©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PUNEET DOGRA

DIFFERENTIAL EQUATION

Practice Sheet

1. The solution of differential equation $x d y-$
$y d x=0$ represents
A. Rectangular hyperbola
B. Straight line passing through $(0,0)$
C. Parabola with vertex at $(0,0)$
D. Circle with centre at $(0,0)$

Answer: B

D Watch Video Solution

2. Which one of the following differential equations represents the system of circles touching y-axis at the origin ?
A. $\frac{d y}{d x}-x^{2}-y^{2}$
B. $2 x y \frac{d y}{d x}=y^{2}-x^{2}$
C. $2 x y \frac{d y}{d x}=x^{2}-y^{2}$
D. $\frac{d y}{d x}=y^{2}-x^{2}$

Answer: B

D Watch Video Solution
3. What is the solution of the differential
equation $\frac{d y}{d x}=\frac{y}{\left(x+2 y^{3}\right)} ?$
A. $y(1-x y)=c x$
B. $y^{3}-x=c y$
C. $x(1-x y)=c y$
D. $x(1+x y)=c y$

Answer: B

D Watch Video Solution

4. If $y^{2}=p(x)$ is a polynomial of degree 3 ,
then what is $2 \frac{d}{d x}\left[y^{3} \frac{d^{2} y}{d x^{2}}\right]$ equal to
A. $p^{\prime}(x) p^{\prime \prime}(x)$
B. $p^{\prime \prime}(x) p^{\prime \prime}(x)$
C. $p(x) p^{\prime \prime}(x)$
D. A constant

Answer: C

D Watch Video Solution
5. What is the degree of the equation

$$
\left[\frac{d^{2} y}{d x^{2}}\right]=\left[y+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{4}}
$$

A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution
6. What are the order and degree respectively
of the differential equation $y=x \frac{d x}{d y}+\frac{d x}{d y}$?
A. 1,1
B. 1,2
C. 2,1
D. 2,2

Answer: B

- Watch Video Solution

7. What is the equation of the curve passing through the origin and satisfying the differential equation $d y=(y \tan x+\sec x) d x$?

$$
\begin{aligned}
& \text { A. } y=x \cos x \\
& \text { B. } y \cos x=x \\
& \text { C. } x y=\cos x \\
& \text { D. } y \sin =x
\end{aligned}
$$

Answer: A

D Watch Video Solution
8. What is the solution of the differential
equation $\frac{d y}{d x}=\sec (x+y)$?
A. $y+\tan (x+y)=c$
B. $y-\tan \left\{\frac{x+y}{2}\right\}=c$
C. $y+\tan \left\{\frac{(x+y)}{2}\right\}=c$
D. $y+\tan \left\{\frac{(x+y)}{2}\right\}=c$

Answer: B

D Watch Video Solution

9. For what value of k does the differential equation $\frac{d y}{d x}=k y$ represents the law of natural decay?
A. -5
B. 0
C. 0.01
D. $(10)^{-1}$

Answer: A

D Watch Video Solution

10. What is the solution of the differential
equation $(x+y)(d x-d y)=d x+d y ?$
A. A) $x+y+\ln (x+y)=c$
B. B) $x-y+\ln (x+y)=c$
C. C) $y-x+\ln (x+y)=c$
D. D) $y-x-\ln (x-y)=c$

Answer: C

D Watch Video Solution
11. What is the degree of the differential
equation, $k \frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{3 / 2}$, where
k is a constant ?
A. 1
B. 2
C. 3
D. 4

Answer: B
12. Under which one of the following condition does the solution of $\frac{d y}{d x}=\frac{a x+b}{c y+d}$ represent a parabola?

$$
\begin{aligned}
& \text { A. 1) } a=0, c=0 \\
& \text { B. 2) } a=1, b=2, c \neq 0 \\
& \text { C. 3) } a=0, c \neq 0, b \neq 0 \\
& \text { D. 4) } a=1, c=1
\end{aligned}
$$

Answer: C

13. A radioactive element disintegrates at a
rate proportional to the quantity of substance

Q present at any time t . What is thhe differential equation of the disintegration?

$$
\begin{aligned}
& \text { A. } \frac{d Q}{d t}=-Q \\
& \text { B. } \frac{d Q}{d t}=-k Q, k<0 \\
& \text { C. } \frac{d Q}{d t}=-k Q, k>0 \\
& \text { D. } \frac{d Q}{d t}=Q
\end{aligned}
$$

Answer: C

14. What is the solution of the differential equation $(x+y)(d x-d y)=d x+d y$?
A. $2 \log (x+y)=c(y-x)$
B. $(y-x)+\log (x+y)=c$
C. $\left(\frac{y}{x}\right)+\left[\log \left(\frac{y}{c}\right)\right]=c$
D. None of these

Answer: B
15. What is the only solution of the initial value problem $y^{\prime}=t(1+y), y(0)=0$?
A. A) $y=-1+e^{t^{2} / 2}$
B. B) $y=1+e^{t^{2} / 2}$
C. C) $y=-t$
D. D) $y=t$

Answer: A

D Watch Video Solution
16. What is the differential equation of the
curve $y=a x^{2}+b x$?
A. $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$
B. $x^{2} \frac{d^{2} y}{d x^{2}}-y\left(\frac{d y}{d x}\right)^{2}+2=0$
C. $(1-x)^{2} \frac{d^{2} y}{d x^{2}}-\left(y \frac{d y}{d x}\right)^{2}=0$
D. None of these

Answer: A

D Watch Video Solution

17. What is the degree of the differential
equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=k \frac{d^{2} y}{d x^{2}} ?$
A. 4
B. 3
C. 2
D. 1

Answer: C
(Watch Video Solution
18. If $\mathrm{f}(\mathrm{x})=\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{\cdots,,^{\infty}}}}}$,
then what is $f^{\prime}(x)$ equal

> A. $\frac{1}{1-2 f(x)}$
> B. $\frac{1}{2 f(x)-1}$
> C. $\frac{1}{1+2 f(x)}$
> D. $\frac{1}{2+f(x)}$

Answer: B

D Watch Video Solution

19. What is the solution of the differential equation $\frac{d y}{d x}=x y+x+y+1$?

$$
\begin{aligned}
& \text { A. } y=\frac{x^{2}}{2}+x+c \\
& \text { B. }=\log (y+1)=\frac{x^{2}}{2}+x+c \\
& \text { C. } y=x^{2}+x+c \\
& \text { D. } \log (y+1)=x^{2}+x+c
\end{aligned}
$$

Answer: B

20. What are the order and degree , respectively of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{5 / 6}=\left(\frac{d y}{d x}\right)^{1 / 3} ?$
A. 2, 1
B. 2, 5
C. $2, \frac{5}{6}$
D. $1, \frac{1}{3}$

Answer: B

1. What is the degree of differential equation
$\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{2}-x^{2} \frac{d^{2} y}{d x^{2}}=0$
A. 1
B. 2
C. 3
D. 4

Answer: C
2. The differential equation which represents
the family of curves given by tan $\mathrm{y}=c\left(1-e^{x}\right)$
is
A. $e^{x} \tan y d x+\left(1-e^{x}\right) d y=0$
B. $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
C. $e^{x}\left(1-e^{x}\right) d x+\tan y d y=0$
D. $e^{x} \tan y d y+\left(1-e^{x}\right) d x=0$

Answer: B
3. What is the general solution of the differential equation $\frac{d y}{d x}+\frac{x}{y}=0$?
A. $x^{2}+y^{2}=c$
B. $x^{2}-y^{2}=c$
C. $x^{2}+y^{2}=c x y$
D. $x+y=c$

Answer: A
4. Consider the following in respect of the differential equation
$\frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)+9 y=x$

1. degree of the differential equation is 1
2. order of the differential equation is 2

Which of the above statement is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2

D. Neither 1 nor 2

Answer: C

D Watch Video Solution

5. The differential equation of the system of circles touching the y axis at origin is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x y \frac{d y}{d x}=0 \\
& \text { B. } x^{2}+y^{2}+2 x y \frac{d y}{d x}=0 \\
& \text { C. } x^{2}-y^{2}+2 x y \frac{d y}{d x}=0
\end{aligned}
$$

$$
\text { D. } x^{2}-y^{2}-2 x y \frac{d y}{d x}=0
$$

Answer: C

D Watch Video Solution

6. If $y=a \cos 2 x+b \sin 2 x$, then

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}+2 y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}-4 y=0 \\
& \text { D. } \frac{d^{2} y}{d x^{2}}+4 y=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

7. What is the solution of the differential equation $\frac{d y}{d x}=\cos (y-x)+1$?
A. $e^{x}[\sec (y-x)-\tan (y-x)]=c$
B. $e^{x}[\sec (y-x)+\tan (y-x)]=c$
C. $e^{x} \sec (y-x) \tan (y-x)=c$
D. $e^{x}=\operatorname{cosec}(y-x) \tan (y-x)$

Answer: A

- Watch Video Solution

8. What is the solution of the differential
equation $\frac{d x}{d y}=\frac{x+y+1}{x+y-1}$?

$$
\text { A. } y-x+4 \ln (\mathrm{x}+\mathrm{y})=\mathrm{c}
$$

B. $y+x+c \ln (x+y)=c$
C. $y-x+\ln (x+y)=c$
D. $y+x+2 \ln (x+y)=c$

Answer: C

- Watch Video Solution

9. If $y=\sin (I n x)$, then which one of the
following is correct ?
A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}=0$
C. $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
D. $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$

Answer: C

D Watch Video Solution

10. What is the solution of the differential equation $\log \left(\frac{d y}{d x}\right)=a x+b y$?
A. $a e^{a x}+b e^{b y}=c$
B. $\frac{1}{a} e^{a x}+\frac{1}{b} e^{b y}=c$
C. $a e^{a x}+b e^{-b y}=c$
D. $\frac{1}{a} e^{a x}+\frac{1}{b} e^{-b y}=c$

Answer: D

- Watch Video Solution

11. What is the order of the differential equation whose solution is $y=a \cos x+b \sin x$
$+c e^{-x}+d$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are arbitrary
constants ?
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution

12. The equation of the curve passing through
the point $(-1,-2)$ which satisfies

$$
\frac{d y}{d x}=-x^{2}-\frac{1}{x^{3}} \text { is }
$$

A. $17 x^{2} y-6 x^{2}+3 x^{5}-2=0$
B. $6 x^{2} y+17 x^{2}+2 x^{5}-3=0$

$$
\begin{aligned}
& \text { C. } 6 x y-2 x^{2}+17 x^{5}+3=0 \\
& \text { D. } 17 x^{2} y+6 x y-3 x^{5}+5=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. The differential equation of the family of
curves $y=p \cos (a x)+q \sin (a x)$, where p, q
are arbitrary constants, is :

$$
\text { A. } \frac{d^{2} y}{d x^{2}}-a^{2} y=0
$$

> B. $\frac{d^{2} y}{d x^{2}}-a y=0$
> C. $\frac{d^{2} y}{d x^{2}}+a y=0$
> D. $\frac{d^{2} y}{d x^{2}}+a^{2} y=0$

Answer: D

D Watch Video Solution

14. What are the order and degree , respectively of the differential equation
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=y^{4}+\left(\frac{d y}{d x}\right)^{5} ?$
A. 4,5
B. 2,3
C. 3,2
D. 5,4

Answer: C

D Watch Video Solution

15. What is the solution of $(1+2 x) d y-(1-2 y)$

$$
d x=0 ?
$$

A. $x-y-2 x y=c$
B. $y-x-2 x y=c$
C. $y+x-2 x t=c$
D. $x+y+2 x y=c$

Answer: A

D Watch Video Solution
16. The order and degree of the differential
equation $y^{2}=4 a(x-a)$, where a is an arbitrary constant, are respectively
A. 1, 2
B. 2 , 1
C. 2,2
D. 1,1

Answer: A

D Watch Video Solution

17. Which one of the following differential equations has a periodic solution ?
A. $\frac{d^{2} x}{d t^{2}}+\mu x=0$
B. $\frac{d^{2} x}{d t^{2}}-\mu x=0$
C. $x \frac{d x}{d t}+\mu t=0$
D. $\frac{d x}{d t}+\mu x t=0$

Answer: A

D Watch Video Solution
18. What is the solution of the differential
equation $x d y-y d x=0$?
A. $x y=c$
B. $y=c x$
C. $x+y=c$
D. $x-y=c$

Answer: B

D Watch Video Solution
19. The differential equation of minimum order by eliminating the arbitrary constants A and C
in the equation $y=A[\sin (x+C)+\cos (x+C)]$
is :
A. $y^{\prime \prime}+(\sin x+\cos x) y^{\prime}=1$
B. $y^{\prime \prime}=(\sin x+\cos x) y^{\prime}$
C. $\left.y^{\prime \prime}=\left(y^{\prime}\right)^{2}\right) \sin x \cos x$
D. $y^{\prime \prime}+y=0$

Answer: D

20. The order and degree of the differential

 equation.$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\rho^{2}\left[\frac{d^{2} y}{d x^{2}}\right]^{2} \text { are respectively }
$$

A. 3 and 2
B. 2 and 2
C. 2 and 3
D. 1 and 3
21. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{y \phi^{\prime}(x)-y^{2}}{\phi(x)} \text { is : }
$$

$$
\begin{aligned}
& \text { A. } y=\frac{x}{\phi(x)+c} \\
& \text { B. } y=\frac{\phi(x)}{x}+c \\
& \text { C. } y=\frac{\phi(x)+c}{x} \\
& \text { D. } y=\frac{\phi(x)}{x+c}
\end{aligned}
$$

Answer: D
22. The general solution of $\frac{d y}{d x}=\frac{a x+h}{b y+k}$ represents a circle only when
A. $a=b=0$
B. $a=-b \neq 0$
C. $a=b \neq 0, \mathrm{~h}=\mathrm{k}$
D. $a=b \neq 0$

Answer: B
23. What is the solution of the differential equation $\ln \left(\frac{d y}{d x}\right)-a=0$?
A. $y=x e^{a}+c$
B. $x=y e^{a}+c$
C. $y=\ln x+c$
D. $x=\ln y+c$

Answer: A
24. What are the degree and order respectively
for the differential equation $y=$
$x\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d x}{d y}\right)^{2} ?$
A. 1,2
B. 2 , 1
C. 1,4
D. 4, 1

Answer: D
25. If $x d y=y(d x+y d y), y(1)=1$ and $y(x)>0$, then what is $y(-3)$ equal to
A. A. 3
B. B. 2
C. C. 1
D. D. 0

Answer: A
26. What is the differential equation
corresponding to $y^{2}-2 a y+x^{2}=a^{2}$ by eliminating a ?

Where $\mathrm{p}=\frac{d y}{d x}$

$$
\begin{aligned}
& \text { A. }\left(x^{2}-2 y^{2}\right) p^{2}-4 p x y-x^{2}=0 \\
& \text { B. }\left(x^{2}-2 y^{2}\right) p^{2}+4 p x y-x^{2}=0 \\
& \text { C. }\left(x^{2}+2 y^{2}\right) p^{2}-4 p x y-x^{2}=0 \\
& \text { D. }\left(x^{2}+2 y^{2}\right) p^{2}-4 p x y+x^{2}=0
\end{aligned}
$$

Answer: A
27. What is the general solution of differential equation ydx-(x+2y2$) d y=0 ?$
A. $x=y^{2}+c y$
B. $x=2 c y^{2}$
C. $x=2 y^{2}+c y$
D. None of these

Answer: C

28. Find the approx value of:- $15.33^{\wedge} 2-12.94^{\wedge} 2$
$+22.06^{\wedge} 2-35.65=$?
A. a. 720
B. b. 505
C. c. 402
D. c. 600

Answer: A
29. What is the order of the differential
equation $\frac{d x}{d y}+\int y d x=x^{3}$?
A. A. 1
B. B. 2
C. C. 3
D. D. Cannot be determined

Answer: B

D Watch Video Solution

30. Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin?
A. $\left(y-x \frac{d y}{d x}\right)^{2}=1-\left(\frac{d y}{d x}\right)^{2}$
B. $\left(y+x \frac{d y}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}$
C. $\left(y-x \frac{d y}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}$
D. $\left(y+x \frac{d y}{d x}\right)^{2}=1-\left(\frac{d y}{d x}\right)^{2}$

Answer: C
31. What are the order and degree respectively of the differential equation whose solution is
$y=c x+c^{2}-3 c^{3 / 2}+2$, where c is a parameter ?
A. 1,2
B. 2 , 2
C. 1,3
D. 1, 4

- Watch Video Solution

32. The degree of the differential equation
$\frac{d y}{d x}-x=\left(y-x \frac{d y}{d x}\right)^{-4}$ is
A. 2
B. 3
C. 4
D. 5

Answer: D
33. The solution of
$\frac{d y}{d x}=\sqrt{1-x^{2}-y^{2}+x^{2} y^{2}}$ is

Where c is an arbitrary constant
A. $\sin ^{-1} y=\sin ^{-1} x+c$
B. $2 \sin ^{-1} y=\sqrt{1-x^{2}}+\sin ^{-1} x+c$
C. $2 \sin ^{-1} y=x \sqrt{1-x^{2}}+\sin ^{-1} x+c$
D. $2 \sin ^{-1} y=x \sqrt{1-x^{2}}+\cos ^{-1} x+c$

Answer: C

- Watch Video Solution

34. The order and degree of the differential equation of parabola having vertex at the origin and focus at $(a, 0)$ where $a>0$, are respectively.
A. 1,1
B. 2,1
C. 1,2
D. 2, 2

Answer: A

- Watch Video Solution

35. The differential equation of the family of
circles passing through the origin and having centres on the x-axis is :

$$
\begin{aligned}
& \text { A. } 2 x y \frac{d y}{d x}=x^{2}-y^{2} \\
& \text { B. } 2 x y \frac{d y}{d x}=y^{2}-x^{2} \\
& \text { C. } 2 x y \frac{d y}{d x}=x^{2}+y^{2} \\
& \text { D. } 2 x y \frac{d y}{d x}+x^{2}+y^{2}=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

36. Consider the following statements :
37. The general solution of $\frac{d y}{d x}=f(x)+x$ is of the form $\mathrm{y}=\mathrm{g}(\mathrm{x})+\mathrm{C}$, where C is an arbitrary constant.
II. The degree of $\left(\frac{d y}{d x}\right)^{2}=f(x)$ is 2 .

Which of the above statements is/are correct
A. A. Only I

B. B. Only II

C. C. Both I and II
D. D. Neither I nor II

Answer: B

D Watch Video Solution

37. What is the solution of the differential
equation $\frac{d x}{d y}+\frac{x}{y}-y^{2}=0$?
A. $x y=x^{4}+C$
B. $x y=y^{4}+C$
C. $4 x y=y^{4}+C$
D. $3 x y=y^{3}+C$

Answer: C

D Watch Video Solution
38. What is the solution of the differential
equation $\frac{y d x-x d y}{y^{2}}=0$?

> A. $x y=C$
> B. $y=c x$
> C. $x+y=C$
> D. $x-y=C$

Answer: B

D Watch Video Solution
39. What is the solution of the differential
equation $\sin \left(\frac{d y}{d x}\right)-a=0$?

Where C is an arbitrary constant
A. $y=x \sin ^{-1} a+C$
B. $x=y \sin ^{-1} a+C$
C. $y=x+x \sin ^{-1} a+C$
D. $y=\sin ^{-1} a+C$

Answer: A
40. What is the degree of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2}}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$?
A. 1
B. 2
C. 3
D. 4

Answer: C
41. What is the solution of the equation In

$$
\left(\frac{d y}{d x}\right)+x=0
$$

A. $y+e^{x}=C$

$$
\text { B. } y-e^{-x}=C
$$

C. $y+e^{-x}=C$
D. $y-e^{x}=C$

Answer: C

D Watch Video Solution
42. Eliminating the arbitrary constants B and C in the expression $\mathrm{y}=\frac{2}{3 C}(C x-1)^{\frac{3}{2}}+\mathrm{B}$, we get,

$$
\begin{aligned}
& \text { A. A. } x\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{d^{2} y}{d x^{2}} \\
& \text { В. В. } 2 x\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{2} \\
& \text { С. С. }\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}=1 \\
& \text { D. D. }\left(\frac{d y}{d x}\right)^{2}+1=\frac{d^{2} y}{d x^{2}}
\end{aligned}
$$

Answer: B
43. What is the general solution of the differential equation $x d y-y d x=y^{2} d x$?

Where C is an arbitrary constant
A. A. $x=C y$
B. B. $y=C-x$
C. C. $x+x y-C y=0$
D. D. None of these

Answer: D

D Watch Video Solution
44. The general solution of the differential equation
$\left(x^{2}+x+1\right) d y+\left(y^{2}+y+1\right) d x=0$ is $(x+$
$y+1)=A(1+B x+C y+D x y)$, where B, C and D
are constants and A is parameter

What is B equal to ?
A. (A) -1
B. (B) 1
C. (C) 2
D. (D) None of these

Answer: A

D Watch Video Solution

45. The general solution of the differential equation
$\left(x^{2}+x+1\right) d y+\left(y^{2}+y+1\right) d x=0$ is $(x+$
$y+1)=A(1+B x+C y+D x y)$, where B, C and D
are constants and A is parameter

What is C equal to ?
A. (A) 1
B. (B) -1
C. (C) 2
D. (D) None of these

Answer: B

D Watch Video Solution

46. The general solution of the differential equation
$\left(x^{2}+x+1\right) d y+\left(y^{2}+y+1\right) d x=0$ is $(\mathrm{x}+$
$y+1)=A(1+B x+C y+D x y)$, where B, C and D
are constants and A is parameter

What is D equal to ?
A. $(A)-1$
B. (B) 1
C. (C) -2
D. (D) None of these

Answer: C

D View Text Solution
47. What is the solution of $\frac{d y}{d x}+2 y=1$ satisfying $y(0)=0$?

$$
\begin{aligned}
& \text { A. } y=\frac{1-e^{-2 x}}{2} \\
& \text { B. } y=\frac{1+e^{-2 x}}{2} \\
& \text { C. } y=1+e^{x} \\
& \text { D. } y=\frac{1+e^{x}}{2}
\end{aligned}
$$

Answer: A
48. The solutions of $\frac{d y}{d x}=|\mathrm{x}|$ is

$$
\begin{aligned}
& \text { А. } y=\frac{x|x|}{2}+C \\
& \text { В. } y=\frac{|x|}{2}+C \\
& \text { С. } y=\frac{x^{2}}{2}+C \\
& \text { D. } y=\frac{x^{3}}{2}+C
\end{aligned}
$$

Answer: A

D Watch Video Solution
49. What is the number of arbitrary constant in the particular solution of differential equation of third order?
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

50. What is the equation of a curve passing
through (0,1) and whose differential equation
is given by $d y=y \tan x d x$?
A. $y=\cos x$
B. $y=\sin x$
C. $y=\sec x$
D. $y=\operatorname{cosec} x$

Answer: C

- Watch Video Solution

51. Consider the following statements in

> respect of the differential equation
> $\frac{d^{2} y}{d x^{2}}+\cos \left(\frac{d y}{d x}\right)=0$
I. The degree of the differential equation is not defined.
II. The order of the differential equation is 21

Which of the above statement is/are correct ?
A. Only I
B. Only II
C. Both I and II

D. Neither I nor II

Answer: C

D Watch Video Solution

52. What is the order of the differential equation $\left(\frac{d y}{d x}\right)^{2}+\frac{d y}{d x}-\sin ^{2} y=0$?
A. 1
B. 2
C. 3

D. Undefined

Answer: A

D Watch Video Solution

53. $y=2 \cos x+3 \sin x$ satisfies which of the following differential equation ?
I. $\frac{d^{2} y}{d x^{2}}+y=0$

II . $\left(\frac{d y}{d x}\right)^{2}+\frac{d y}{d x}=0$
Select the correct answer using the codes given below .
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Answer: A

D Watch Video Solution
54. What is the differential equation of all circles whose centres are at the origin is
A. $\frac{d y}{d x}=\frac{y}{x}$
B. $\frac{d y}{d x}=\frac{x}{y}$
C. $\frac{d y}{d x}=-\frac{x}{y}$
D. None of these

Answer: C

- Watch Video Solution

55. The degree and order respectively of the
differential equation $\frac{d y}{d x}=\frac{1}{x+y+1}$ are
A. 1,1
B. 1,2
C. 2,1
D. 2, 2

Answer: B

D Watch Video Solution

56. The general solution of the differential equation $\mathrm{x} \frac{d y}{d x}+y=0$ is
A. $x y=C$
B. $x=C y$
C. ${ }^{\prime} x+y=C$
D. $x^{2}+y^{2}=C$

Answer: A

- Watch Video Solution

57. What is the degree of the differential equation

$$
\left(\frac{d^{4} y}{d x^{4}}\right)^{\frac{3}{2}}-5 \frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+5=0 ?
$$

A. 5
B. 4
C. 3
D. 2

Answer: B
58. The differential equation of the curve $y=$ $\sin x$ is :

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y \frac{d y}{d x}+x=0 \\
& \text { B. } \frac{x^{2} y}{d x^{2}}+y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { D. } \frac{d^{2} y}{d x^{2}}+x=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

59. The general solution of the differential equation $\log \left(\frac{d y}{d x}\right)+x=0$ is
A. $y=e^{-x}+C$
B. $y=-e^{-x}+C$
C. $y=e^{x}+C$
D. $y=-e^{x}+C$

Answer: D

- Watch Video Solution

60. What is the degree of the differential
equation $\frac{d^{2} y}{d x^{2}}+2\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-\frac{d y}{d x}+y=0$
A. 6
B. 3
C. 2
D. 1

Answer: D

61. Consider a differential equation of order m
and degree n . Which one of the following pairs is not feasible?
A. $(3,2)$
B. $(2,3 / 2)$
C. $(2,4)$
D. $(2,2)$

Answer: B
62. What is the solution of the differential equation $3 e^{x} \tan y d x+\left(1+e^{x}\right) \sec ^{2} y d y=0$?
A. $\sin y=C\left(1-e^{x}\right)$
B. $\cos y=C\left(e^{x}-1\right)$
C. $\tan y=C\left(e^{x}-1\right)$
D. None of these

Answer: D

63. The differential equation representing the
family of curves $y=a \sin (\lambda x+\alpha)$ is:

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+\lambda^{2} y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}-\lambda^{2} y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}+\lambda y=0
\end{aligned}
$$

D. None of these

Answer: A

D Watch Video Solution

64. For the differential equation
$\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0$, which one of
the following is not its solution ?
A. $y=x-1$
B. $4 y=x^{2}$
C. $y=x$
D. $y=-x-1$

Answer: C
65. What is the general solution of the following
$x^{2} d y+y^{2} d x=0 ?$
A. $x+y=C$
B. $x y=C$
C. $C(x+y)=x y$
D. None of these

Answer: C

D Watch Video Solution
66. The differential equation $y \frac{d y}{d x}+x=a$ where a is a constant represents
A. A set of straight lines
B. A set of ellipses
C. A set of circles
D. None of the above

Answer: C
67. What is the degree of the differential
equation $\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{-1}$?
A. 1
B. 2
C. -1
D. Degree does not exist

Answer: B

- Watch Video Solution

68. Which one of the differential equation is

not linear

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+4 y=0 \\
& \text { B. } x \frac{d y}{d x}+y=x^{3} \\
& \text { C. }(x-y)^{2} \frac{d y}{d x}=9 \\
& \text { D. } \cos ^{2} x \frac{d y}{d x}+y=\tan x
\end{aligned}
$$

Answer: A

D Watch Video Solution

69. What is the solution of the differential
equation $\frac{d y}{d x}+\frac{y}{x}=0$?

> A. $x y=c$
> B. $x=c y$
> C. $y=c x$
D. None of these

Answer: A

D Watch Video Solution
70. What is the equation of the curve passing through the point ($0, \frac{\pi}{3}$) satisfying the differential equation $\sin x \cos y d x+\cos x \sin y$

$$
d y=0 ?
$$

A. $\cos x \cos y=\frac{\sqrt{3}}{2}$
B. $\sin x \sin y=\frac{\sqrt{3}}{2}$
C. $\sin x \sin y=\frac{1}{2}$
D. $\cos x \cos y=\frac{1}{2}$

Answer: D

71. What is the differential equation of all parabolas whose axes are parallel to Y-axis ?

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}=0 \\
& \text { B. } \frac{d^{2} x}{d y^{2}}=0 \\
& \text { C. } \frac{d^{3} x}{d y^{3}}=1 \\
& \text { D. } \frac{d^{3} y}{d x^{3}}=C
\end{aligned}
$$

Answer: A
72. If the solution of the differential equation $\frac{d y}{d x}=\frac{a x+3}{2 y+f}$ represents a circle, then what is the value of a ?
A. 2
B. 1
C. -2
D. -1

Answer: C
73. What is the degree of the differential
equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{2}{3}}+4-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}=0$?
A. 1
B. 2
C. 3
D. 4

Watch Video Solution

74. The differential equation $y \frac{d y}{d x}+x=a$ where a is a constant represents
A. A set of circles having centre of Y -axis
B. A set of circles having centre on X -axis
C. A set of ellipse
D. A pair of straight lines

Answer: B
75. Which one of the following is the differential equation of family to circles having centre at the origin ?

$$
\begin{aligned}
& \text { A. A) }\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y \\
& \text { B. B) }\left(x^{2}+y^{2}\right) \frac{d y}{d x}=2 x y \\
& \text { C. C) } \frac{d y}{d x}\left(x^{2}+y^{2}\right) \\
& \text { D. D) } x d x+y d y=0
\end{aligned}
$$

Answer: D
76. What is the differential equation to family of parabola having their vertices at the origin and foci on the X -axis ?

$$
\begin{aligned}
& \text { A. } y=2 x y^{\prime} \\
& \text { B. } x=2 y y^{\prime} \\
& \text { C. } x y=y^{\prime} \\
& \text { D. } x=y y^{\prime}
\end{aligned}
$$

Watch Video Solution

77. What is the general solution of $\left(1+e^{x}\right) y d y=e^{x} \mathrm{dx} ?$

$$
\begin{aligned}
& \text { A. } y^{2}=\ln \left[C^{2}\left(e^{x}+1\right)^{2}\right] \\
& \text { B. } \mathrm{dy}=\ln \left(e^{x}+1\right) \\
& \text { C. } y^{2}=\ln \left[C\left(e^{x}+1\right)\right]
\end{aligned}
$$

D. None of these

Answer: A
78. What is the degree of the differential
equation $\left(1+\frac{d y}{d x}\right)^{4}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
A. 1
B. 2
C. 4
D. 8

Answer: B

D Watch Video Solution
79. What does the equation $y \frac{d y}{d x}+x=k$ (where k is a constant) represents ?
A. A family of circles whose centre is on Y axis
B. A family of circles whose centre is on X-
axis
C. Touching the X-axis is a family of circles
D. None of the above

Answer: B

D Watch Video Solution

80. What is the degree of the differential
equation $\frac{d^{2} y}{d x^{2}}-\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=0$?
A. 1
B. 2
C. 3
D. 6

Answer: B

- Watch Video Solution

81. What is the solution of the differential equation $3 e^{x} \tan y d x+\left(1+e^{x}\right) \sec ^{2} y d y=0$?
A. $\left(1+e^{x}\right) \tan y=C$
B. $\left(1+e^{x}\right)^{3} \tan y=C$
C. $\left(1+e^{x}\right)^{2} \tan y=C$
D. $\left(1+e^{x}\right) \sec ^{2} y=C$

Answer: B

D Watch Video Solution

82. What is the differential equation for

$$
y^{2}=4 a(x-a) ?
$$

A. $y y^{\prime}-2 x y y^{\prime}+y^{2}=0$
B. $y y^{\prime}\left(y y^{\prime}+2 x\right)+y^{2}=0$
C. $y y^{\prime}\left(y y^{\prime}-2 x\right)+y^{2}=0$
D. $y y^{\prime}-2 x y y^{\prime}+y=0$

Answer: C

- Watch Video Solution

83. What is the solution of the differential
equation $a\left(x \frac{d y}{d x}+2 y\right)=x y \frac{d y}{d x}$?
A. $x^{2}=k y e^{\frac{y}{a}}$
B. $y x^{2}=k e^{\frac{y}{a}}$
C. $y^{2} x^{2}=k y e\left(\frac{y^{2}}{a}\right)$
D. None of these

Answer: D

- Watch Video Solution

84. The growth of a quantity N (t) at any constant t is given by $\frac{d N(t)}{d t}=\alpha N(t)$. Given that $\mathrm{N}(\mathrm{t})=c e^{k t} . c$ is a constant. What is the value of α ?
A. C
B. k
C. $c+k$
D. $c-k$

Answer: B

- Watch Video Solution

