOX REACTIONS

Solved Examples

1. Identify the species undergoing oxidation and reduction.
a. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
b. $3 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+8 \mathrm{Al}(\mathrm{s}) \rightarrow 9 \mathrm{Fe}(s)+4 \mathrm{Al}_{2} \mathrm{O}_{3}(s)$
c. $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaH}(\mathrm{s})$

- Watch Video Solution

2. Identify the oxidant and reduction in the following reactions.
(a) $\mathrm{Zn}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{ZnO}(s)$
(b) $\mathrm{CH}_{4}(g)+4 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(g)+4 \mathrm{HCl}(g)$
(c) $I_{2}(a q)+2 S_{2} O_{3}^{2-}(a q) \rightarrow 2 I^{-}(a q)+S_{4} O_{6}^{2-}(a q)$
(d) $Z n(s)+2 H^{+}(a q) \rightarrow Z n^{2+}+(a q)+H_{2}(g)$

- View Text Solution

3. Justify that reaction :
$2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaH}(\mathrm{s})$ is redox reactions.

- View Text Solution

4. Calculate the oxidation number of sulphur in the following molecules ions.
(a) $\mathrm{H}_{2} \mathrm{~S}$ (b) $\mathrm{H}_{2} \mathrm{SO}_{3}$ (c) SO_{4}^{2-}
(d) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (e) $\mathrm{S}_{2} \mathrm{O}_{7}^{2}$ (f) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(g) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$.

View Text Solution

5. What is the oxidation number of the underlined atoms in each of the following molecules / ions ?
(a) ClO_{3}^{-}
(b) $\underline{B r} F_{3}$
(c) $\underline{C} H_{4}$
(d) $\underline{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(e) $N a_{2} \underline{B}_{4} O_{7}$
(f) $N a_{4}\left[F e(C N)_{6}\right](g) \underline{N}_{2} H_{4}$.

- View Text Solution

6. Calculate the oxidation number of (i) Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (ii) S in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ (iii) Pb in $\mathrm{Pb}_{3} \mathrm{O}_{4}$ (iv) N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

- View Text Solution

7. Calculate the oxidation number of carbon in the following compounds .
$\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCOOH}, \mathrm{CH}_{2} \mathrm{O}$.
8. Give examples of substances where carbon can exhibit oxidation states from -4 to +4 and nitrogen from -3 to +5 .

- View Text Solution

9. Calculate the oxidation number of all the atoms in the following compounds and ions:

$$
\mathrm{CO}_{2}, \mathrm{SiO}_{2}, \mathrm{PbSO}_{4}, \mathrm{ClO}_{4}^{-}
$$

- View Text Solution

10. Calculate the oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$ ion.

- Watch Video Solution

11. Identify the oxidant and reductant in the following reactions:
a.

$$
10 \mathrm{H}^{\oplus}(a q)+4 Z n(s)+N O_{3}^{\ominus}(a q) \rightarrow 4 Z n^{2+}(a q)+N H_{4}^{\oplus}(a q)+3 H_{2} O(l)
$$

b. $I_{2}(g)+H_{2} S(g) \rightarrow 2 H I(g)+S(s)$

- Watch Video Solution

12. Determine the change in the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in the following industrial reaction:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

13. Justify that the reaction
$2 \mathrm{Cu}_{2} \mathrm{O}_{s}+\mathrm{Cu}_{2} \mathrm{~S}(s) \rightarrow 6 \mathrm{Cu}(s)+\mathrm{SO}_{2}(g)$ a redox reaction. Identify the species oxidised / reduced. Which acts as an oxidanat and which acts as a reductant?
14. Write formulas for the following compounds
(i) Mercury (II) chloride (ii) Nickel (II) sulphate
(iii) Tin(IV) oxide (iv) Thallium (I) sulphate
(v) Iron (III) sulphate (vi) Chromium (III) oxide.

- Watch Video Solution

15. Using stock notation represent the following compounds :
(i) HAuCl_{4} (ii) $\mathrm{Tl}_{2} \mathrm{O}$ (iii) FeO (iv) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(v) Cul (vi) CuO (vii) MnO (viii) MnO_{2}

- Watch Video Solution

16. Which one of two , ClO_{2}^{-}or ClO_{4}^{-}shows disproportionation reaction and why?

- Watch Video Solution

17. Write the disproportionation reactions of the following species :
(i) ClO^{-}(ii) ClO_{3}^{-}(iii) Cl^{-}(iv) ClO_{3}^{-}
(v) ClO_{4}^{-}(vi) Tl^{+}

- View Text Solution

18. Classify the following redox reactions:
a. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
b. $2 \mathrm{~Pb}(\mathrm{NO})_{3}(s) \rightarrow 2 \mathrm{PbO}(s)+2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
c. $\mathrm{NaH}(s) \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)$
d. $2 \mathrm{NO}_{2}(g)+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow \mathrm{NO}_{2}^{\ominus}(a q)+\mathrm{NO}_{3}^{\ominus}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

19. Copper reacts with nitric acid. A brown gas is formed and the solution turns blue. The equation may be written as :

$$
\mathrm{Cu}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{Cu}^{2+}
$$

Balance the equation by oxidation number method.
20. Balance the following equations :
(i) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}$
(ii) $\mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

21. Permanganate ion reacts with bromide ion in basic medium to give manganese dioxide and bromate ion. Write the balanced ionic equation for the reaction.

- Watch Video Solution

22. Balance the following reactions by oxidation number method :
(i) $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$
(ii) $\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \rightarrow \underset{\text { (in acidic medium })}{M n^{2+}}+\underset{\mathrm{F}^{3+}}{ }$
(iii) $\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+\quad \mathrm{CrO}_{4}^{2-}$
(in basic medium)

- View Text Solution

23. How many grams of potassium dichromate are required to oxidise 20.0 g of Fe^{2+} in FeSO_{4} to Fe^{3+} if the reaction is carried out in an acidic solution?

- View Text Solution

24. How many milliliters of $0.125 \mathrm{M}_{\mathrm{MMnO}}^{4}$ are required to react completely with 25.0 mL of 0.250 M FeSO 4 solution in the acidic medium ?
25. How many milliliters of $0.025 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are required to react completely with 25.0 mK of 0.20 M solution of FeSO_{4} ?

- View Text Solution

26. Determine the volume of $\frac{M}{10} \mathrm{KMnO}_{4}$ solution required to react completely with 25.0 mL of $\mathrm{M} / 5$ oxalic acid solution.

- View Text Solution

27. 1.80 g of impure sample of oxalate was dissolved in water and the solution made to 250 mL . On titration 20 mL of this solution required 30 mL of $\mathrm{M} / 50 \mathrm{KMnO}_{4}$ solution. Calculated the percentage purity of the sample.

- View Text Solution

28. 2.48 g of hydrated sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ was dissolved per litre of the solution. 25 mL of this solution required 12.5 mL of $M / 100$ iodine solution. Determine the value of x.

- View Text Solution

29. Write the half reactions for the following redox reactions:
(a) $2 \mathrm{Fe}_{(a q .)}^{3+}+2 I_{(a q .)}^{-} \rightarrow 2 \mathrm{Fe}_{(a q .)}^{2+}+I_{2(a q .)}$
(b) $Z n_{(s)}+2 H_{(a q .)}^{+} \rightarrow Z n_{(a q .)}^{2+}+H_{2(g)}$
(c) $A l_{(s)}+3 A g_{(a q .)}^{+} \rightarrow A l_{(a q)}^{3+}+3 A g_{(s)}$

- Watch Video Solution

30. Write the half cell reaction and the overall cells reaction for the electrochemical cell :
$Z n\left|Z n^{2+}(1.0 M)\right|\left|P b^{2+}(1.0 M)\right| P b$
Calculate the standard e.m.f for the cell if standard electrode potentials
(reduction) for $\mathrm{Pb}^{2+} \mid \mathrm{Pb}$ and $\mathrm{Zn}^{2+} \mid Z n$ electrodes are -0.126 V and -0.763 V respectively.

- View Text Solution

31. I_{2} and $B r_{2}$ are added to a solution containing Br^{-}and I^{-}ions. What reaction will occur if,
$I_{2}+2 e^{-} \rightarrow 2 I^{-}, \quad E^{0}=+0.54 V \quad$ and $\quad B r_{2}+2 e^{-} \rightarrow 2 B r^{-}$,
$E^{0}=+1.09 \mathrm{~V} ?$

- Watch Video Solution

32. What will be the spontaneous reaction between the following half cell reactions?
(i) $\mathrm{Cr}^{3+}(a q)+3 e^{-} \rightarrow C r(s) \quad E^{\circ}=-0.74 V$
(ii) $\mathrm{MnO}_{2}(s)+4 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \quad E^{\circ}=1.28 \mathrm{~V}$

Calculate $E_{\text {cell }}^{\circ}$
33. The standard electrode potential corresponding to the reaction : $A u^{3+}(a q)+3 e^{-} \rightarrow A u(s)$ is 1.42 V . Predict (i) if gold can be can be dissolved in 1 M HCl solution and (ii) on passing hydrogen gas through gold solt solution, metallic gold will be precipitated or not .

- View Text Solution

34. Is it possible to store
(i) Copper sulphate in a zinc vessel ?
(ii) Copper sulphae in a silver vessel ?
(iii) Copper sulphate in a nickel vessel ?
(iv) Copper sulphate in a gold vessel

- View Text Solution

35. Give two examples each of oxidants which can oxidize.
(i) $\mathrm{Cl}^{-}(a q)$ to $\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $F e(s)$ to $F e^{2+}(a q)$
(iii) $I^{-}(a q)$ to $I_{2}(a q)$

(Watch Video Solution

Practice Problems

1. What is the oxidation number of nitrogen in (a) nitric acid (b) nitrous acid (c) nitric oxide (d) nitrous oxide (e) ammonia (f) N_{2} ?

- View Text Solution

2. What is the oxidation number of the underlined atoms in the following
?
$\mathrm{KMn}_{4}, \mathrm{Na}_{2} \underline{\mathrm{Cr}}{ }_{2} \mathrm{O}_{7}, \underline{\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{KCl} \mathrm{O}_{3}, \underline{\mathrm{P}} \mathrm{O}_{4}^{3-} \underline{\mathrm{C}} \mathrm{Cl}_{4}}$

- Watch Video Solution

3. What are the oxidation numbers of the following ?
(a) Cr in CrO_{4}^{2-} (b) C in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(c) I in $I F_{7}$ (d) O in O_{3}

- Watch Video Solution

4. Determine the oxidation number of the atom in bold in the following species:
$\mathrm{BH}_{3}, \mathrm{BF}_{3}, \mathrm{BrO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{SiH}_{4}$

- View Text Solution

5. Determine the oxidation number of Cl in $\mathrm{HCl}, \mathrm{HClO}, \mathrm{ClO}_{4}^{-}$and Ca (OCl) Cl and ClO_{2}.

- View Text Solution

6. Calculate the oxidation number of all the atoms in the following well known oxidants.
$\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KClO}_{4}$

- View Text Solution

7. Calculate the oxidation number of oxygen in the following : $\mathrm{OF}_{2}, \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{CH}_{3} \mathrm{COOH}$

- View Text Solution

8. Calculate the oxidation number of C in the following : $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{CO}, \mathrm{CO}_{2}$ and HCO_{3}^{-}

- View Text Solution

9. Identify the oxidant and resultants in the following reactions:
(a) $\mathrm{CH}_{4}(g)+4 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(g)+2 \mathrm{HCl}(g)$
(b)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}^{+}+\mathrm{MnO}_{2}(s) \rightarrow \mathrm{Mn}^{2+}(a q)+2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
(c) $I_{2}(a q)+S_{2} O_{3}^{-2}(a q) \rightarrow 2 I^{-}(a q)+S_{4} O_{6}^{2-}(a q)$
(d) $\mathrm{Cl}_{2}(g)+2 \mathrm{Br}^{-}(a q) \rightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{Br}_{2}(a q)$

- View Text Solution

10. A 16.4 ml volume of 0.14 M KMnO 4 solution is required to oxidise 20.0 ml of FeSO_{4} solution in acidic medium. What is the concentration of FeSO_{4} solution ?

(Watch Video Solution

11. Calculate E° For the cell :
$A l\left|A l^{3+}(1 M)\right| \mid C u^{2+}(1 M) C u$

Given $E^{\circ}\left(A l^{3+} \mid A l\right)=-1.66 \mathrm{~V}$ and
$E^{\circ}\left(C u^{2+} \mid C u\right)=0.34 V$

- View Text Solution

12. The standard electrode potentials of some electrodes are:

	Electrode	$Z n^{2+} \mid Z n$	$C d^{2+} \mid \mathrm{Cd}$	$A g^{+} \mid A g$	$F e^{2+} \mid \mathrm{Fe}$
de	$E^{\circ}(V)$	-0.76	-0.40	0.80 V	$-0.44 \mathrm{~V}$

Which of the following cells are feasible and give their $E^{\circ}($ cell $)$?
(i) $Z n\left|Z n^{2+} \| C d^{2+}\right| C d$ (ii) $F e\left|F e^{2+} \| Z n^{2+}\right| Z n$
(iii) $C d\left|C d^{2+}\right|\left|A g^{+}\right| A g$ (iv) $\mathrm{Fe}\left|F e^{2+}\right|\left|A g^{+}\right| A g$

Watch Video Solution

13. An iron wire is immersed in a solution containing $\mathrm{ZnSO}_{4}, \mathrm{NiSO}_{4}$.

When the concentration of each salt is 1 M , predict giving reasons which of the following reactions is likely to proceed ?
(i) Iron reduced $Z n^{2+}$ ions
(ii) Iron reduces $N i^{+}$ions. Given
$E^{\circ}\left(Z n^{2+} \mid Z n\right)=-0.76 V, E^{\circ}\left(F e^{2+} \mid F e\right)=-0.44 V$, and $E^{\circ}(N i$

- View Text Solution

14. Can a solution of 1 M copper sulphate be stored in a vessel made of nickel metal ? Given that $E_{N i^{-2} / N i}=-0.25$ volt and $E_{C u-2 / C u}^{\circ}=+0.34$ volt

Watch Video Solution

15. Can chlorine gas be stored in a copper cylinder ? Given $E^{\circ}\left(C u^{2+} \mid C u\right)=-0.34 V$ and $E^{\circ}\left(C l^{-} \mid C l\right)=1.36 V$

- View Text Solution

16. Why blue colour of CuSO_{4} solution gets discharged when zinc rod is dipped in it ? Given, $E_{C u+2 / C u}^{\circ}=0.34 V$ and $E_{Z n^{+2} / Z n}^{\circ}=-0.76 \mathrm{~V}$
17. A copper wire is dipped in silver nitrate solution in beaker A and a silver wire is dipped in a solution of copper sulphate kept in beaker B. If the standard electrode potential for
$C u^{2+}+2 e^{-} \rightarrow C u$ is +0.34 and for
$A g^{+}+e^{-} \rightarrow A g$ is $0.80 \vee$.
Given $E^{\circ}\left(N i^{2+} \mid N i\right)=-0.25 V$ and $E^{\circ}\left(C u^{2+} \mid C u\right)=0.34 V$
Predict in which beaker the ions present will get reduced?

- View Text Solution

Conceptual Questions

1. Arrange the following molecules in the decreasing order of oxidation state (+ve to -ve) of nitrogen : $\mathrm{NO}_{2}, \mathrm{NH}_{3}, \mathrm{HN}_{3}, \mathrm{NO}_{2}^{-}, \mathrm{N}_{2} \mathrm{H}_{4}$.
2. Can the reaction, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+}$be regarded as a redox reaction ?

- Watch Video Solution

3. Calculate the oxidatin number of Fe in
(i) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (ii) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$

- Watch Video Solution

4. Split the following redox reactions in the oxidation and reduction half reactions:
(i) $2 \mathrm{~K}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{KCl}(s)$
(ii) $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}^{2+}(a q) \rightarrow 2 \mathrm{Al}^{3+}(a q)+3 C u(s)$

- Watch Video Solution

5. Nitric acid acts only as an oxidising agent while nitrous acid acts both as an oxidising as well as reducing. Explain.

- View Text Solution

6. Calculate the oxidation number of the underlined element in
(a) VO_{2}^{+}
(b) $\underline{U} O_{2}^{2+}$
(c) $\mathrm{Ba}_{2} \underline{\mathrm{Xe}}_{6}$
(d) $K_{4} \underline{P}_{2} O_{7}$ (e) $\underline{K}_{2} \underline{S}$

- Watch Video Solution

7. Which of the following equations represent oxidation reduction reaction ? Identify each oxidising agent and each reducing agent.
(a) $\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{KHO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{K}+\mathrm{O}_{2} \quad \longrightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \longrightarrow \mathrm{caCO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

8. Identify the oxidsing and reducing agent agent in the following reaction :
$\mathrm{Fe}^{2+}+2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{Fe}^{3+}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

9. Nitric acid is an oxidising agent and reacts with PbO but it does not react with PbO_{2}. Explain why?

- Watch Video Solution

10. Predict the maximum and minimum oxidation states for (i) Cl (ii) Ti

- Watch Video Solution

11. The standard electrode potential of four metallic elements (A, B, C and
D) are $+0.80,-0.76,+0.12$ and +0.34 V respectively. Arrange them in order
of decreasing electropositive character

- Watch Video Solution

12. An iron rod is immersed in a solution containing NisO_{4} and ZnSO_{4}.

When the concentration of each salt is 1 M , predict giving reasons which of the following reactions is likely to proceed ?
(i) Iron reduces Zn^{2+} ions (ii) Iron reduces Ni^{2+} ions

Given

$$
E_{\left(Z n^{2+} \mid Z n\right)}^{\circ}=-0.76 \mathrm{~V}, E_{\left(F e^{2+} \mid F e\right)}^{\circ}=0.44 \mathrm{~V} \text { and } E_{\left(N i^{2+} \mid N i\right)^{\circ}=-0.25 \mathrm{~V}}
$$

D View Text Solution

13. Which of the following reactions are not feasible ?
(a) $Z n(s)+2 A g^{+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 A g(s)$
(b) $\mathrm{I}_{2}(s)+2 \mathrm{Br}^{-}(a q) \longrightarrow 2 \mathrm{I}^{-}(a q)+\mathrm{Br}_{2}$
(c) $2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{I}^{-}(a q) \longrightarrow I_{2}(a q)+2 \mathrm{Fe}^{2+}(a q)$
(d) $2 \mathrm{Ag}+2 \mathrm{H}^{+}(a q) \quad \longrightarrow \mathrm{H}_{2}+2 \mathrm{Ag}^{+}(a q)$
14. At what concentration of Cu^{2+} (aq) will its electrode potential becomes equal to its standard electrode potential ?

Watch Video Solution

15. How does $\mathrm{Cu}_{2} \mathrm{O}$ act as both oxidant and redcutant ? Explain with proper reactions showing the change of oxidation number in each case.

- View Text Solution

16. A solution of silver nitrate was stirred with an iron rod. Will it cause any change in the concentration of silver and nitrate ions ?

- Watch Video Solution

17. What is the oxidation number of N in HNO_{4} ?
18. Calculate the oxidation number of nickel in $\mathrm{Ni}(\mathrm{CO})_{4}$ iron in $\mathrm{Fe}(\mathrm{CO})_{5}$ and carbon in $\mathrm{CH}_{2} \mathrm{O}$.

- Watch Video Solution

19. At what concentration of Zn^{2+} (aq) will its electrode potential becomes equal to its standard electrode potential ?

- Watch Video Solution

20. Given that the standard potentials $\left(\left(E^{\circ}\right)\right)$ of $C U^{2+} / C u$ and $C U^{+} / C u$ are 0.34 V and 0.522 V respectively, the E° of $C U^{2+} / C U^{+}$is

- Watch Video Solution

1. Assign oxidation number to the underlined elements in each of the following species:
a. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
b. $\mathrm{NaH} \mathrm{SO}_{4}$
c. $H_{4} \underline{P_{2}} O_{7}$
d. $\mathrm{K}_{2} \underline{\mathrm{Mn}^{\prime}} \mathrm{O}_{4}$
e. $\underline{\mathrm{Ca}} \mathrm{O}_{2}$
f. $\mathrm{Na} \underline{B} H_{4}$
g. $\mathrm{H}_{2} \underline{S_{2}} \mathrm{O}_{7}$
h. $\mathrm{KAl}\left(\underline{\mathrm{S}} \mathrm{O}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

2. What are the oxidation numbers of the underlined elements in each of the following and how do you rationalize your result?
(a) $K I_{3}$
(b) $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(e) $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

3. Justify that the following reaction are redox reactions:
a. $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{O}(g)$
b. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
c. $4 \mathrm{BCl}_{3}(g)+3 \mathrm{LiAlH}_{4}(s) \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{LiCl}(s)+3 \mathrm{AlCl}_{3}(s)$
d. $2 K(s)+F_{2}(g) \rightarrow 2 K^{\oplus} F^{\Theta}(s)$
e. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

4. Fluorine reacts with ice and results in the change:

$$
\mathrm{H}_{2} \mathrm{O}(s)+\mathrm{F}_{2}(g) \rightarrow \mathrm{HF}(g)+\mathrm{HOF}(g)
$$

Justify that this reaction is a redox reaction.
5. Calculate the oxidation number of sulphur, chromium, and nitrogen in $\mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and NO_{3}^{Θ}. Suggest the structure of these compounds. Count for the fallacy.

- Watch Video Solution

6. Write formulas for the following compounds
(a) Mercury (II) chloride
(b) Nickel (II) sulphate
(c) Tin (IV) oxide
(d) Thallium (I) sulphate
(e) Iron (III) sulphate
(f) Chromium (III) oxide
7. Consider the reactions :
(a) $6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(\mathrm{~g})$
(b) $\mathrm{O}_{s}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{O}_{2}(g)$

Why it is more appropriate to write these reactions as:
(a) $6 \mathrm{CO}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{O}_{2}(g)$
(b) $\mathrm{O}_{3}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)+\mathrm{O}_{2}(g)$

Also suggest a technique to investigate the path of the above (a) and (b) redox reactions .

- View Text Solution

8. The compound $A g F_{2}$ is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why ?

- Watch Video Solution

9. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the
reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.

- Watch Video Solution

10. How do you count for the following observations?
(a) Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why ? Write a balanced redox equation for the reaction.
(b) When concentrated sulphuric acid is added to an inorganic mixture containing chloride, we get colourless pungent smelling gas HCl , but if the mixture contains bromide then we get red vapour of bromine. Why ?

- Watch Video Solution

11. Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions :
(a) $2 \mathrm{AgBr}(s)+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{HBr}(a q)+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)$
(b)

(c)
$\mathrm{HCHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{HCOO}^{-}(a q)+3 \mathrm{H}$
(d) $\mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)$
(e) $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$

- View Text Solution

12. Consider the reaction:
$2 S_{2} O_{3}^{2-}(a q)+I_{2}(s) \rightarrow S_{4} O_{6}^{2-}(a q)+2 I^{\Theta}(a q)$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(a q)+2 \mathrm{Br}_{2}(l)+5 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{Br}^{\Theta}(a q)+10 \mathrm{H}^{\oplus}(a$
Why does the same reductant, thiosulphate, react differently with iodine and bromine?

- Watch Video Solution

13. Justify giving reaction that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.

- Watch Video Solution

14. Why does the following reaction occur?
$\mathrm{XeO}_{6}^{4-}(a q)+2 \mathrm{~F}^{\Theta}(a q)+6 H^{\oplus}(a q) \rightarrow \mathrm{XeO}_{3}(g)+\mathrm{F}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ What conclusion about the compound $\mathrm{Na}_{4} \mathrm{XeO}_{6}$ (of which XeO_{6}^{4-} is a part) can be drawn from the reaction?

- Watch Video Solution

15. Consider the reactions:
a.
$\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+4 \mathrm{AgNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+4 \mathrm{Ag}(s)+4 \mathrm{HNC}$
b.
$\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+2 \mathrm{CuSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{SO}$
C.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}(a q)+3 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{\ominus}(a q)+2$ d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2 \mathrm{Cu}^{2+}(a q)+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow$ No change observed

What inference do you draw about the behaviour of Ag^{\oplus} and Cu^{2+} from these reaction?

- Watch Video Solution

16. Balance the following redox reactions by ion electron method:
a. $\mathrm{MnO}_{4}^{\Theta}(a q)+I^{\Theta}(a q) \rightarrow \mathrm{MnO}_{2}(s)+I_{2}(s)$ (in basic medium)
b. $\quad \mathrm{MnO}_{4}^{\Theta}(a q)+\mathrm{SO}_{2}(g) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{HSO}_{4}^{\Theta}(a q) \quad$ (in acidic solution)
c. $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ (in acidic solution)
d. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{SO}_{4}^{2-}(a q)$ (in acidic solution)

- Watch Video Solution

17. Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) $\mathrm{P}_{4}(\mathrm{~s})+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3}(g)+\mathrm{HPO}_{2}^{-}(a q)$
(b) $\mathrm{N}_{2} \mathrm{H}_{4}(1)+\mathrm{ClO}_{3}^{-}(a q) \rightarrow \mathrm{NO}(g)+\mathrm{Cl}^{-}(g)$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{ClO}_{2}^{-}(a q)+\mathrm{O}_{2}(g)+\mathrm{H}^{+}$

- Watch Video Solution

18. What sort of informations can you draw from the following reaction?
$(C N)_{2}(g)+2 \stackrel{\ominus}{O} H(a q) \rightarrow C N^{\Theta}(a q)+C N O^{\Theta}(a q)+H_{2} O(l)$

- Watch Video Solution

19. The Mn^{3+} ion is unstable in solution and undergoes disproportionation reaction to give $\mathrm{Mn}^{+2}, \mathrm{MnO}_{2}$, and H^{\oplus} ion. Write a balanced ionic equation for the reaction.
20. Consider the elements :
$\mathrm{Ca}, \mathrm{Na}, \mathrm{I}$ and F
Identify the elements that exhibits only negative oxidation state.
Identify the element that exhibits only positive oxidation state.
Identify the element that exhibits neither the negative nor does the positive oxidation state.

- Watch Video Solution

21. Chlorine is used purify drinking water. Excess of chlorine is harmful .

The excess of chlorine is removed by treating with sulphur dioxide. Present a balanced equation for this redox change taking place in water .

D View Text Solution

22. Refer to the periodic table given in your book and now answer the following questions:
a. Select the possible non metals that can show disproportionation reaction.
b. Select three metals that can show disproportionation reaction.

- Watch Video Solution

23. In Ostwald's process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can obtained starting only with 10.00 g of ammonia and 20.00 g of oxygen?

- Watch Video Solution

24. Using the standard electrode potentials given is the Table 1 predict if the reaction between the following is feasible :
(a) $F e^{3+}(a q)$ and $I^{-}(a q)$
(b) $A g^{+}(a q)$ and $C u(s)$
(c) $\mathrm{Fe}^{3+}(a q)$ and $\mathrm{Cu}(s)$
(d) $A g(s)$ and $F e^{3+}(a q)$
(e) $B r_{2}(a q)$ and $F e^{2+}(a q)$.

- View Text Solution

25. Predict the products of electrolysis each of the following :
(i) An aqueous solution of AgNO_{3} with silver electrodes
(ii) An aqueous solution of AgNO_{3} with platinum electrodes
(iii) An aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes
(ii) An aqueous solution of CuCl_{2} with platinum electrodes

- View Text Solution

26. i) Arrange the following metals in the order in which they displace each other from the solution of their salts.
$\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ and Zn
ii) Calculate the molarity of sodium carbonate in a solution prepared by dissolving 5.3 g in enough water to form 250 ml of the solution.

- Watch Video Solution

27. Given the standard electrode potentials,
$K^{+}\left|K=-2.93 V, A g^{+}\right| A g=0.80 V$,
$H g^{2+} \mid H g=0.79 \mathrm{~V}$
$M g^{2+}\left|M g=-2.37 V, C r^{3+}\right| C r=-0.74 V$
arrange these metals is their increasing order of reducing power .

- View Text Solution

28. Depict the galvanic cell in which the reaction $Z n(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}(s)$ takes place. Further show:
(i) which of the electrode is negatively charged,
(ii) the carriers of the current in the cell, and
(iii) individual reaction at each electrode.

Ncert File Solved Ncert Exemplar Problems Multiple Choice Questions Type I

1. Which of the following is not an example of redox reaction?
A. $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
C. $2 K+F_{2} \rightarrow 2 K F$
D. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$

Answer: D

- Watch Video Solution

Ncert File Solved Ncert Exemplar Problems Multiple Choice Questions Type I

1. The more positive the value of E^{0}, the greater is the tendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidising agent.
E^{0} values:
$F e^{3+} / \mathrm{Fe}^{2+}=+0.77, I_{2}(s) / I^{-}=+0.54$,
$\mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34, \mathrm{Ag}^{+} / \mathrm{A}=0.80 \mathrm{~V}$
A. $F e^{3+}$
B. $I_{2}(s)$
C. Cu^{2+}
D. Ag^{+}

Answer: D

- Watch Video Solution

2. E^{θ} values of some redox couples are given below. On the basis of these values choose the correct option.
E^{θ} values: $B r_{2} / B r^{-}=+1.90$
$A g^{+} / A g(s)=+0.80$
$C u^{2+} / C u(s)=+0.34, I_{2}(s) / I^{-}=+0.54$
A. Cu will reduce $B r^{-}$
B. Cu will reduce Ag
C. Cu will reduce I^{-}
D. Cu will reduce $B r_{2}$

Answer: D

- Watch Video Solution

3. Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E° values :
$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77, I_{2} / I^{-}=+0.54 V$
$\mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 \mathrm{~V}, \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}$
A. $F e^{3+}$ and I^{-}
B. Ag^{+}and Cu
C. Fe^{3+} and Cu
D. Ag and $F e^{3+}$

Answer: D

- Watch Video Solution

4. Thiosulphate reacts differently with iodine and bromine in the reaction given below
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}$
Which of the following statements justifies the above dual behaviour of thiosulphate?
A. Bromine is a stronger oxidant than iodine.
B. Bromine is a weaker oxidant than iodine.
C. Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
D. Bromine undergoes oxidation and iodine undergoes reduction in these reactions.

Answer: A

- Watch Video Solution

5. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect?
A. The oxidation number of hydrogen is always +1 .
B. The algebraic sum of all the oxidation numbers in a compound is
C. An element in the free or the uncombined state bears oxidation number zero.
D. In all its compounds, the oxidation number of fluorine is -1 .

Answer: A

- Watch Video Solution

6. In which of the following compounds an element exhibits two different oxidation states?
A. $\mathrm{NH}_{2} \mathrm{OH}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. $\mathrm{N}_{3} \mathrm{H}$

Answer: B

7. Which of the following arrangements represent increaseing oxidation number of the central atom?
A. $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}$
B. $\mathrm{ClO}_{3}^{-} \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}$
C. $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{4}^{2-}$
D. $\mathrm{CrO}_{4}^{2-} . \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$

Answer: A

- Watch Video Solution

8. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number?
A. $3 d^{1} 4 s^{2}$
B. $3 d^{3} 4 s^{2}$
C. $3 d^{5} 4 s^{1}$
D. $3 d^{5} 4 s^{2}$

Answer: D

- Watch Video Solution

9. Identify the disproportionation reaction.
A. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
C. $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

10. Which of the following elements does not show disproportionation tendency?
A. Cl
B. Br
C. F
D. I

Answer: C

- Watch Video Solution

Ncert File Solved Ncert Exemplar Problems Multiple Choice Questions Type li

1. Which of the following statement (s) is /are not true about the following decomposition reaction.
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
A. Potassium is undergoing oxidation
B. Chlorine is undergoing oxidation
C. Oxygen is reduced
D. None of species are undergoing oxidation or reduction

Answer: A::B::C::D

- View Text Solution

2. Identify the correct statement (s) in reflection to the following reaction
$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
A. Zinc is acting as an oxidant
B. Chlorine is acting as a reluctant
C. Hydrogen ion is acting as an oxidant
D. Zinc is acting as a reluctant

Answer: C::D

- Watch Video Solution

3. The exhibition of various oxidation states by an element is also related to the outer orbital electornic configuration of its atom. Atom(s) having which of the following outermost electronic confjigurations will exhibit more than one oxidation state in its compounds
A. $3 s^{-1}$
B. $3 d^{1} 4 s^{2}$
C. $3 d^{2} 4 s^{2}$
D. $3 s^{2} 3 p^{3}$

Answer: B::C::D

4. Identify the correct statements with reference to the given reaction $\mathrm{P}_{4}+3 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
A. Phosphorus undergoing reduction only
B. Phosphorus in undergoing oxidation only
C. Phosphorus is undergoing oxidation as well as reduction.
D. Hydrogen is undergoing neither oxidation nor reduction

Answer: C::D

- Watch Video Solution

5. Which of the following electrodes will act as anodes, when connected to Standard Hydrogen Electrode?
A. $A l / A l^{3+} \quad E^{\circ}=-1.66 \mathrm{~V}$
B. $\mathrm{Fe} / \mathrm{Fe}^{2+} \quad E^{\circ}=-0.44 \mathrm{~V}$
C. $\mathrm{Cu} / \mathrm{Cu}^{2+} \quad E^{\circ}=-0.34 V$
D. $F_{2}(g) 2 F^{-}(a q) \quad E^{\circ}=+2.87 V$

Answer: A::B

- View Text Solution

Ncert File Solved Ncert Exemplar Problems Short Answer Questions

1.

> The
reaction
$\mathrm{CI}_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{CIO}^{-}(a q)+\mathrm{CI}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ represents the process of bleaching . Identify and name the species that bleaches . the substances due to oxidising action .

- View Text Solution

2. MnO_{4}^{2-} undergoes disproportionation reaction in acidic medium but MnO_{4}^{-}does not. Give reason.
3. PbO and PbO_{2} react with HCl according to following chemical equations
$2 \mathrm{PbO}+4 \mathrm{HCl} \rightarrow 2 \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Why do these compounds differ n their reactivity?

- Watch Video Solution

4. Nitric acid is an oxidising agent and reacts with PbO but it does not react with PbO_{2}. Explain why?

- Watch Video Solution

5. Write balanced chemical equations for the following reactions :
(i) Permanganate ion $\left(\mathrm{MnO}_{4}^{-}\right)$reacts with sulphur dioxide gas in acidic medium to produce Mn^{2+} and hydrogen sulphate ion (Balance by ion electron method)
(ii) Reaction of liquid hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ with chlorate ion $\left(\mathrm{ClO}_{3}^{-}\right)$in basic medium produces nitric oxide gas and chloride ion in gaseous state.
(Balance by oxidation number method)
(iii) Dichlorine heptaoxide $\left(\mathrm{Cl}_{2} \mathrm{O}_{7}\right)$ in gaseous state combines with an aqueous solution of hydrogen peroxide in acidic medium to give chlorite ion $\left(\mathrm{ClO}_{2}^{-}\right)$and oxygen gas , (Balance by ion electron method)

- View Text Solution

6. Calculate the oxidation number of phosphorus in the following species.
(a) HPO_{3}^{2-}
(b) PO_{4}^{3-}

- Watch Video Solution

7. Calculate the oxidation number of each sulphur atom in the following compounds.
(a) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(b) $N a_{2} S_{4} O_{6}$
(c) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
8. Balance the following equations by the oxidaiton number method.
(i) $\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{I}_{2}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{IO}_{3}^{-}$
(iii) $I_{2}+S_{2} O_{3}^{2-} \rightarrow I^{-}+S_{4} O_{6}^{2-}$
(iv) $\mathrm{MnO}_{2}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$

- View Text Solution

9. Identify the redox reaction out of the following reacitons and identify the oxidising and reducing agents in them.
(a) $3 \mathrm{HCl}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(g)+\mathrm{NOCl}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $\mathrm{HgCl}_{2}(a q)+2 \mathrm{KI}(a q) \rightarrow \mathrm{HgI}_{2}(s)+2 \mathrm{KCl}(a q)$
(c) $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \xrightarrow{\Delta} 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
(d) $\mathrm{PCl}_{2}(l)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 3 \mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{PO}_{3}(a q)$
(e) $4 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

10. Balance the following ionic equations
(i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+} \mathrm{I}^{-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$

D View Text Solution

Ncert File Solved Ncert Exemplar Problems Matching Type Questions

1. Match Column I with Column II for the oxidation states of the central atoms.

Column I Column II
(i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(a) +3
(ii) MnO_{4}^{-}
(b) +4
(iii) VO_{3}^{-}
(c) +5
(iv) FeF_{6}^{3-}
(e) +7
2. Match the items in Column I with relevant items in Column II
Column I Column II
(i) Ions having positive charge $\quad(a)+7$
(ii) The sum of oxidation number of
(b) -1
all atoms in a neutral molecule
(iii) Oxidation number of hydrogen
(c) +1 ion $\left(H^{+}\right)$
(iv) Oxidation number of fluorine in
(d) 0

NaF
(v) Ions having negative charge
(e) Cation
(f) Anion

- Watch Video Solution

Abstract

Ncert File Solved Ncert Exemplar Problems Assertion And Reason Type Questions

1. Assertion [A]: Among halogens fluorine is the best oxidant.

Reason (R): Fluorine is the most electronegative atom.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false.
D. Both A and R are false.

Answer: B

D Watch Video Solution

2. Assertion (A) In the reaction between potassium permanganate and potassium iodide, permanganate ions acts as oxidising agent.

Reason (R) Oxidation state of manganese changes from +2 and +7 during the reaction.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false.
D. Both A and R are false.

Answer: C

3. Assertion (A) : The decomposition of hydrogen peroxide to form water and oxygen is an example of disproportionation reaction.

Reason (R) : The oxygen of peroxide is in -1 oxidation state and it is converted to zero oxidation state in O_{2} and -2 oxidation state in $\mathrm{H}_{2} \mathrm{O}$.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false.
D. Both A and R are false.

Answer: A

D Watch Video Solution

4. Assertion (A) Redox couple is the combination of oxidised and reduced form of a substance involved in an oxidation or reduction half cell

Reason (R) In the representation $E_{\mathrm{Fe}^{-3}}^{\Theta}$
$E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\Theta}, \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ are redox couples
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false.
D. Both A and R are false.

Answer: B

- Watch Video Solution

Ncert File Solved Ncert Exemplar Problems Long Answer Questions

1. Explain redox reaction on the basis of electron transfer. Given suitable examples.
2. On the basis of standard electrode potential values, suggest which of the following reactions would take place ? (Consult the book for E° value)
(i) $\mathrm{Cu}+\mathrm{Zn}^{2+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Zn}$
(ii) $\mathrm{Mg}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Fe}$
(iii) $\mathrm{Br}_{2}+2 \mathrm{Cl}^{-}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$
(iv) $\mathrm{Fe}+\mathrm{Cd}^{2+} \rightarrow \mathrm{Cd}+\mathrm{Fe}^{2+}$

- View Text Solution

3. Why does fluorine not shown disproportionation reaction?

- Watch Video Solution

4. Write redox couples involved in the reactions (a) to (d) given in quesiton 34.

- Watch Video Solution

5. Find out the oxidation number of chlorine in the following compounds and arrange them in increasing order of oxidation number of chlorine : $\mathrm{NaClO}_{4}, \mathrm{NaClO}_{3}, \mathrm{NaClO}, \mathrm{KClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{ClO}_{3}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{Cl}_{2}, \mathrm{ClO}_{2}$

- Watch Video Solution

6. Which method can be used to find out the strength of reductant /oxidant in a solution ? Explain with an example.

- Watch Video Solution

Revision Exercies Passage Based Questions

1. Sulphur shows a large number of oxidation states in its compounds such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and elemental S. In the reactions of sulphur compounds, the oxidation number of sulphur increases and decreases in different reactions and the
compounds act as reducing and oxidising agents.
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}+\mathrm{SO}_{2}$
(iv) $\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

What is the oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$?

- Watch Video Solution

2. Sulphur shows a large number of oxidation states in its compounds such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and elemental S. In the reactions of sulphur compounds, the oxidation number of sulphur increases and decreases in different reactions and the compounds act as reducing and oxidising agents.
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}+\mathrm{SO}_{2}$
(iv) $\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Name the substance which gets (a) reduced and (b) oxidised in reaction (iii)

- Watch Video Solution

3. Sulphur shows a large number of oxidation states in its compounds such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and elemental S. In the reactions of sulphur compounds, the oxidation number of sulphur increases and decreases in different reactions and the compounds act as reducing and oxidising agents.
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}+\mathrm{SO}_{2}$
(iv) $\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

What is the change in oxidation number of sulphur in reaction (ii)

- Watch Video Solution

4. Sulphur shows a large number of oxidation states in its compounds such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and elemental S. In the reactions of sulphur compounds, the oxidation number of sulphur increases and decreases in different reactions and the compounds act as reducing and oxidising agents.
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}+\mathrm{SO}_{2}$
(iv) $\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Name the oxidising agent reducing agent in reaction (i)

- Watch Video Solution

5. Sulphur shows a large number of oxidation states in its compounds such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and elemental S. In the reactions of sulphur compounds, the oxidation number of sulphur increases and decreases in different reactions and the compounds act as reducing and oxidising agents.
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+I_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2}+\mathrm{SO}_{2}$
(iv) $\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

What type of reaction is reaction (iv) ?

Watch Video Solution

6. Consider the following table of standard reduction potentials.

Reaction $\quad E^{\circ}(V)$
$A^{3+}+2 e^{-} \rightarrow A^{+} \quad 1.36$
$B^{2+}+2 e^{-} \rightarrow B \quad 0.72$
$C^{2+}+2 e^{-} \rightarrow C \quad-0.28$
$D^{+}+e^{-} \rightarrow D \quad-1.42$
What substance is
(i) strongest oxidising agnet ?
(ii) strongest reducing agent ?
7. Consider the following table of standard reduction potentials.

Reaction $E^{\circ}(V)$
$A^{3+}+2 e^{-} \rightarrow A^{+} \quad 1.36$
$B^{2+}+2 e^{-} \rightarrow B \quad 0.72$
$C^{2+}+2 e^{-} \rightarrow C \quad-0.28$
$D^{+}+e^{-} \rightarrow D \quad-1.42$
Which substance can be oxidised by B^{2+} ?

- Watch Video Solution

8. Consider the following table of standard reduction potentials.

Reaction $E^{\circ}(V)$
$A^{3+}+2 e^{-} \rightarrow A^{+} \quad 1.36$
$B^{2+}+2 e^{-} \rightarrow B \quad 0.72$
$C^{2+}+2 e^{-} \rightarrow C \quad-0.28$
$D^{+}+e^{-} \rightarrow D \quad-1.42$
Which substance can be reduced by C ?

- Watch Video Solution

9. Consider the following table of standard reduction potentials.

Reaction	$E^{\circ}(V)$
$A^{3+}+2 e^{-} \rightarrow A^{+}$	1.36
$B^{2+}+2 e^{-} \rightarrow B$	0.72
$C^{2+}+2 e^{-} \rightarrow C$	-0.28
$D^{+}+e^{-} \rightarrow D$	-1.42

Writer a balanced chemical equation for the overall calculate E° for the reaction.

- View Text Solution

10. Consider the following table of standard reduction potentials.

Reaction
$E^{\circ}(V)$
$A^{3+}+2 e^{-} \rightarrow A^{+} \quad 1.36$
$B^{2+}+2 e^{-} \rightarrow B \quad 0.72$
$C^{2+}+2 e^{-} \rightarrow C \quad-0.28$
$D^{+}+e^{-} \rightarrow D \quad-1.42$
Which of the following reaction will occur ?
(i) $B^{2+}+C \rightarrow B+C^{2+}$
(ii) $C^{2+}+A \rightarrow C+A^{2+}$

1. Oxidation number of an element can be zero but valency is never zero.

- Watch Video Solution

2. The decomposition of calcium carbonate to calcium oxide and carbon dioxide is a redox reaction .True/False

- Watch Video Solution

3. The reaction : $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow 2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+}$cannot be regarded as a redox reaction. True or False

- Watch Video Solution

4. The oxidation number of each iron atom in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is same .
5. The reaction : $V_{2} \mathrm{O}_{5}+5 \mathrm{Ca} \rightarrow 2 \mathrm{~V}+5 \mathrm{CaO}$ is a metal displacement reaction.

- Watch Video Solution

6. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is +4 .

- View Text Solution

Revision Exercies Fill In The Blanks Questions

1. Oxidant is a substance in which the oxidation number of one of the atoms \qquad and reductant is a substacne in which oxidation number of one of atoms
2. When the oxidation number of an element is maximum , it can act only as

- View Text Solution

3. The oxidation number of oxygen in sodium peroxide is

- Watch Video Solution

4. In an electrochemical cell \qquad .acts as the negatice pole while acts as the positive pole

- Watch Video Solution

5. A compound in which oxidation number of oxygen is +2 is

- Watch Video Solution

6. In an electrochemical cell , oxidation occurs at and reduction
occurs at

- Watch Video Solution

7. Stock notation of chromium trioxide is \qquad

- Watch Video Solution

8. Oxidation number of N is ammonium sulphate is \qquad

- Watch Video Solution

Revision Exercies Assertion Reason Questions

1. Assertion : Oxidation state of hydrogen in $\mathrm{H}_{2} \mathrm{O}$ is +1 .

Reason : CaH_{2} is metal hydride and for hydrides hydrogen is assigned
the oxidation state of -1 .
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: a

- View Text Solution

2. Assertion : Oxidation number of C in HCHO is zero.

Reason : Formaldehyde is a covalent compound.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: b

D View Text Solution

3. Assertion: Oxygen has oxidation states of -2 in both O_{2} and O_{3}. Reason : Oxygen is assigned an oxidation state of -2 in almost all its compounds.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: d

- Watch Video Solution

4. Assertion : Oxidation number of phosphorus in P_{4} is zero.

Reason: Phosphorus has oxidation state zero in all its compound.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: c

5. Assertion : Redox reactions are also called neutralisation reactions. Reason : The number of electrons gained or lost in the reaction are balanced.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: d

- Watch Video Solution

6. Assertion : $3 \mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+2 \mathrm{Cl}^{-}$is an example of dissociation reaction.

Reason : ClO^{-}gets oxidised as well as reduced.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: d

- Watch Video Solution

7. Assertion : A substance which gets reduced can act as reducing agent. Reason : As oxidising agent itself gets reduced.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: D

- Watch Video Solution

8. Assertion : Copper sulphate solution is not stored in zinc vessel. Reason : Zinc forms complex with copper sulphate .
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: c

- View Text Solution

9. Assertion : The Daniell cell becomes dead after sometime.

Reason : Oxidation potential of zinc anode decreases and that of copper cathode increases.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: a

10. Assertion : In iodometic titrations, starch is used as an indicator.

Reason : Starch is a polysaccharide.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: b

- View Text Solution

1. What is the oxidation number of Mn in MnO_{2} ?

- View Text Solution

2. What is the average oxidation number of carbon in acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$?

- Watch Video Solution

3. Can oxidation number be zero? Illustrte .

- View Text Solution

4. Will oxidation number increase or decrease in a reduction reaction ?

- View Text Solution

5. What is the oxidation number of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$?
6. Calculate the oxidation number of lead in $\mathrm{Pb}_{3} \mathrm{O}_{4}$?

- View Text Solution

7. Identify the oxidsing and reducing agent in the following reaction : $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

8. Give an example of a compound in which the oxidation number is fractional.

- Watch Video Solution

9. Calculate the oxidation number of phosphorous in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.
10. Indicate the oxidizing and reducing agents in the following reaction :
$2 \mathrm{Cu}^{2+}+4 I^{-} \rightarrow 2 \mathrm{CuI}+I_{2}$

- View Text Solution

11. Calculate the oxidation number of N in NO_{3}^{-}.

- View Text Solution

12. The oxidation number of B is $\mathrm{Na}_{2} B_{4} O_{7}$ is +3 . Is the statement correct

- View Text Solution

13. What is the oxidation number of Cr in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$?
14. Calculate the oxidation number of C in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

- Watch Video Solution

15. The reduction potentials are :
$C l_{2}+2 e^{-}=2 \mathrm{Cl}^{-} \quad E^{\circ}=1.36 \mathrm{~V}$
$F_{2}+2 e^{-}=2 F^{-} \quad E^{\circ}=2.87 V$
Which is a better oxidising agent?

- Watch Video Solution

Revision Exercies Short Answer Questions

1. Define the terms: oxidation, reduction, oxidising agent and reducing agent according to electronic concept.
2. Which of the following reaction is oxidation and which is reduction ?
(i) $2 \mathrm{H}_{2} \mathrm{O}+2 e^{-} \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2}$
(ii) $\mathrm{Al} \longrightarrow \mathrm{Al}^{3+}+3 e^{-}$
(iii) $\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}^{2+}-e^{-}$
(iv) $2 \mathrm{O}^{2-}+\mathrm{C} \longrightarrow \mathrm{CO}_{2}+4 e^{-}$
(v) $\mathrm{Br}^{-} \quad \longrightarrow 1 / 2 \mathrm{Br}_{2}+e^{-}$
(vi) $2 \mathrm{H}_{2} \mathrm{O}-4 e^{-} \longrightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}$

- View Text Solution

3. In the following reaction, explain which reactant is oxidised and which is reduced. Give reasons for your answer :
(i) $2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
(ii) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
(iii) $2 \mathrm{KI}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
(iv) $\mathrm{CuO}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{Cu}$

- Watch Video Solution

4. Calculate the oxidation number of :
(i) S in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (ii) Cl in HClO_{4}
(iii) Mn in MnO_{2} (iv) Boron in $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
(v) Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

- Watch Video Solution

5. What is the oxidation number of S in the following ?
(i) $S O_{2}$ (ii) $N a_{2} S_{2}$ (iii) S^{2-}
(iv) $C S_{2}$ (v) $S_{2} C l_{2}$

- Watch Video Solution

6. Calculate the oxidation number of the underlined atom :
(i) KMnO_{4} (ii) $\underline{P}_{2} \mathrm{O}_{5}$ (iii) $\underline{\mathrm{Fe}_{2}} \mathrm{O}_{3}$ (iv) $\underline{\mathrm{Xe}} \mathrm{OF}_{4}$
(v) $\underline{S}_{2} O_{3}^{2-}$ (vi) $\underline{C r}_{2} O_{7}^{2-}$.
7. In the following reactions, lable the oxidising agent and the reducing agent:
(a) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{PbS}(s)+4 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{PBSO}_{4}(s)+4 \mathrm{H}_{2} \mathrm{O}(l)$
(c) $\quad 2 A l+3 F_{2}(g) \rightarrow 2 A l F_{3}(s)$.

- Watch Video Solution

8. Arrange the following in the decreasing order of oxidation number of Mn:
(i) KMnO_{4} (ii) MnO_{2} (iii) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
(iv) Mn (v) $\mathrm{K}_{2} \mathrm{MnO}_{4}$

- Watch Video Solution

9. Consider the reaction :
$2 \mathrm{HBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{Br}_{2}$
Identify the substance
(i) getting reduced (ii) getting oxidised
(iii) acting as reducing agent
(iv) acting as oxidising agent.

- Watch Video Solution

Revision Exercies Long Answer Questions

1. Balance the following equations using oxidation number method:
(i) $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\quad \mathrm{Zn}+\mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HI}$
(iv) $\mathrm{HNO}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(v) $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \quad \longrightarrow \mathrm{MnO}_{4}^{2-}+\mathrm{O}_{2}$
(in alkaline medium)
2. Balance the following equations by oxidation number method :
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}+\mathrm{S}$
(ii) $\quad \mathrm{NH}_{3}+\mathrm{O}_{3} \longrightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{Cu}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

3. Balance the following equations by ion electron (half reaction) method
(i) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{S}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\quad \mathrm{AsO}_{3}^{3-}+\mathrm{IO}_{3}^{-} \quad \longrightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{I}^{-}$
(iv) $\quad \mathrm{SnO}_{2}+\mathrm{C} \quad \longrightarrow \quad \mathrm{Sn}+\mathrm{CO}$

View Text Solution
4. What is are redox reaction ? Discuss with examples . Give important applications of redox reactions ?
5. Write shot notes on :
(a) Electrochemical series
(b) Redox titrations
(c) Abnorma oxidation number and structures of compounds.

D Watch Video Solution

Higher Order Thinking Skills Advanced Level

1. While sulphate dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?

- Watch Video Solution

2. Out of aluminium and silver vessel, which one will be more suitable to
store 1 M HCl solution and why ?

$$
E_{A l^{3+} \mid A l}^{\circ}=-1.66 V, E_{A g^{+} \mid A g}^{\circ}=+0.80 V
$$

(D) Watch Video Solution

3. Can Fe^{3+} oxidize Br^{-}to Br a 1 M concentration ?
$E^{\circ}\left(F e^{3+} \mid F e^{2+}=0.77 V\right.$ and $E^{\circ}\left(B r \mid B r^{-}\right)=1.09 V$

- Watch Video Solution

4. Is it sate to stir $1 \mathrm{M} \mathrm{AgNO}_{3}$ solution with a copper spoon ? Given :
$E_{A g+\mid A g}^{\circ}=0.80 V, E_{C u^{2+} \mid C u}^{\circ}=0.34 V$

- View Text Solution

5. Copper dissolves in dilute HNO_{3} but not in dilute HCl . Explain.

- View Text Solution

6. Element A will reduce the cation of element $\mathrm{B}\left(B^{+}\right)$but will not reduce the cation of element $\subset\left(C^{+}\right)$Will element C reduce the cation of element B ? Explain .

- View Text Solution

7. Why does an electrochemical cell stops working after some time ?

- View Text Solution

8. (a) What is the maximum and minimum oxidation states of nitrogen in its compounds ? Given one example each .
(b) What is the oxidation number of N in each of the following ?
(i) NH_{3} (ii) $\mathrm{N}_{2} \mathrm{H}_{4}$ (iii) HN_{3} (iv) NO_{2}^{-}(v) $\mathrm{N}_{2} \mathrm{O}$ (vi) HCN (vii) N_{2} (viii)
$\mathrm{NH}_{2} \mathrm{OH}$ (ix) HNO_{3} (x) NO_{2}.
(c) What is the oxidation state of hydrogen in each of the following ?
(i) H^{+}(ii) H_{2} (iii) LiAlH_{4} (iv) HCl (v) LiH
9. (a) Use the following reactions to arrange the elements A, B, C and D in order of their redox reactivity :
(i) $A+B^{+} \rightarrow A^{+}+B$
(ii) $B+D^{+} \rightarrow B^{+} D$
(iii) $C^{+}+D \rightarrow$ No reaction
(iv) $B+C^{+} \rightarrow B^{+} C$
(b) On the basis of above redox activity series predict which of the following reactions would you expect to occur.
(i) $A^{+} C \rightarrow A+C^{+}$
(ii) $A^{+}+D \rightarrow A+D^{+}$

- View Text Solution

10. 40.05 mL of $1.0 \mathrm{M} C e^{4+}$ are required to titrate 20.0 mL of 1.0 M $S n^{2+}$ to $S n^{4+}$. What is the oxidatin state of cerium in the reduction product ?
11. 3.90×10^{-3} moles of a solution containing an ion A^{n+} require 2.34×10^{-3} moles of MnO_{4}^{-}for the oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?

- Watch Video Solution

12. 15.0 mL of 0.05 M SeO 2 reacts with 30.6 mL of $0.1 \mathrm{M} \mathrm{CrSO}_{4}$ solution . If during the reaction $\mathrm{CrSO} \mathrm{C}_{4}$ gets oxidised to $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to what oxidation state does selenium get converted ?

- Watch Video Solution

Competition File Objective Questions A Multiple Choice Questions

1. Reduction involves :
A. gain of electrons
B. addition of oxygen
C. increases in oxidation number
D. loss of electrons .

Answer: A

- Watch Video Solution

2. Oxidation number of P in PO_{4}^{3-} ion is :
A. -3
B. +7
C. +5
D. +3

Answer: C

3. Oxidation Number of Mn in $\left[\mathrm{MnO}_{4}\right]^{-}$is:
A. +1
B. -7
C. -1
D. +7

Answer: D

- Watch Video Solution

4. Oxidation number of C in $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{HCOOH}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ is respectively :
A. $-2,0,+2,-1$
B. $+2,0,+2,-2$
C. $-2,0,+2,0$
D. $-2,-4,+2,-2$

- View Text Solution

5. What is the oxidation state of S in $N a_{2} S_{2}$?
A. +1
B. -2
C. -1
D. 0

Answer: C

6. Oxidation state of sulphur in Caro's acid is
B. +6
C. +5
D. +4

Answer: B

- Watch Video Solution

7. What is the oxidation state of sodium in sodium amalgam $(\mathrm{Na} / \mathrm{Hg})$?
A. 0
B. +1
C. -1
D. +2

Answer: A

8. In the reaction : $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{OCl}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
A. OH^{-}is oxidising and Cl^{-}is reducing agent
B. Cl_{2} is oxidising and OH^{-}is reducing agent
C. OH^{-}is both oxidising and reducing agent.
D. $C l_{2}$ is both oxidising and reducing agent

Answer: D

- Watch Video Solution

9. The oxidation states of S in $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$ is
A. +2
B. +4
C. +6
D. +7

Answer: C

D Watch Video Solution

10. In which of the following compounds, the oxidation number of carbon is not zero ?
A. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
B. HCHO
C. $\mathrm{CH}_{3} \mathrm{CHO}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: C

D View Text Solution

11. The oxidation states of V and Br in $\mathrm{V}\left(\mathrm{BrO}_{2}\right)_{2}$ are respectively
A. 2 and 2
B. 2 and 1
C. 4 and 2
D. 2 and 3

Answer: D

- View Text Solution

12. The oxidation state of N in HN_{3} is
A. +3
B. -3
C. $-1 / 3$
D. $+1 / 3$

Answer: C

13. In which of the following S has highest oxidation state ?
A. $N a_{2} S_{4} O_{6}$
B. $S_{2} C l_{2}$
C. S_{8}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

- Watch Video Solution

14. Which of the following rules for oxidation number is not correct?
A. The algebraic sum of all the oxidation numbers in a compound is zero .
B. An element in the free or the uncombined state bears oxidation numbers zero.
C. The oxidation number of hydrogen is always +1 .
D. In all its compounds, the oxidation number of fluorine is -1 .

Answer: C

- Watch Video Solution

15. In the reaction :
$3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu}$
the change of NH_{3} to N_{2} involve
A. Loss of 6 electrons per mol of N_{2}
B. Loss of 3 electrons per mol of N_{2}
C. Gain of 6 electrons per mol of N_{2}
D. Gain of 3 electrons per mol of N_{2}

- Watch Video Solution

16. Which of the following statement is not correct ?
A. Oxidant is a substance which increases the oxidation number of
other substance.
B. Reluctant is a substance which decreases the oxidation number of other substance.
C. The oxidation number of oxidant decreases.
D. In oxidation there is decreases in oxidation number .

Answer: D

- Watch Video Solution

17. When phosphorus reacts with caustic soda, the products are PH_{3} and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ This reaction is an example of:
A. oxidation
B. reduction
C. disproportionation
D. none of these

Answer: C

- Watch Video Solution

18. Which of the following is not an example of redox reaction ?
A. $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
C. $2 K+F_{2} \rightarrow 2 K F$
D. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$

- View Text Solution

19. The oxidation state of Cr in $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. +2
C. -2
D. +6

Answer: A

20. Oxidation state of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$ is

$$
\text { A. }-1
$$

B. +2
C. -2
D. +1

Answer: A

- Watch Video Solution

21. The oxidation state of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +3
B. +2
C. +1
D. -1

Answer: C

22. The oxidation number of S in $S_{8}, S_{2} F_{2}$ and $H_{2} S$ respectively are :
A. $0,+1,-2$
B. $+2,+1,-2$
C. $0,+1,+2$
D. $+2,+1,-2$

Answer: A

- View Text Solution

23. In the reaction :
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
A. $B r_{2}$ is oxidised and carbonate is reduced.
B. Bromine is reduced and water is oxisised.
C. Bromine is neither reduced nor oxidised .
D. Bromine is both reduced and oxidised.

D View Text Solution

24. Oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is
A. +2
B. +3
C. $+8 / 3$
D. $+2 / 3$

Answer: C

D View Text Solution

25. In $\mathrm{Br}_{3} \mathrm{O}_{8}$ compound , oxidation number of bromine is

$$
\text { A. } 16 / 13
$$

B. $26 / 3$
C. $24 / 3$
D. $16 / 3$

Answer: D

- View Text Solution

26. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Proton acceptor only
B. Both oxidised and reduced
C. Oxidised only
D. Reduced only

Answer: B

27. The oxidation number of H in LiAlH_{4} is
A. -1
B. +1
C. 0
D. +3

Answer: A

- Watch Video Solution

28. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{6}^{2-}<S_{2} \mathrm{O}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

Answer: A

- Watch Video Solution

29. E° values of some redox couples are given below. On the basis of these values choose the correct option .
E° value : $B r_{2}\left|B r^{-}=+1.90, A g^{+}\right| A g(s)=+0.80$
$C u^{2+}\left|C u(s)=+0.34, I_{2}(s)\right| I^{-}=+0.54$
A. Cu will reduce $B r^{-}$
B. Cu will reduce Ag
C. Cu will reduce I^{-}
D. Cu will reduce $B r_{2}$

Answer: D

30. The more positive the value of E^{θ}, the greater is the trendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidising agent.
E^{θ} values: $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77$
$I_{2}(s) / I^{-}=+0.54$,
$C u^{2+} / C u=+0.34, A g^{+} / A=0.80 V$
A. $F e^{3+}$
B. $I_{2}(s)$
C. Cu^{2+}
D. Ag^{+}

Answer: D

- Watch Video Solution

31. The coefficients x, y and z in the following balanced equation :
$x \mathrm{Zn}+y \mathrm{NO}_{3}^{-} \rightarrow z \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}$(in basic medium) are
A. 4,1,4
B. 2,2,2
C. 4,2,4
D. $4,4,4$

Answer: A

D View Text Solution

32. Four colourless salt solutions are placed in separate test tubes and a strip of copper is dipped in each. Which solution finally turns blue?
A. NaCl
B. AgNO_{3}
C. ZnSO_{4}
D. $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$

Answer: B

- Watch Video Solution

33. In a standard hydrogen electrode, the concentration of H^{+}is
A. 0.1 M
B. 1 M
C. 10 M
D. Not fixed

Answer: B

- Watch Video Solution

34. In a galvanic cell, which of the following statement is incorrect?
A. anode is negatively charged
B. cathode is positively charged
C. reduction occurs at anode
D. standard e.g. of the cells is always zero.

Answer: C

- Watch Video Solution

35. For the redox reaction :
$\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
The correct coefficients of the reactants in the balanced reaction are :
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{Fe}^{2+} \quad \mathrm{H}^{+}$

1	5	8

B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{Fe}^{2+} \quad \mathrm{H}^{+}$

2	5	8
MnO_{4}^{-}	Fe^{2+}	H^{+}
4	5	16

D. $\begin{array}{lll}\mathrm{MnO}_{4}^{-} & \mathrm{Fe}^{2+} & \mathrm{H}^{+} \\ 2 & 5 & 16\end{array}$

D View Text Solution

36. The standard reduction potential values of three metallic cation X, Y, Z are $0.52,-3.03$ and -1.18 V respectively. The order of reducing power to the corresponding metals is:
A. $Y>Z>X$
B. $X>Y>Z$
C. $Z>Y>X$
D. $Z>X>Y$

Answer: A

37. A gas X at 1 atm is bubbled through a solution containing a mixture of $1 \mathrm{M} Y^{-}$and $1 \mathrm{M} Z^{-}$at $25^{\circ} \mathrm{C}$. If the reduction potential of $Z>Y>X$, then
A. Y will oxidize X and not Z
B. Y will oxidise both X and Z
$C . Y$ will reduce both X and Z.
D.

Answer: A

- Watch Video Solution

38. Standard electrode potentials are
$F e^{2+} / F e, E^{\circ}=-0.44 V$
$F e^{3+} / \mathrm{Fe}^{2+}, E^{\circ}=+0.77 V$
If $F e^{3+}, \mathrm{Fe}^{2+}$ and Fe block are kept together, then
A. $F e^{3+}$ increases
B. $F e^{3+}$ decreases
C. $F e^{2+} / F e^{3+}$ remains unchanged
D. $F e^{2+}$ decreases

Answer: B

- Watch Video Solution

39. For decolourization of 1 mole of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

Competition File Objective Questions B Multiple Choice Questions

1. Which of the following is a redox reaction?
A. $2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
B. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
D. $\mathrm{CuSO} \mathrm{S}_{4}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

2. Oxidation number of iodine in $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{KI}$ and I_{2} respectively are

$$
\text { A. }-1,-1,0,+1
$$

B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: C

- Watch Video Solution

3. In the balanced chemical reaction
$I O_{3}^{\ominus}+a I^{\ominus}+b H^{\ominus} \rightarrow c H_{2} O+d I_{2}$
a, b, c, and d, respectively, correspond to

- Watch Video Solution

4. Number of moles of MnO_{4}^{-}required to oxidise one mole of ferrous oxalate completely in acidic medium will be
A. 0.6 moles
B. 0.4 moles
C. 7.5 moles
D. 0.2 moles

Answer: A

D Watch Video Solution

5. On the basis of the folwing E° values, the strongest oxidizing agent is
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{4}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{5}\right]^{3-}+3^{-}, E^{\circ}=-0.35 \mathrm{~V}$ $F e^{2+} \rightarrow F e^{3+}+e^{-: E^{\circ}=-0.77 V}$.
A. $\left[F e(C N)_{6}\right]^{4-}$
B. $F e^{2+}$
C. $F e^{3+}$
D. $\left[F e(C N)_{6}\right]^{3-}$

Answer: C

6.

In
the
redox reaction, $x \mathrm{KMnO}_{4}+\mathrm{NH}_{3} \rightarrow y \mathrm{KNO}_{3}+\mathrm{MnO}_{2}+\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}, \quad$ х and y are
A. $x=4, y=6$
B. $x=8, y=6$
C. $x=3, y=8$
D. $x=8, y=3$

Answer: D

- Watch Video Solution

7. Which of the following have been arranged in decreasing of oxidation number of sulphur?
A. $N a_{2} S_{4} O_{6}>H_{2} S_{2} O_{7}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{SO}_{2}^{2+}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{HSO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$

Answer: D

- View Text Solution

8. The average oxidation state of sulphur in $N a_{2} S_{4} O_{6}$ is
A. +2.5
B. +2
C. +3.0
D. +3.5

Answer: A

9. Standard electrode potential of three metal X, Y and Z are $-1.2 \mathrm{~V},+0.5 \mathrm{~V}$ and -3.0 V respectively. The reducing power of these metals will be:
A. $Y>Z>X$
B. $Y>X>Z$
C. $Z>X>Y$
D. $X>Y>Z$

Answer: C

- Watch Video Solution

10. In which of the following compounds,nitrogen exhibits highest oxidation state?
A. $\mathrm{N}_{2} \mathrm{H}_{4}$
B. NH_{3}
C. $\mathrm{N}_{3} \mathrm{H}$
D. $\mathrm{NH}_{3} \mathrm{OH}$

Answer: C

- Watch Video Solution

11. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
A. S
B. H
C. Cl
D. C

Answer: C

12. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to CrO_{5} which has two ($-\mathrm{O}-\mathrm{O}-$) bonds. Oxidation state of Cr in CrO_{5} is
A. +5
B. +3
C. +6
D. -10

Answer: C

- Watch Video Solution

13. Choose the disproportionation reaction among the following redox reactions.

$$
\text { A. } 3 M g(s)+N_{2}(g) \rightarrow M g_{3} N_{2}(s)
$$

B. $\mathrm{P}_{4}(s)+3 \mathrm{NaOH}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}(a q)$
C. $\mathrm{Cl}_{2}(g)+2 \mathrm{KI}(a q) \rightarrow 2 \mathrm{KCl}(a q)+I_{2}(s)$
D. $\mathrm{Cr}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}(s) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(s)$

Answer: B

- Watch Video Solution

14. Which of the following processes does not involve oxidation of iron ?
A. Formation of $\mathrm{Fe}(\mathrm{CO})_{6}$ from Fe
B. Liberation of H_{2} from steam by iron at high temperature
C. Rusting of iron sheets
D. Decolourisation of blue CuSO 4 solution by iron

Answer: A

15. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO_{4} for complete oxidation?
A. $\mathrm{FeC}_{2} \mathrm{O}_{4}$
B. $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$
C. FeSO_{4}
D. FeSO_{3}

Answer: C

- Watch Video Solution

16. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\begin{array}{lll}\mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+}\end{array}$
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
$2 \quad 5 \quad 16$
C. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$ $2 \quad 16 \quad 5$
D. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
516
2

Answer: B

- Watch Video Solution

17. The correct structure of tribromooctaoxide.

A.

B.

C.

D.

Answer: B

- Watch Video Solution

18. Which of the following reactions are disproportionation reactions?
(A) $\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
(B) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(C) $2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(D) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{+}$
A. (i) and (iv) only
B. (i) and (ii) only
C. (i),(ii) and (iii)
D. (i),(iii) and (iv)

Answer: B

- Watch Video Solution

19. Consider the following E^{o} values:
$E^{o}-F e^{3+} / F E^{2+} o=+0.77 V$
$E_{S n^{2+} / S n}=-0.14 V$
Under standard conditions the potential for reaction
$S n(s)+2 F e^{3+}(a q) \rightarrow 2 F e^{2+}(s q)+S n^{2+}(a q)$ is.
A. 0.91 V
B. 0.140 V
C. 1.68 V
D. 0.63 V

Answer: A

20. In a cell that utilizes the reactions.
$Z n(s)+2 H^{+}(a q) \rightarrow Z n^{2+}(a q)+H_{2}(g)$
addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to cathode compartment, will
A. increase the E and shift equilibrium to the right
B. lower the E and shift equilibrium to the right
C. lower the E and shift equilibrium to the left
D. increase the E and shift equilibrium to the left

Answer: A

- Watch Video Solution

21. $a \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+b \mathrm{KCl}+c \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow x \mathrm{CrO}_{2} \mathrm{Cl}_{2}+y \mathrm{KHSO}_{4}+z \mathrm{H}_{2} \mathrm{O}$ The above equation balances when
A. $a=2, b=4, c=6$ and $x=2, y=6, z=3$
B. $a=4, b=2, c=6$ and $x=6, y=2, z=3$
C. $a=6, b=4, c=2$ and $x=6, y=3, z=2$
D. $a=1, b=4, c=6$ and $x=2, y=6, z=3$

Answer: D

- Watch Video Solution

22. What products are expected from the desproprtionation reactin of hypochorous acid?
A. HClO and HClO_{4}
B. HCl and $\mathrm{Cl}_{2} \mathrm{O}$
C. HCl and HClO_{3}
D. HClO_{3} and $\mathrm{Cl}_{2} \mathrm{O}$

Answer: C

23. What is the oxidation number of carbonyl carbon in methanal ?
A. +3
B. +2
C. +4
D. 0

Answer: D

- Watch Video Solution

24. The reaction $3 \mathrm{ClO}^{-}(a q) \rightarrow \mathrm{ClO}_{3}^{-}(a q)+2 \mathrm{Cl}^{-}(a q)$ is an example of
A. oxidation reaction
B. reduction reaction
C. disproportionation reaction
D. decomposition reaction

Answer: C

- Watch Video Solution

25. How many electrons are involved during the oxidation reaction of KMnO_{4} in acidic medium ?
A. 1
B. 3
C. 5
D. 4

Answer: C

View Text Solution

$$
x \mathrm{MnO}_{4}^{-}+y \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+Z \mathrm{H}^{+}
$$

26. For redox reaction \downarrow

$$
m \mathrm{Mn}^{2+}+n \mathrm{CO}_{2}+p \mathrm{H}_{2} \mathrm{O}
$$

The value of x, y, m and n are:
A. 10,2,5,2
B. 2,5,2,10
C. $6,4,2,4$
D. 3,5,2,10

Answer: B

- Watch Video Solution

27. lodine reacts with concentrateed HNO_{3} to yield Y along with other products. The oxidation state of iodine in Y , is \qquad .
A. 7
B. 1
C. 5
D. 3

Answer: C

- Watch Video Solution

28. The correct order of the oxidation states of nitrogen in $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ is :
A. $\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{NO}_{2}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{NO}_{2}$
D. $\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}$

Answer: D

29. In order to oxidise a mixture of one mole of each of $\mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}, \mathrm{FeSO}_{4}$ and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in acidic medium, the number of mole of KMnO_{4} required is
A. 2
B. 1
C. 3
D. 1.5

Answer: A

- View Text Solution

30. In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO_{2} is
A. 10
B. 2
C. 1
D. 5

Answer: C

- Watch Video Solution

31. For the electrochemical cell, $M\left|M^{+}\right|\left|X^{-}\right| X, E_{M^{+} / M}^{\circ}=0.44 V$ and $E_{X / X^{-}}^{\circ}=0.33 V$. From this data we can deduce that :
A. $M+X \rightarrow M^{+}+X^{-}$is the spontaneous reaction
B. $M^{+}+X^{-} \rightarrow M+X$ is the spontaneous reaction
C. $E_{\text {cell }}^{\circ}=0.77 \mathrm{~V}$
D. $E_{\text {cell }}^{\circ}=-0.77 V$

Answer: B

- Watch Video Solution

32. Standard electrode potential data are used for understanding the stability of an oxidant in a redox titration. Some half reactions and their standard potentials are given below :
$\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)$

$$
E^{\circ}=1.51 \mathrm{~V}
$$

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)$

$$
E^{\circ}=1.38 \mathrm{~V}
$$

$F e^{3+}(a q)+e^{-} \rightarrow \mathrm{Fe}^{2+}(a q) \quad E^{\circ}=0.77 V$
$C l_{2}(g)+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}(a q) \quad E^{\circ}=1.40 \mathrm{~V}$
Identify the only incorrect statement regarding the quantitative estirnation of aqueous $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$.
A. MnO_{4}^{-}can be used in aqueous HCl
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ can be used in aqueous HCl
C. MnO_{4}^{-}can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A

33. The pair of compounds having metals in their highest oxidation state is.
A. $\mathrm{MnO}_{2}, \mathrm{FeCl}_{3}$
B. $\mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{-}$

Answer: B

- Watch Video Solution

34. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4}, \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: B

- View Text Solution

Competition File Objective Questions C Multiple Choice Questions

1. Which of the following are redox reaction ?
A. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$
B. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
C. $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
D. $K C N+A g C N \rightarrow K\left[A g(C N)_{2}\right]$

Answer: B::C
2. In which of the following the oxidation number of atom is/are correctly given ?
A. $C_{6} H_{12} O_{6}: C=0$
B. $N a_{4}\left[F e(C N)_{6}\right]: F e=+3$
C. $\mathrm{HCOOH}: C=+4$
D. $H C H O: C=0$

Answer: A::D

Watch Video Solution

3. Which of the following act both as an oxidising as well as reducing agent ?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. HNO_{2}
D. $H_{2} S$

Answer: B::C

- Watch Video Solution

4. In which of the following the oxidation number of the underlined atom is maximum ?
A. $H_{4} \underline{P}_{2} O_{7}$
B. $\mathrm{K} \underline{\mathrm{Al}}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{K}_{2} \underline{\mathrm{Mn}} \mathrm{O}_{4}$
D. $\mathrm{Na}_{2} \underline{\mathrm{~S}} \mathrm{O}_{3}$

Answer: B::C

5. Oxidation number of Cr in CrO_{5} is same as of S in
A. $\mathrm{H}_{2} \mathrm{SO}_{5}$
B. $N a_{2} S_{4} O_{6}$
C. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}$

Answer: A::C

- Watch Video Solution

6. Which of the following statements are not correct for the following reaction :
$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{I}_{2}+8 \mathrm{OH}^{-}$
A. Oxidation number of in MnO_{4}^{-}and MnO_{2} are same
B. MnO_{4}^{-}acts as an oxidising agent
C. $\mathrm{H}_{2} \mathrm{O}$ has been reduced
D. Oxidation number of iodide has increased from I^{-}to I_{2}.

Answer: B::D

- View Text Solution

7. Which of the following statements are wrong ?
A. Reduction involves gain of electrons .
B. The oxidation number of reducing agent decreases.
C. Oxidising agent helps to increases the oxidation number of reducing agent.
D. Oxidation involves gain of electrons.

Answer: B::D

8. Consider the redox reaction
$2 S_{2} O_{3}^{2-}+I_{2} \rightarrow S_{4} O_{6}^{2-}+2 I^{\ominus}$
A. $2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}$ gets oxidised to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
B. I_{2} gets oxidised to I^{-}
C. there is increase in oxidation number of iodine during the reaction
D. The total increase in oxidation number of shulphur is +1 during the reaction

Answer: A::D

- Watch Video Solution

9. For the reaction :
$\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$
The correct statement (s) in the balanced equation is/are
A. stoichiometic coefficient of HSO_{4}^{-}is 6
B. iodide is oxidised
C. sulphur is reduced
D. $\mathrm{H}_{2} \mathrm{O}$ is one of the products.

Answer: A::B::D

- View Text Solution

