©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MODERN PUBLISHERS CHEMISTRY (HINGLISH)

SOME BASIC CONCEPTS OF CHEMISTRY

Solved Examples

1. State the number of significant figures in each of the following numbers:
(i) 207.35 , (ii) 0.00368 , (iii) 653 , (iv) 3.653×10^{4}, (v) 0.378

- Watch Video Solution

2. Express the following in the scientific notation:
(i) 0.0048 , (ii) 234,000
(iii) 8008, (iv) 500.0
(v) 6.0012

- Watch Video Solution

3. Calculate the number of significant figures in the following values :
(a) Planck's constant $=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
(b) Avogadro number $=6.023 \times 10^{23}$
(c) Velocity of light $=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
(d) Electronic charge $=1.602 \times 10^{-19} \mathrm{C}$

- Watch Video Solution

4. Calculate the number of significant figures in the following:
(i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034

- Watch Video Solution

5. Express the following numbers up to four significant figures:
(i) 5.607892
(ii) 32.392800
(iii) 0.007837
(iv) 1.78986×10^{3}
(v) 60000

- Watch Video Solution

6. Express the following up to three significant places: (a) the height of a man, 5 feet 9 inches in centimetres (1 inch $=2.54 \mathrm{~cm}$) (b) one millionth of one. (c) four thousand (d) decimal equivalent of $2 / 3$
7. Calculate to proper significant figures:
(i) 12.6×11.2
(ii) $108 / 7.2$

- Watch Video Solution

8. How many significant figures should be present in the answer of the following calculations?
a. $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$
b. 5×5.364
c. $0.0125+0.7864+0.0215$

(Watch Video Solution

9. Express the results of the following calculations to the appropriate number of significant figures :
(i) $\frac{3.24 \times 0.08666}{5.006}$
(ii) $\frac{\left(1.36 \times 10^{-4}\right)(0.5)}{2.6}$
(iii) $0.582+324.65$
(iv) $2.64 \times 10^{3}+3.27 \times 10^{2}$
(v) $943 \times 0.00345+101$.

- Watch Video Solution

10. The mass of a piece of paper is 0.02 g and the mass of a solid substance and the piece of paper is 20.036 g . If the volume of the solid is $2.16 \mathrm{~cm}^{3}$, calculate the density of the substance up to proper number of significant digits.

- Watch Video Solution

11. Perform the following calculations and express the result to proper number of significant figures :
(i) $144.3 m^{2}+(2.54 m \times 8.4 m)$
(ii) $\left(4.05 \times 10^{2} m L\right)-\left(0.0225 \times 10^{2} m L\right)$
(iii) $\left(3.50 \times 10^{2} \mathrm{~cm}\right)\left(4.00 \times 10^{6} \mathrm{~cm}\right)$

- Watch Video Solution

12. The density of vanadium is $5.96 \mathrm{gcm}^{-3}$. Convert the density to SI units of kgm^{-3}.

(D) Watch Video Solution

13. A jug contains 2 L of milk. Calcualte the volume of the milk in m^{3}

- Watch Video Solution

14. Express each of the following in SI units :
(i) 93 million miles (this is the distance between the earth and the sun).
(ii) 5 feet 2 inches (this is the average height of an Indian female).
(iii) 100 miles per hour (this is the typical speed ofRajdhani Express).
(iv) 0.74 A (this is the bond length of hydrogen molecule).
(v) $46^{\circ} \mathrm{C}$ (this is the peak summer temperature in Delhi).
(vi) 150 pounds (this is the average weight of an Indian male).

- Watch Video Solution

15. The mass of precious stones is expressed in terms of 'carat'. What is the mass of a ring in grams which contains 0.600 carat diamond and 8.500 g gold given that 1 carat $=3.168$ grains and $1 \mathrm{~g}=15.4$ grains ?

- Watch Video Solution

16. A tennis ball was observed to travel at a speed of 96 miles per hour.

Calculate the speed of the ball in metres per second.

- Watch Video Solution

17. (a) Convert the following in kilogram.
(i) $0.91 \times 10^{-27} g$ (mass of electron)
(ii) 1 fg (mass of human DNA molecule)
(b) Convert into metre.
(i) 1.4 Gm (diameter of Sun)
(ii) 40En (thickness of Milky way Galaxy)

- Watch Video Solution

18. If 6.3 g of NaHCO_{3} are added to $15.0 \mathrm{~g} \mathrm{CH} \mathrm{COOH}_{3} \mathrm{COOH}$ solution, the residue is found of weight 18.0 g . What is the mass of CO_{2} released in the reaction?
19. Carbon and oxygen are known to form two compounds. The carbon content in one of these is 42.9% while in the other it is 27.3%. Show that this data is in agreement with the law of multiple proportions.

- Watch Video Solution

20. 2.0 g of a metal burnt in oxygen gave 3.2 g of its oxide. 1.42 g of the same metal heated in steam gave 2.27 g of its oxide. Which law is shown by this data?

- Watch Video Solution

21. Phosphorus and chlorine form two compounds. The first compound contains 22.54% by mass of phosphorus and 77.46% by mass of chlorine. In the second compound the percentages are 14.88
for phosphorus and 85.12 for chlorine. Show that these data are consistent with the law of multiple proportions.

D Watch Video Solution

22. Three oxides of lead on analysis were found to contain lead as under:
(i) 3.45 g of yellow oxide contains 3.21 g of lead.
(ii) 1.195 g of brown oxide contains 1.035 g of lead.
(iii) 1.77 g of red oxide contains 1.61 g of lead. Show that these data illustrate law of multiple proportions.

- Watch Video Solution

23. Two oxides of a metal contain 27.6% and 30.0% of Oxygen, respecttively. If the formula of the first be $M_{3} O_{4}$. Find that of the second.
24. Use data given in the following table to calculate the molar mass of naturaly occuring argon isotopes:

Isotope	Isotopic molar mass	Abundance
.${ }^{36} \mathrm{Ar}$	$35.96755 \mathrm{gmol}^{-1}$	0.337%
.${ }^{38} \mathrm{Ar}$	$37.96272 \mathrm{gmol}^{-1}$	0.063%
.${ }^{40} \mathrm{Ar}$	$39.9624 \mathrm{gmol}^{-1}$	99.600%

(D) Watch Video Solution

25. The element bron occurs in nature as two isotopes havein atomic masses 10 u and 11 u . What are the percentage abundances of these isotopes in a sample of boron having average atomic mass of 10.8 u ?

- Watch Video Solution

26. Calculate
(a) mass of 1.5 gram atoms of calcium (at. mass $=40$)
(b) gram atoms in 12.8 g of oxygen (at. mass $=16$)

- Watch Video Solution

27. (a) Calculate the gram molecular mass of sugar having molecular formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(b) Calculate
(i) the mass of 0.5 gram molecule of sugar and
(ii) Gram molecule of sugar in 547.2 gram.

- Watch Video Solution

28. Calculate the molecular mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ molecule.

Given at. masses :
$\mathrm{H}=1.008 \mathrm{amu}, \mathrm{C}=12.011 \mathrm{amu}, \mathrm{O}=16.0 \mathrm{amu}$.
29. Calculate
(a) mass of 2.6 gram molecule of SO_{2}.
(b) number of gram molecules of water in a beaker containing 576 g of water.

- Watch Video Solution

30. How many molecules and atoms of sulphur are present in 0.1 mole of S_{8} molecules ?

- Watch Video Solution

31. Calculate the number of moles of iodine in a sample containing 1.0×10^{22} molecules.
32. (i) Calculate the mass of an atom of silver (atomic mass $=108$).
(ii) 1 molecule of naphthalene $\left(C_{10} H_{8}\right)$

Watch Video Solution

33. Calcualte the mass of
(i) 1 atom of ${ }^{14} C$
(ii) 1 molecule of N_{2}.
(iii) 1 molecule of water
(iv) 100 molecule of sucrose $\left(C_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

(D) Watch Video Solution

34. Calculate the mass of 1 u (atomic mass, [Unit] in grams.
35. Calculate the number of molecules and number of atoms present in 11.2 litres of oxygen $\left(O_{2}\right)$ at N.T.P.

- Watch Video Solution

36. The mass of 94.5 mL of a gas at S.T.P. is found to be 0.2231 g .

Calculate its molecular mass.

- Watch Video Solution

37. Calculate the number of moles in the following:
(a) 7.85 g of iron, (b) 4.68 mg of silicon
(c) $65.6 \mu \mathrm{~g}$ of carbon.
38. Calculate the number of molecules in a drop of water weighing $0.05 \mathrm{~g}(\mathrm{H}=1, \mathrm{O}=16)$.

- Watch Video Solution

39. Calculate the number of atoms in each of the following (i) 52 moles of Ar (ii) 52 u of He (iii) 52 g of He .

- Watch Video Solution

40. Calculate the number of moles in the following masses:
(i) 1.46 metric tones of Al (1 metric ton $=10^{3} \mathrm{~kg}$)
(ii) 7.9 mg of Ca

- Watch Video Solution

41. Suppose the chemists had chosen 10^{20} as the number of particles in a mole. What would be the molecular mass of oxygen gas ?

- Watch Video Solution

42. Calculate the number of atoms of each type in 5.3 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

43. Calculate the number of molecules present in
(a) 1 kg oxygen,
(b) $1 \mathrm{dm}^{3}$ of hydrogen at S.T.P.

- Watch Video Solution

44. Chlorophyll, the green colouring matter of plants responsible for photosynthesis, contains 2.68% of magnesium by mass. Calculate the number of magnesium atoms in 2.00 g of chlorophyll.

(D) Watch Video Solution

45. Calculate
(a) the actual volume of a molecule of water
(b) the radius of a water molecule assuming to be spherical (density of water $=1 \mathrm{gcm}^{-3}$)

- Watch Video Solution

46. Potassium bromide $K B r$ contains 32.9% potassium by mass. If 6.40 g of bromine reacts with 3.60 g of potassium, calculate the number of moles of potassium which combine with bromide to form $K B r$.
47. The cost of table salt (NaCl) and sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ are Rs 20 per kg and Rs 36 per kg respectively. Calculate their cost per mole.

- Watch Video Solution

48. Silver is a very precious metal and is used in Jewellery. One million atoms of silver weigh $1.79 \times 10^{-16} \mathrm{~g}$. Calculate the atomic mass of silver.

(D) Watch Video Solution

49. Calculate the weight of carbon monoxide having same number of oxygen atoms as are present in 88 g of carbon dioxide.
50. A certain public water supply contained 0.10 parts per billion of chloroform CHCl_{3} How many molecules of CHCl_{3} would be contained in a 0.05 ml drop of this water ?

- View Text Solution

51. A gaseous mixture contains oxygen and nitrogen in the ratio of

1:4 by weight therefore the ratio of their number of molecules is

- Watch Video Solution

52. Calculate the mass percentage composition of copper pyrites ($\left.C u F e S_{2}\right)$.

- Watch Video Solution

53. Calculate the percentage composition of the following compounds:
(i) Urea $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
(ii) Copper sulphate $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

54. Ferric sulphate is used in water and sewage treatment and in removal of suspended impurities. Its empirical formula is $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Calculate the mass percentage of iron, sulphur and oxygen in this compound.

- Watch Video Solution

55. Calculate the percentage of water of crystallisation in the sample of Mohr salt, $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
56. Write the empirical formula of the compounds having the molecular formulae :
(i) $C_{6} H_{6}$, (ii) $\mathrm{C}_{6} \mathrm{H}_{12}$, (iii) $\mathrm{H}_{2} \mathrm{O}_{2}$, (iv) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, (v) $\mathrm{B}_{2} \mathrm{H}_{6}$, (vi) $\mathrm{N}_{2} \mathrm{O}_{2}$, (vii)
$\mathrm{H}_{3} \mathrm{PO}_{4}$, (viii) $\mathrm{Fe}_{2} \mathrm{O}_{3}$, (ix) $\mathrm{C}_{2} \mathrm{H}_{2}$, (x) $\mathrm{N}_{2} \mathrm{O}_{5}$

(Watch Video Solution

57. The molecular mass of an organic compound is 78 and its percentage composition is $92.4 \% \mathrm{C}$ and $7.6 \% \mathrm{H}$. Determine the molecular formula of the compound.

- Watch Video Solution

58. An organic compound on analysis gave the following percentage composition : $\mathrm{C}=57.8 \%, \mathrm{H}=3.6 \%$ and the rest is oxygen. The vapour
density of the compound was found to be 83 . Find out the molecular formula of the compound

D Watch Video Solution

59. Four gram of copper chloride on analysis was found to contain 1.890 g ofcopper (Cu) and 2.110 g of chlorine (Cl). What is the empirical formula of copper chloride ?

- Watch Video Solution

60. A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molecular mass is 98.96 . What are its empirical and molecular formulae?

- Watch Video Solution

61. Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.

- Watch Video Solution

62. (i) Butyric acid contains only C, H and O. $A 4.24 \mathrm{mg}$ sample of butyric acid is completely burned. It gives 8.45 mg of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and 3.46 mg of water. What is the mass percentage of each element in butyric acid?
(ii) If the elemental composition of butyric acid is found to be $54.2 \% C, 9.2 \% H$ and $36.6 \% O$, determine the empirical formula.
(iii) The molecular mass of butyric acid was determined of experiment to be 88 . What is the molecular formula?

- Watch Video Solution

63. A compound on analysis was found to contain the following composition :
$N a=14.31 \%, S=9.97 \%, O=69.50 \%$ and $H=6.22 \%$
Calculate the molecular formula of the compound assuming that the whole of hydrogen in the compound is present as water of crystallisation. Molecular mass of the compound is 322 .

- Watch Video Solution

64. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 litre (Measured at STP) of this welding gas is found weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
65. A crystalline hydrated sa,t on being rendered anhydrous, loses 45.6% of its weight. The precentage composition of anhydrous salt is : $A l=10.5 \%, K=15.1 \%, S=24.8 \%$ and $I=49.6 \%$. Find the empirical formula of the anhydrous and crystalline salt :

- Watch Video Solution

66. How many moles of nitrogen are needed to produce 8.2 moles of ammonia by reaction with hydrogen ?

- Watch Video Solution

67. How many moles of iron can be made from $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by the use of 16 mol of carbon monoxide in the following reaction :
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
68. Calculate the amount of water (g) produced by the combustion of 16 g of methane

- Watch Video Solution

69. How many moles of methane are required to produce 22 g of $\mathrm{CO}_{2}(\mathrm{~g})+$ after combustion :-

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Watch Video Solution

70. Chloringe is prepared in the laboratory by treating magnesse dixoide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochlorine acid according to the reaction.
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. Therefore 5 g of $\left(\mathrm{MnO}_{2}\right)$ will react with how many grams of HCl ?
71. What mass of calcium oxide will be obtained by heating 3 mol of CaCO_{3} ?

- Watch Video Solution

72. Oxygen is prepared by the catalytic decomposition of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$. Decomposition of potassium chlorate gives potassium chloride (KCl) and oxygen $\left(O_{2}\right)$. If 2.4 mol of oxygen is needed for an experiment, how many grams of potassium chlorate must be decomposed ?

- Watch Video Solution

73. Calculate the weight of iron which will be converted into its oxide $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by the action of 14.4 g of steam on it.
74. How many grams of chlorine are required to completely react with 0.40 g of hydrogen (HJ to yield hydrochloric acid (HCl) ? Also calculate the amount of HCl formed.

- Watch Video Solution

75. What weight of zinc would be required to produce enough hydrogen to reduce completely 8.5 g of copper oxide to copper ?

- Watch Video Solution

76. Calculate the amount of lime $\mathrm{Ca}(\mathrm{OH})_{2}$ required to remove the hardness of 60,000 litres of well water containing 16.2 g of calcium bicarbonate per hundred litre. (Atomic masses $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}$
77. A mixture of CaCO_{3} and MgCO_{3} weighing $1.84 g$ on heating left a residue weighing 0.96 g . Calculate the percentage of each in the mixture.

- Watch Video Solution

78. An impure sample of sodium chloride which weighed 1.2 gram gave on treatment with excess of silver nitrate solution 2.4 gram of silver chloride as the precipitate. Calculate the percentage purity of the sample.

D Watch Video Solution

79. A 2.0 g of mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} loses 0.248 g when heated to $300^{\circ} \mathrm{C}$, the temperature at which NaHCO_{3} decomposes
to $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. What is the percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mixture?

D Watch Video Solution

80. Calculate the amount of KClO_{3} needed to supply sufficient oxygen for burning 112 L of CO gas at N.T.P.

- Watch Video Solution

81. What volume of air at N.T.P containing 21% oxygen by volume is required to completely burn 1000 g of sulphur containing 4% incombustible matter?
82. Calculate the volume of oxygen at N.T.P. that would be required to convert 5.2 L of carbon monoxide to carbon dioxide.

- Watch Video Solution

83. What volume of oxygen at N.T.P is needed to cause the complete combustion of 200 mL of acetylene ? Also calculate the volume of carbon dioxide formed.

- Watch Video Solution

84. In a reaction

$$
A+B_{2} \rightarrow A B_{2}
$$

Identify the limiting reagent, if any, in the following reaction mixtures.
a. 300atoms of $A+200$ molecules of B
b. $2 \mathrm{~mol} A+3 \mathrm{~mol} B$
c. 100 atoms of $A+100$ molecules of B
d. $5 \mathrm{~mol} A+2.5 \mathrm{~mol} B$
e. $2.5 \mathrm{~mol} A+5 \mathrm{~mol} B$

- Watch Video Solution

85. 50.0 kg of $N_{2}(g)$ and 10.0 kg of $H_{2}(g)$ are mixed to produce
$\mathrm{NH}_{3}(\mathrm{~g})$. Calculate the $\mathrm{NH}_{3}(\mathrm{~g})$ formed. Identify the limiting reagent in the production of NH_{3} in this situation.

- Watch Video Solution

86.3.0 g of H_{2} react with $29.0 \mathrm{~g} \mathrm{O}_{2}$ to yield $\mathrm{H}_{2} \mathrm{O}$
(i) What is the limiting reactant ?
(ii) Calculate the maximum amount of water that can be formed
(iii) Calculate the amount of one of the reactants which remains unreacted.
87. If 20 g of CaCO_{3} is treated with 20 g of HCl . How many grams of CO_{2} can be generated according to the following equations?
$\mathrm{CaCO}_{3}+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+.\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2} g$

D Watch Video Solution

88. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
a. Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} g$ of dihydrogen.
b. Will any of the two reactants remain unreacted?
c. If yes, which one and what would be its mass?

- Watch Video Solution

89. If 11 g of oxalic acid are dissolved in 500 mL of solution (density $=.1 .1$ $\mathrm{g} m L^{-1}$), what is the mass \% of oxalic acid in solution?

- Watch Video Solution

90. 2.46 g of sodium hydroxide (molar mass $=40$) are dissolved in water and the solution is made to $100 \mathrm{~cm}^{3}$ in a volumetric flask.

Calculate the molarity of the solution

- Watch Video Solution

91. Calculate the molality of a solution containing 20.7 g of potassium
carbonate dissolved in 500 mL of solution (assume density of solution
$\left.=1 g m L^{-1}\right)$.

- Watch Video Solution

92. A solution has been prepared by dissolving 60 g of methyl alcohol in 120 g of water. What are the mole fraction of methyl alcohol and water?

- Watch Video Solution

93. Calculate the normality of solution containing 31.5 g of hydrated oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 1250 mL of solution.

- Watch Video Solution

94. A solution is prepared by dissolving 18.25 g of NaOH in distilled water to give 200 ml of solution. Calculate the molarity of the solution.
95. How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ should be dissolved to make 100 cm^{3} of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ?

- Watch Video Solution

96. A solution is prepared by adding 2 g of a substance A to 18 g of water. Calculate the mass per cent of the solute.

- Watch Video Solution

97. Calculate the concentration of nitric acid in moles per litre in a sample which has a density $1.41 \mathrm{~g} / m L$ and the mass percent of nitric acid in it being 69%.

- Watch Video Solution

98. A sample of NaNO_{3} weighting 0.38 g is placed in a 250 mL volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of the solution?

(D) Watch Video Solution

99. What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in $\mathrm{molL} \mathrm{L}^{-1}$ if its $20 g$ are dissolved in enough water to make a final volume up to $2 L$?

- Watch Video Solution

100. If the density of methanol is $0.793 \mathrm{kgL}^{-1}$ what ia its volume needed for making 2.5 L of its $0.25 M$ solution?

- Watch Video Solution

101. How many moles and how many grams of sodium chloride are present in 250 mL of a 0.50 M NaCl solution ?

- Watch Video Solution

102. Calculate the number of Cl^{-}ions in 100 ml of 0.001 M HCl solution.

- Watch Video Solution

103. A solution of oxalic acid, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is prepared by dissolving 0.63 g of the acid in 250 mL of the solution. Calculate (i) molarity and
(ii) normality of the solution.
104. $2.82 g$ of glucose (molar mass $=180$) is dissolved in $30 g$ of water.

Calculate the (i) Molality of the solution (ii) mole fractions of (a) glucose (b) water.

- Watch Video Solution

105. Calculate the molarity of pure water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$).

- Watch Video Solution

106. A solution has 25% of water, 25% ethanol and 50% acetic acid by mass. Calculate the mol e fraction of each component.

- Watch Video Solution

107. A solution of glucose in water is labelled as 10 percent w / w, what would be the molality and mole fraction of each component in the
solution? If the density of the solution is $1.2 g m L^{-1}$, then what shall be the molarity of the solution?

- Watch Video Solution

108. A sugar syrup of weight $214.2 g$ contains $34.2 g$ of sugar $\left(C_{12} H_{22} O_{11}\right)$. Calculate
a. the molal concentration.
b. the mole fraction of the sugar in the syrup.

- Watch Video Solution

109. Calculate the volume of 0.015 M HCl solution required to prepare 250 mL of a $5.25 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ solution

- Watch Video Solution

110. 250 mL of 1.5 M solution of sulphuric acid is diluted by adding 5 L of water. What is the molarity of the diluted solution?

- Watch Video Solution

111. What volumes of 10 M HCl and 3 M HCl should be mixed to get 1 L of 6 M HCl solution?

- Watch Video Solution

112. Commercially availiable concentrated hydrochloric acid contains $38 \% \mathrm{HCl}$ by mass. (a) What is the molarity of this solution? The density is $1.19 g m L^{-1}$?
(b) What volume of concentrated HCl is required to make 1.00 litre of 0.10 MHCl ?
113. Commercially available sulphuric acid contains 93% acid by mass and has a density of $1.84 \mathrm{~g} m L^{-1}$.

Calculate (i) the molarity of the solution (ii) volume of concentrated acid required to prepare 2.5 L of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

(D) Watch Video Solution

114. The density of 3 M solution of NaCL is $1.25 \mathrm{gmL} L^{-1}$. Calculate molality of the solution.

- Watch Video Solution

115. What is the molality of a solution of methanol in water in which the mole fraction of methanol is 0.25 ?

Watch Video Solution

116. What is the mole fraction of the solute in 2.5 m aqueous solution?

D Watch Video Solution

117.250 ml of 0.5 M sodium sulphate ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) solution are added to an aqueous solution containing 10.0 g of BaCl_{2} resulting in the formation of white precipitate of BaSO_{4}. How many moles and how many grams of barium sulphate will be obtained ?

- Watch Video Solution

118. What volume of 0.6 M HCl has enough hydrochloric acid to react exactly with 25 mL of aqueous NaOH having concentration of 0.5 M ?

- Watch Video Solution

119. What volume of $0.250 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is required to react completely with 22.6 g of sodium carbonate according to the reaction :
$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

(D) Watch Video Solution

120. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and
CO_{2} according to the reaction given below
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
What mass of CaCl_{2} will be formed when 250 mL of 0.76 M HCl reac ts with 1000 g of CaCO_{3} ? Name the limiting reagent. Calculate the number of moles of CaCl_{2} formed in the reaction.

- Watch Video Solution

Practical Problems

1. Calculate the number of significant figures in the following :
(i) 1.00×10^{6}
(ii) 0.0050
(c) 1.234
(d) 0.0006
(e) 0.368

D Watch Video Solution

2. Express the following numbers to three significant figures:
(i) 6.023×10^{23}
(ii) 6000
(iii) 32.362400
(iv) 5.6034
(v) decimal equivalent of $\frac{2}{3}$
(vi) 1.6276×10^{4}
3. The density of ice is $0.921 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. Calculate the mass of a cubic block of ice which is 76 mm on each side.

(D) Watch Video Solution

4. Express the following numbers in exponential notations to three significant figures :
(i) 0.999935
(ii) 0.000002136
(iii) 406721
(iv) 0.000001

- Watch Video Solution

5. Perform the following calculations to proper number of significant
figures.
(a) $108 / 7.2$
(b) $\left(1.6 \times 10^{2}\right)^{2}$
(c) $\frac{\left(1.35 \times 10^{-6}\right)(0.4)}{5.6}$
(d) $\frac{3.25 \times 0.0862}{4.002}$
(e) $(1.0042-0.0034)(1.23)$

- Watch Video Solution

6. Calculate
(i) area of a square whose side is 1.2 m
(ii) volume of a sphere whose radius is 1.6 cm
(iii) length of a rectangle having area $10.25 \mathrm{~m}^{2}$ and breadth 2.5 m

- Watch Video Solution

7. Perform the following calculations upto proper number of significant figures :
(i) $\left(1.20 \times 10^{-6}\right)+\left(6.00 \times 10^{-5}\right)=$?
(ii) $\left(2.164 \times 10^{5}\right)^{1 / 2}=$?
(iii) $\left(9.13 \times 10^{-2}\right)\left(7.006 \times 10^{-3}\right)=$?
(iv) $4.00 \times 10^{-2}+3.26 \times 10^{-3}+1 \times 10^{-6}=$?

- Watch Video Solution

8. Calculate the number of significant figures up to which the following results will be expressed:
(i) $\frac{2.36 \times 0.07251}{2.130}$
(ii) $\frac{(28.2-21.2)\left(1.79 \times 10^{6}\right)}{1.62}$

D Watch Video Solution

9. Round up the following upto three significant figures:
a. 34.216
b. 10.4107
c. 0.04597
d. 2808
10. If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, calculate the distance covered by light in 2.00 ns .

- Watch Video Solution

11. The wavelength of a yellow line in spectrum of sodium atom is 5896
A. Express it in nm.

- Watch Video Solution

12. How many cubic centimeters $\left(\mathrm{cm}^{3}\right)$ are in a cubic metre $\left(\mathrm{m}^{3}\right)$?

- Watch Video Solution

13. Convert:
(i) $4.86 \mathrm{kgL}^{-1}$ to grams per millilitre.
(ii) 1.86 km to cm .
(iii) $6.92 \times 10^{-7} \mathrm{~m}$ to micrometres and Angstroms.
(iv) $9.2 \times 10^{-3} \mathrm{~cm}^{3}$ to litres.

- Watch Video Solution

14. What is the capacity of a tank 0.8 m long 10 cm wide and 50 mm deep?

D Watch Video Solution

15. How many cubic centimetres are there in 100 L ?
16. Convert the following in kilogram:
(i) 500 Mg (mass of jumbo jet loaded)
(ii) $3.34 \times 10^{-24} \mathrm{~g}$ (mass of hydrogen molecule)

- Watch Video Solution

17. Express the following in the designated units :
(i) $1.54 \mathrm{~mm} \mathrm{~s}^{-1}$ to $\mathrm{pm} \mathrm{s}^{-1}$
(ii) $25 g L^{-1}$ to $m g d L^{-1}$
(iii) 25 L to m^{3}
(iv) $2.66 \mathrm{gcm}^{-3}$ to $\mu \mathrm{g} \mathrm{\mu m} \mathrm{~m}^{-3}$
(v) $4.2 L h^{-2}$ to $m L s^{-2}$

- Watch Video Solution

18. Convert into metre :
(i) 7 nm (diameter of small virus)
(ii) 41 pm (distance of nearest star)
19. How many seconds are there in 2 days?

- Watch Video Solution

20. Convert the following into basic units:
a. $28.7 p m$
b. $15.15 p m$
c. 25365 mg

(D) Watch Video Solution

21. The relative abundance of various isotopes of silicon is as $\mathrm{Si}(28)=$ 92.25%, $\mathrm{Si}(29)=4.65 \%$ and $\mathrm{Si}(30)=3.10 \%$. Calculate the average atomic mass of silicon.
22. Calculate the mass of (a) 1.6 gram atoms of oxygen C (b) 5.6 gram atoms of sulphur c) 2.4 gram atoms of iodine.
(Atomic masses: $\mathrm{O}=16, \mathrm{~S}=32, \mathrm{I}=127$)

- Watch Video Solution

23. Calculate the mass of
(i) 2.5 gram molecules of $H_{2} S$ (ii) 3.6 gram molecules of glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)

- Watch Video Solution

24. Calculate the number of
(i) gram atoms in 669.6 g of iron (at. mass $=55.8$)
(ii) gram molecules in 73.6 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
25. Which of the following has maximum mass
(a) 2.6 gram atoms of sulphur (b) 2.6 gram molecules of sucrose ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) (c) 2.6 g of iodine

- Watch Video Solution

26. Calculate the mass of the following
a. One atom of calcium
b. One molecules of SO_{2}

- Watch Video Solution

27. Calculate the number of atoms in
(i) 0.5 mole atoms of carbon $\left(C^{12}\right)$
(ii) 3.2 g of sulphur
(iii) 18.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
(iv) 0.20 mole molecules of oxygen

- Watch Video Solution

28. Calculate the mass of sodium which contains same number of atoms as are present in 15 g of calcium (at. mass of $\mathrm{Ca}=40, \mathrm{Na}=23$).

- Watch Video Solution

29. What volume is occupied at N.T.P. by
(i) 1.4 g of nitrogen
(ii) 6.023×10^{21} molecules of oxygen
(iii) 0.2 mole of ammonia ?

- Watch Video Solution

30. How many years it would take to spend Avogadro's number of rupees at the rate of 10 lakh rupees per second?

- Watch Video Solution

31. One atom of an element X ' weighs $6.644 \times 10^{-23} \mathrm{~g}$. Calculate the number of gram atoms in 80 kg of it.

- Watch Video Solution

32. Calculate the number of molecules and number of atoms present in 5.60 L of ozone $\left(O_{3}\right)$ at N.T.P.

- Watch Video Solution

33. Calculate the number of gold atoms in 300 mg of a gold ring of 20 carat gold (atomic mass of gold $=197$, pure gold is 24 carat).

- Watch Video Solution

34. Comprehension \# 1

Potash is any potassium mineral that is used for its potassium content. Most of the potash produced in the United States goes into fertilizer. The major sources of potash are potassium choride (KCI) and potassium sulphate $\left(K_{2} \mathrm{SO}_{4}\right)$. Potash production is often reported as the potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$ equivalent or the amount of $\mathrm{K}_{2} \mathrm{O}$ that could be made from a given mineral. $K C I$ cost $R s 50 \mathrm{perkg}$ What mass (in kg) of $K_{2} O$ contains the same number of moles of K atoms as 1.00 kgKCI ?

D Watch Video Solution

35. How many molecules of water of hydration are present in 630 mg of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$?

- Watch Video Solution

36. How many molecules of CO_{2} are present in one litre of air containing 0.03% by volume of CO_{2} at STP ?

- Watch Video Solution

37. A dot . containing carbon has 1 microgram weight. Calculate number of carbon atoms used to make the dot.

(Watch Video Solution

38. How many litres of liquid $C C l_{4}(\mathrm{~d}=1.5 \mathrm{~g} / \mathrm{cc})$ must be measured out to contain $1 \times 10^{25} \mathrm{Cl}$ atoms ?

- Watch Video Solution

39. Calculate the difference in the number of carbon atoms in 1.0 g of $\mathrm{C}-14$ isotope and 1.0 g of $\mathrm{C}-12$ isotope.

- Watch Video Solution

40. Calculate the mass of oxygen in grams present in 0.1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

(Watch Video Solution

41. (i) Calculate the mass percentage of various elements present in magnesium sulphate, MgSO_{4} (ii) Calculate the percentage of cation in ammonium dichromate.

(D) Watch Video Solution

42. An organic compound containing carbon, hydrogen and oxygen gave the following percentage composition :

$$
\mathrm{C}=40.68 \%, \mathrm{H}=5.08 \%
$$

The vapour density of the compound is 59 . Calculate the molecular formula of the compound.

- Watch Video Solution

43. (i) Butyric acid contains only C, H and O. $A 4.24 m g$ sample of butyric acid is completely burned. It gives 8.45 mg of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and 3.46 mg of water. What is the mass percentage of each
element in butyric acid?
(ii) If the elemental composition of butyric acid is found to be $54.2 \% C, 9.2 \% H$ and $36.6 \% O$, determine the empirical formula.
(iii) The molecular mass of butyric acid was determined of experiment to be 88 . What is the moleculare formula ?

- Watch Video Solution

44. An oxide of nitrogen contains 30.43% of nitrogen. The molecular weight of the compound is equal to 92 a.m.u. Calculate the molecular formula of the compound.

D Watch Video Solution

45. Calculate the empirical and molecular formula of the compound
having the following percentage composition :
$\mathrm{Na}=36.5 \%, \mathrm{H}=0.8 \%, \mathrm{P}=24.6 \%, \mathrm{O}=38.1 \%$

The molecular mass of the compound is 126 a.m.u. Also name the compound

- Watch Video Solution

46. A crystalline compound when heated became anhydrous by losing 51.2 \% of the mass. On analysis, the anhydrous compound gave the following percentage composition: $\mathrm{Mg}=20.0 \%, \mathrm{~S}=26.66 \%$ and $\mathrm{O}=$ 53.33 \%, Calculate the molecular formula of the anhydrous compound and crystalline compound. The molecular mass of anhydrous compound is 120 u .

D Watch Video Solution

47. Calculate the empirical formula of a mineral which has the following percentage composition :
$\mathrm{CuO}=44.82 \%, \mathrm{SiO}_{2}=34.83 \%$ and water $=20.35 \%$ (at. wt. of $\mathrm{Cu}=63.5$,
$S i=28)$.

- Watch Video Solution

48. Determine the empirical formula of a compound having percentage composition as: Iron $=20 \%$, sulphur $=11.5 \%$, oxygen $=23.1 \%$ and water molecules $=$ 45.4%-(At. mass of $\mathrm{Fe}=56, \mathrm{~S}=32$)

- Watch Video Solution

49. Balance the following equations by hit and trial method:
(a) $\mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
(b) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(d) $\mathrm{KMnO}_{4}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3}$
(f) $\mathrm{Al}_{4} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{CH}_{4}$
(g) $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$
(h) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{MnSO}_{4}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(i) $\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

50. Balance the following equations by partial equation method:
(i) $\mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NaClO} 3+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
(iii) $\mathrm{C}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{I}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{HIO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(i) $\mathrm{P}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

51. How much iron can be theoretically obatined by the reduction of 1.0kg of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?(At.wt.of $\left.\mathrm{Fe}=56\right)^{\text {' }}$
52. The hourly energy requirement of an astronaut can be satisfied by the energy relesed when 34 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ are burnt in his body. How many g of oxygen would be needed to be carried in space capsule to meet his requirement for one day:

- Watch Video Solution

53. How much marble of 96.5% purity would be required to prepare 100 litres of carbon dioxide at S.T.P. when marble is acted upon by dil HCl ?

- Watch Video Solution

54.5.6 litres of methane gas $\left(\mathrm{CH}_{4}\right)$ is ignited in oxygen gas. Calculate the number of moles of CO_{2} formed.
A. 25
B. 0.25
C. 0.30
D. 50

Answer: B

- Watch Video Solution

55. Calculate the percentage yield of the reaction if 64 g of NaBH_{4} with iodine produced 15.0 g of $B I_{3}$.
$\mathrm{NaBH} \mathrm{H}_{4}+4 \mathrm{I}_{2} \rightarrow \mathrm{BI}_{3}+\mathrm{NaI}+4 \mathrm{HI}$
(At. mass, $\mathrm{Na}=23, \mathrm{~B}=10.8,1=127$)

- Watch Video Solution

56. NO_{2}^{-}ion in KNO_{2} is oxidised to NO_{3}^{-}ion by the action of KMnO_{4} in $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution according to the reaction :
$5 \mathrm{KNO}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{KNO}_{3}+2 \mathrm{MnSO}_{4}+5 \mathrm{I}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ How much KMnO4 are needed to oxidise 11.4 g of KNO_{2} ?

D Watch Video Solution

57. How many mL. of aqueous solution of KMnO_{4} containing $158 \frac{g}{L}$ must be used to complete the conversation of 75.0 g of $K I$ to iodine by the reaction
$\mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

58. (a) Sample of NaOH weighing 0.38 g is dissolved in water and the solution is made to 50.0 mL in a volumetric flask. What is the molarity of the resulting solution?
(b) How many moles of NaOH are contained in 27 mL of 0.15 M NaOH solution?
59. The density of 3 molal solution of NaOH is $1.110 \mathrm{~g} m L^{-1}$. Calculate the molarity of the solution.

- Watch Video Solution

60. A bottle contains 500 ml of $2.4 \mathrm{M} \mathrm{HC1}$ solution. How much water should he added to dilute it to $1.6 \mathrm{M} \mathrm{HC1}$ solution ?

- Watch Video Solution

61. A bottle of concentrated sulphuric acid (density $1.80 \mathrm{~g} \mathrm{~cm}^{-3}$) is labelled as 86% by weight. What is the molarity of the solution?

- Watch Video Solution

62. 0.63 g of oxalic acid, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are dissolved in 500 ml of solution. Calculate the molarity of the solution.

- Watch Video Solution

63. How many moles of NaOH are contained in 27 mL of 0.15 MNaOH ?

- Watch Video Solution

64. No. of oxalic acid molecules in 100 ml of 0.01 M oxalic acid is -

- Watch Video Solution

65. What mass of solid AgCl is obtained when 25 ml of 0.068 M AgNO_{3} reacts with excess of aqueous HCl ?
66. What volume of 0.34 M KOH is sufficient to react with 20 ml of 0.15M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

- Watch Video Solution

67. Calculate the volume of $1.00 \mathrm{molL}^{-1}$ aqueous sodium hydroxide that is neutralized by 200 mL of $2.00 \mathrm{molL}^{-1}$ aqueous hydrochloric acid and the mass of sodium chloride produced. Neutralization reaction is,
$\mathrm{NaOH}_{(a q .)}+\mathrm{HCl}_{(a q .)} \rightarrow \mathrm{NaCl}_{(a q .)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

- Watch Video Solution

68. In a reaction vessel $0.184 g$ of NaOH is required to be added for completing the reaction. How many millilitre of 0.150 MNaOH
solution should be added for this requirements?

- Watch Video Solution

69. 500 mL of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution is added to an aquesous solution is 15 g of BaCl_{2} resulting in the formation of a white precipatate of insoluble BaSO_{4}. How many moles and how many grams of BaSO_{4} are formed.

- Watch Video Solution

70. What mass of CaCO_{3} is required to react completely with 25 ml of 0.75MHCI?

- Watch Video Solution

1. How many significant figures are there in each of the following numbers:
(i) 1.00×10^{6}, (ii) 0.00010 , (ii) π

- Watch Video Solution

2. Convert 22.4 L in cubic metres.

- Watch Video Solution

3. What physical quantities are represented by the following units and what are their common names ?
(i) $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$
(ii) kgms^{-2}
(iii) $d m^{3}$
4. The longest visible rays, at the end of the visible spectrum are $7.8 \times 10^{-7} \mathrm{~m}$ in length. Express this length in (i) micrometers and (ii) nanometers

- Watch Video Solution

5. Which of the following mixture are homogeneous ?
(a) Tap water , (b) air , (c) soil , (d) smoke, (e) cloud

(D) Watch Video Solution

6. Is the molar volume of CO_{2} same or different from CO ?

- Watch Video Solution

7. At what temperature do the Celsius and Fahrenheit readings have the same numerical value?
8. What is the difference between 0.006 g and $6.00 \times 10^{-3} g$?

- Watch Video Solution

9. Classify the following substances into elements, compounds and mixtures :
(i) Milk (ii) 22 carat gold (iii) Iodized table salt (iv) Diamond (v) Smoke (vi) Steel (vii) Brass (viii) Dry ice (ix) Mercury Or) Air (xi) Aerated drinks (xii) Glucose (xiii) Petrol (xiv) Glass (xv) Wood

- Watch Video Solution

10. Given that density of water is $1 \mathrm{~g} m L^{-1}$. What is the density in SI units?
11. Is the law of constant composition true for all types of compounds?

Explain why or why not?

D Watch Video Solution

12. Which postulate of the Dalton's atomic theory was modified after the discovery of isotopes?

D Watch Video Solution

Conceptual Question 2

1. Calculate the total number of electrons present in 1.6 g of methane
2. How many molecules of aspirin (molar mass $=180 \mathrm{amu}$) are present in 50 mg tablet ?

(D) Watch Video Solution

3. Lithium exists in nature in the form of two isotopes, Li-6 and Li-7 with atomic masses 6.0151 u and 7.0160 u and the percentages 8.24 and 91.76 respectively. Calculate average atomic mass.

- Watch Video Solution

4. What is the ratio of molecules between 1 mole of $\mathrm{H}_{2} \mathrm{O}$ and 1 mole of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?

- Watch Video Solution

5. If the atomic masses of C and S are 12 and 32 respectively, then atom of S is how many times heavier than an atom of carbon?

- Watch Video Solution

6. What is the mass of a mole of water containing 50% of heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$?

- Watch Video Solution

7. What is the mass of a molecule of carbon-14 dioxide $\left({ }^{14} \mathrm{CO}_{2}\right)$?

- Watch Video Solution

8. Explain why, the atomic masses of many elements are in fractions and not whole numbers.
9. What is the approximate molecular mass of dry air containing 78%
N_{2} and $22 \% O_{2}$?

- Watch Video Solution

10. Chlorine has two naturally occuring isotopes, ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$. If the atomi mass of Cl is 35.45 , the ratio of natural abundance of ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ is closest to

- Watch Video Solution

11. Two bulbs A and B of equal capacity contain 10 g of oxygen $\left(\mathrm{O}_{2}\right)$ and ozone $\left(O_{3}\right)$ respectively. Which bulb will have
(i) larger number of molecules?
(ii) larger number of oxygen atoms?
12. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.'
(iii) Number of molecules of ethane.

- Watch Video Solution

13. Which one of the following will have the largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) $1 \mathrm{~g} \mathrm{Li}(\mathrm{s})$
(iv) 1 g of Cl 2 (g)

Watch Video Solution
14. Calculate the atomic mass (average) of chlorine using the following data:

$$
.{ }^{35} \mathrm{Cl} \quad 75.77
$$

$$
.{ }^{37} \mathrm{Cl} \quad 24.23
$$

$$
\begin{array}{ll}
\text { \% natural abundance } & \text { Molar mass } \\
75.77 & 34.9689 \\
24.23 & 36.9659
\end{array}
$$

- Watch Video Solution

Conceptual Question 3

1. Give two examples of molecules having molecular formula same as empirical formula.

- Watch Video Solution

2. Give an example of molecule in which
(i) Ratio of molecular formula and empirical formula is 6:1.
(ii) Molecular weight is two times of the empirical formula weight.
(iii) The empirical formula is $\mathrm{CH}_{2} \mathrm{O}$ and ratio of molecular formula weight and empirical formula weight is 6 .

- Watch Video Solution

3. Write the empirical formula of (i) glucose (ii) sucrose.

- Watch Video Solution

4. What are the $S I$ unit of molarity ?

- Watch Video Solution

5. 1.615 g of anhydrous ZnSO_{4} was left in moist air. After a few days its weight was found to be 2.875 g . What is the molecular formula of hydrated salt ? (At. Mass: $\mathrm{Zn}=65.5, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)
6. Density of water $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ corresponds tog cm^{-3}.

Complete the statement

- Watch Video Solution

7. How are $0.50 \mathrm{~m} \mathrm{Na} a_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{~m} \mathrm{Na}_{2} \mathrm{CO}_{3}$ different ?

- Watch Video Solution

8. Calculate the amount of carbon dioxide that could be produced when
a. 1 mol of carbon is burnt in air
b. 1 moles of carbon is brunt in $16 g$ of dioxygen.

2 moles of carbon are burnt in $16 g$ of dioxygen.
9. The reactant which is entirely consumed in reaction is known as limiting reagent. In the reaction $2 A+4 B \rightarrow 3 C+4 D$, when 5 moles of A react with 6 moles of B, then
(a) which is the limiting reagent?
(b) calculate the amount of C formed?

- Watch Video Solution

Advanced Level Problems Accelerate Your Potential For Jee Advance

1. An alloy of metals X and Y weighs $12 g$ and contains atoms X and Y in the ratio of $2: 5$. The percentage by mass of X in the sample is 20 . If atomic mass of X is 40 , what is the atomic mass of metal Y ?
2. Find (i) total number of neutrons, and (II) the total mass of neutrons in 7 mg of C^{14} (assume that mass of neutron=mass of a hydrogen atom)

- Watch Video Solution

3. Calculate the number of molecules of carbon dioxide present in 300 mL of gas at 273 K and 2.5 atm pressure.

- Watch Video Solution

4. If atomic mass of carbon was set at 100 u , what would be the value of Avogadro's number?

- Watch Video Solution

5. A 0.005 cm thick coating of copper is deposited on a plate of $0.5 \mathrm{~m}^{2}$ total area. Calculate the number of copper atoms deposited on the plate (density of copper $=7.2 \mathrm{~g} \mathrm{~cm}^{-3}$, atomic mass $=63.5$).

(D) Watch Video Solution

6. Calculate the number of molecules present in a spherical drop of water having a radius 1 mm if density of water is $1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$.

- Watch Video Solution

7.1×10^{21} molecules are removed from 280 mg of carbon monoxide.
Calculate the number of moles of carbon monoxide left.

- Watch Video Solution

8.1 gm of a mixture of calcium carbonate and magnesium carbonate gave on ignition 240 mL of carbon dioxide at S.T.P. What is the percentage composition of the mixture ?

(D) Watch Video Solution

9. One gram of an alloy of aluminium and magnesium when heated with excess of dil. $H C I$ forms magnesium chloride, aluminium chloride and hydrogen. The evolved hydrogen collected over mercury at $0^{0} \mathrm{C}$ has a volume of 1.2 litre at 0.92 atm pressure. Calculate the composition of the alloy.

- Watch Video Solution

10. A mixture of sodium chloride and sodium iodide when treated with sulphuric acid gave sodium sulphate equal to the weight of the original mixture. Find the percentage composition of the mixture.

- Watch Video Solution

11. How many ml. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ density $1.8 \mathrm{~g} / \mathrm{mL}$ containing 92.5% by volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be added to 1 litre of 40% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density $1.30 \mathrm{~g} / \mathrm{mL}$) in order to prepare 50% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density $1.4 \mathrm{~g} / \mathrm{mL}$) ?

D Watch Video Solution

12. You are given one litre of 0.15 M HCl and one litre of 0.40 M HCl .

What is the maximum volume of 0.25 M HCl which you can make from these solutions without adding any water ?

- Watch Video Solution

13. A mixture of FeO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ when heated in air to a constant weight, gains 5% of its weight. Find the composition of the intial
mixutre.

- Watch Video Solution

14. Gastric juice contains about 3 mg of HCl per millilitre. If a person produces about 225 mL of gastric juice per day, how many antacid tablets each containing 250 mg of $\mathrm{Al}(\mathrm{OH})_{3}$ are needed to neutralise all the HC 1 produced in one day?

- Watch Video Solution

15. A mixture of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and HCOOH is heated with conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treatment with KOH solution, the volume of the gas decreases by $\frac{1}{6}$ calculate the molar ratio of the two acids in the original mixture.

- Watch Video Solution

16. a) Calculate the number of chloride of $0.01 \mathrm{M} 100 \mathrm{ml} \mathrm{AlCl}_{3}$ solution.
(b) What will be the change in number of chloride ions if the solution is diluted by 100 mL water?

- Watch Video Solution

17. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05 . If the density of the solution is $1.2 \mathrm{gcm}^{-3}$, the molarity of urea solution is \qquad
Given data: Molar masses of urea and water are $60 \mathrm{gmol}^{-1}$ and $18 \mathrm{gmol}^{-1}$, respectively)

- Watch Video Solution

1. Calculate the molecular mass of the following :
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) CO_{2}
(iii) CH_{4}

- Watch Video Solution

2. Calculate the mass precent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

- Watch Video Solution

3. Determine the empirical formula of an oxide of iron which has 69.9 \% iron and 30.1% dioxygen by mass.
4. Calculate the amount of carbon dioxide that could be produced when
a. 1 mol of carbon is burnt in air
b. 1 moles of carbon is brunt in $16 g$ of dioxygen.

2 moles of carbon are burnt in $16 g$ of dioxygen.

- Watch Video Solution

5. Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium of acetate is $82.0245 \mathrm{gmol}^{-1}$.

D Watch Video Solution

6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density $1.41 \mathrm{~g} / m L$ and the mass percent of nitric acid in it being 69%.
7. How much copper can be obtained from $100 g$ of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$?

(D) Watch Video Solution

8. Determine the molecular formula of an oxide of iron in which the mass percent of iron and oxygen are 69.9 and 30.1 , respectively.

- Watch Video Solution

9. Calculate the atomic mass (average) of chlorine using the following data:
\% natural abundance Molar mass

.${ }^{35} \mathrm{Cl}$	75.77	34.9689
.${ }^{37} \mathrm{Cl}$	24.23	36.9659

- Watch Video Solution

10. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.'
(iii) Number of molecules of ethane.

D Watch Video Solution

11. What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in $\mathrm{molL} L^{-1}$ if its $20 g$ are dissolved in enough water to make a final volume up to $2 L$?

- Watch Video Solution

12. If the density of methanol is $0.793 \mathrm{kgL}^{-1}$ what ia its volume needed for making 2.5 L of its $0.25 M$ solution?

- Watch Video Solution

13. Pressure is determined as force per unit area of the surface. The $S I$ unit of pressure, pascal is as shown below:
$1 P a=N m^{-2}$
If the mass of air at sea level is $1034 \mathrm{gcm}^{-2}$, calculate the pressure in pascal.

- Watch Video Solution

14. What is the $S I$ unit of mass?

- Watch Video Solution

15. Match the following prefixes with their multiples:

	Prefixes	Mult
(i)	micro	10^{6}
(ii)	deca	10^{9}
(iii)	mega	10^{-6}
(iv)	giga	10^{-15}
(v)	femto	10

16. What do you mean by significant figures?

- Watch Video Solution

17. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogen. The level of contamination was 15 ppm (by mass).
(i) Express this in per cent by mass.
(ii) Determine the molality of chloroform in the water sample.

- Watch Video Solution

18. Express the following in the scientific notation:
a. 0.0048
b. 234000
c. 8008
d. 500.0
e. 6.0012

D Watch Video Solution

19. How many significant figures are present in the following?
a. 0.0025
b. 208
c. 5005
d. 126000
e. 500.0
f. 2.0034

D Watch Video Solution

20. Round up the following upto three significant figures:
a. 34.216
b. 10.4107
c. 0.04597
d. 2808

- Watch Video Solution

21. The following data are obtained when dinitrogen and dioxygen react to gether to form different compounds:

	Mass of dinitrogen	Mass of dioxygen
i.	$14 g$	$16 g$
ii.	$14 g$	$32 g$
iii.	$28 g$	$32 g$
iv.	$28 g$	$80 g$

a. Which law of chemical combination is obeyed by the above experimental data? Give its statement.
d. Fill in the blanks in the following conversions:
I. $1 \mathrm{~km}=. \mathrm{mm}=. . . . \mathrm{pm}$
II. $1 m g=. k g=. n g$
III. $1 m L=. \mathrm{L}=. d m^{3}$
22. If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, calculate the distance covered by light in 2.00 ns .

- Watch Video Solution

23. In a reaction
$A+B_{2} \rightarrow A B_{2}$
Identify the limiting reagent, if any, in the following reaction mixtures.
a. 300atoms of $A+200$ molecules of B
b. $2 \mathrm{~mol} A+3 \mathrm{~mol} B$
c. 100 atoms of $A+100$ molecules of B
d. $5 \mathrm{~mol} A+2.5 \mathrm{~mol} B$
e. $2.5 \mathrm{~mol} A+5 \mathrm{~mol} B$

(D) Watch Video Solution

24. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
a. Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} g$ of dihydrogen.
b. Will any of the two reactants remain unreacted?
c. If yes, which one and what would be its mass?

- Watch Video Solution

25. How are $0.50 \mathrm{~m} \mathrm{Na} \mathrm{N}_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ different?

- Watch Video Solution

26. If ten volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?
27. Convert the following into basic units :
(i) 28.7 pm
(ii) $15.15 \mu \mathrm{~s}$
(iii) 25365 mg

- Watch Video Solution

28. Which one of the following will have the largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) $1 \mathrm{~g} \mathrm{Li}(\mathrm{s})$
(iv) 1 g of $\mathrm{Cl} 2(\mathrm{~g})$

- Watch Video Solution

29. Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 .

- Watch Video Solution

30. What will be the mass of one ${ }^{13} C$ atoms in g ?

- Watch Video Solution

31. How many significant figures should be present in the answer of the following calculations?
a. $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$
b. 5×5.364
c. $0.0125+0.7864+0.0215$
32. Calculate the number of atoms in each of the following (i) 52 moles of Ar (ii) 52 u of He (iii) 52 g of He .

- Watch Video Solution

33. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 litre (Measured at STP) of this welding gas is found weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.

- Watch Video Solution

34. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and
CO_{2} according to the reaction:
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

What mass of CaCO_{3} is required to react completely with 25 mL of 0.75 MHCl ?

- Watch Video Solution

35. Chloringe is prepared in the laboratory by treating magnesse dixoide (MnO_{2}) with aqueous hydrochlorine acid according to the reaction.
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. Therefore 5 g of $\left(\mathrm{MnO}_{2}\right)$ will react with how many grams of HCl ?

- Watch Video Solution

Ncert File Ncert Exemplar Problems Multiple Choice Question Type I

1. Two students performed the same experiment separately and each one of them recovered two readings of mass which are given below. Correct reading of mass is 3.0 g . On the basis of given data, mark the
correct option out of the following statements.

A. Results of both the students are neither accurate nor precise.
B. Results of student A are both precise and accurate.
C. Results of student B are neither precise nor accurate.
D. Results of student B are both precise and accurate

Answer: B

- Watch Video Solution

2. A measured temperature on Fahrenheit scale is $200^{\circ} \mathrm{F}$. What will this reading be on Celsius scale ?
A. $40^{\circ} \mathrm{C}$
B. $94^{\circ} \mathrm{C}$
C. $93.3^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer: C

Watch Video Solution

3. What will be the molarity of a solution, which contains 5.85 g of $\mathrm{NaCl}(s)$ per 500 mL ?
A. $4 \mathrm{~mol}^{-1}$
B. $20 \mathrm{~mol}^{-1}$
C. $0.2 \mathrm{~mol}^{-1}$
D. $2 \mathrm{~mol}^{-1}$

Answer: C

4. If 500 mL of a 5 M solution is diluted to 1500 mL , what will be the molarity of the solution obtained ?
A. 1.5 M
B. 1.66 M
C. 0.017 M
D. 1.59 M

Answer: B

- Watch Video Solution

5. The number of atoms present in one mole of an element is equal to

Avogadro number. Which of the following element contains the greatest number of atom?
A. 4 g He
B. $46 \mathrm{~g} N a$
C. $0.40 \mathrm{~g} C a$
D. 12 g He

Answer: D

- Watch Video Solution

6. If the concentration of glucose $\left(C_{6} H_{12} O_{6}\right)$ in blood is $0.9 \mathrm{~g} L^{-1}$, what will be the molarity of glucose in blood?
A. 5 M
B. 50 M
C. 0.005 M
D. 0.5 M

Answer: C

Watch Video Solution
7. What will be the molality of the solution containing 18.25 g of HCl gas in 500 g of water?
A. 0.1 m
B. 1 M
C. 0.5 m
D. 1 m

Answer: D

8. One mole of any substance contains 6.022×10^{23} atoms/molecules.

Number of molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in 100 mL of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is :
A. 12.044×10^{20} molecules
B. 6.022×10^{23} molecules
C. 1×10^{23} molecules
D. 12.044×10^{23} molecules

Answer: A

- Watch Video Solution

9. What is the mass percent of carbon in carbon dioxide ?
A. 0.00034
B. 0.2727
C. 0.034
D. 0.287

Answer: B

- Watch Video Solution

10. The empirical formula and molecular mass of a compound are $\mathrm{CH}_{2} \mathrm{O}$ and 180 g respectively. What will be the molecular formula of the compound ?
A. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}$
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Answer: C
11. If the density of a solution is $3.12 \mathrm{~g} m L^{-1}$, the mass of 1.5 mL solution in significant figures is
A. 4.7 g
B. $4680 \times 10^{-3} \mathrm{~g}$
C. 4.680 g
D. 46.80 g

Answer: A

- Watch Video Solution

12. Which of the following statements about a compound is incorrect?
A. A molecule of a compound has atoms of different elements.
B. A compound cannot be separated into its constituent elements by physical methods of separation.
C. A compound retains the physical properties of its constituent elements.
D. The ratio of atoms of different elements in a compound is fixed.

Answer: C

- Watch Video Solution

13. Which of the following statements is correct about the reaction given below:-
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g})$
A. Total mass of iron and oxygen in reactants $=$ total mass of iron and oxygen in product, therefore it follows law of conservation
B. Total mass of reactants = total mass of product, therefore, law of multiple proportions is followed.
C. Amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be increased by taking any one of the reactants (iron or oxygen) in excess.
D. Amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess

Answer: A

- Watch Video Solution

14. Which of the following reactions is not correct according to the law of conservation of mass?
A. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s)$
B. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $P_{4}(s)+5 O_{2}(g) \rightarrow P_{4} O_{10}(g)$
D. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

Answer: B

- Watch Video Solution

15. Which of the following statements indicates that law of multiple proportion is being followed?
A. Sample of carbon dioxide taken from any source will always have
carbon and oxygen in the ratio 1:2
B. Carbon forms two oxides namely COa and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1
C. When magnesium bums in oxygen, the amount of magnesium taken for the reaction is equal to the amount of magnesium in magnesium oxide formed.
D. At constant temperature and pressure 200 mL of hydrogen will combine with 100 mL oxygen to produce 200 mL of water vapour

Answer: B

- Watch Video Solution

16. One mole of oxygen gas at STP is equal to \qquad
A. 6.022×10^{23} molecules of oxygen
B. 6.022×10^{23} atoms of oxygen
C. 16 g of oxygen
D. 32 g of oxygen

Answer: A::D

- Watch Video Solution

17. Sulphuric acid reacts with sodium hydroxide as follows
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
when 1L of 0.1M sulphuric acid solution is allowed to react with 1 L of
0.1M sodium hydroxide solution, the amount of sodium solphate formed and its molarity in the solution obtained is
A. $0.1 \mathrm{~mol} L^{-1}$
B. 7.10 g
C. $0.025 \mathrm{~mol} L^{-1}$
D. 3.55 g

Answer: B::C

- Watch Video Solution

18. Which of the following pairs have the same number of atoms ?
A. 16 g of $\mathrm{O}_{2}(\mathrm{~g})$ and 4 g of $\mathrm{H}_{2}(\mathrm{~g})$
B. 16 g of O_{2} and 44 g of CO_{2}
C. 28 g of N_{2} and 32 g of O_{2}
D. 12 f of $\mathrm{C}(\mathrm{s})$ and 23 g of $\mathrm{Na}(\mathrm{s})$

Answer: C::D

- Watch Video Solution

19. Which of the following solutions have the same concentration?
A. 20 g of NaOH in 200 mL of solution
B. 0.5 mol of KC 1 in 200 mL of solution
C. 40 g of NaOH in 100 mL of solution
D. 20 g of KOH in 200 mL of solution

Answer: A::B

20. 16 g of oxygen have same number of molecules as in :
A. 16 g of CO
B. 28 of N_{2}
C. 14 g of N_{2}
D. 2.0 g of H_{2}

Answer: C

- Watch Video Solution

21. Which of the following terms are unitless ?
A. Molality
B. Molarity
C. mole fraction
D. mass percentage

Answer: C::D

- Watch Video Solution

22. One of the statements of Dalton's atomic theory is given below
"Compound are formed when atoms of different element combine in a fixed ratio "

Which of the following laws is not related to this statement?
A. Law of conservation of mass
B. Law of definite proportions
C. Law of multiple proportions
D. Avogadro law

Answer: A::D

Ncert File Ncert Exemplar Problems Short Answer Questions

1. What will be the mass of one $\cdot{ }^{12} C$ atom in g ?

- Watch Video Solution

2. How many significant figures should be present in the answer of the following calculations?
$2.5 \times 1.25 \times 3.5$
2.01

- Watch Video Solution

3. What is the symbol for SI unit of mole? How is the mole defined?
4. Differentiate between molarity and molality of a solution .How can we change molality value of solution in to molarity value?

- Watch Video Solution

5. Calculate the mass per cent of calcium, phosphorus and oxygen in calcium phosphate $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

- Watch Video Solution

6. 45.4 L of dinitrogen reacted with 22.7 L of dioxygen and 45.4 L of nitrous oxide was formed the reaction is given below
$2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(g)$
Which law is being obeyed in this experiment? Write the statement of the law?
7. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in whole number ratio.
(a) Is this statement true?
(b) It yes, according to which law?
(c) Give one example related to this law.

- Watch Video Solution

8. Calculate the average atomic mass of hydrogen using the following data :

Isotope \% Natural abudance mass Atomic mass(amu)

.${ }^{1} \mathrm{H}$	99.985	1
.${ }^{2} \mathrm{H}$	0.015	2

- Watch Video Solution

9. Hydrogen gas is prepared in the laboratory by reacting dilute HCl with granulated zinc, Following reaction takes place

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Calculate the voluem of hydrogen gas liberated at STP when 32.65 g of zinc reacts with HCl .1 mol of a gas occupies 22.7 L volume at STP, atomic mass of $\mathrm{Zn}=65.3 \mathrm{u}$

- Watch Video Solution

10. The density of 3 molal solution of NaOH is $1.110 \mathrm{~g} m L^{-1}$. Calculate the molarity of the solution.

- Watch Video Solution

11. Volume of a solution chagnes with chagne in temperature, then what will the molality of the solution be affected by temperature? Give reason for your answer.
12. If 4 g of NaOH dissovles in 36 g of $\mathrm{H}_{2} \mathrm{O}$, calculate the mole fraction of each component in the solution. (specific gravity of solution is $\left.1 g m L^{-1}\right)$.

- Watch Video Solution

13. The reactant which is entirely consumed in reaction is known as limiting reagent. In the reaction $2 A+4 B \rightarrow 3 C+4 D$, when 5 moles of A react with 6 moles of B, then
(a) which is the limiting reagent?
(b) calculate the amount of C formed?

- Watch Video Solution

Questions

1. Assertion (A) : The empirical mass of ethene is half of its molecular mass

Reason (R) : The empirical formula represents the simplest whole number ratio of various atoms present in a compound.
A. Both A and R are true and R is the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true
D. Both A and R are false

Answer: A

- Watch Video Solution

2. Assertion(A) One atomic mass unit is defined as one twelth of the mass of one carbon-12 atom.

Reason(R) Carbon-12 isotope is the most abundant isotope of carbon and has been chosen as standard.
A. Both A and R are true and R is the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true
D. Both A and R are false

Answer: B

- Watch Video Solution

3. Assertion(A) Significant figures for 0.200 is 3 where as for 200 it is 1 . Reason(R) Zero at the end or right of a number are significatn provided they are not on the right side of the decimal point.
A. Both A and R are true and R is the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true
D. Both A and R are false

Answer: C

- Watch Video Solution

4. Assertion (A) : Combustion of 16 g of methane gives 18 g of water Reason (R) : In the combustion of methane, water is one of the products.
A. Both A and R are true and R is the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true
D. Both A and R are false

Answer: C

- Watch Video Solution

Ncert File Ncert Exemplar Problems Long Answer Questions

1. A vessel contains 1.6 g of dioxygen at $\operatorname{STP}(273.15 \mathrm{k}$,1atm pressure). The gas is now trasnferred to another vessel at constnat temperature.

Whre pressure becomes half of the original pressure. Calculate
(a) Volume of the new vessel.
(b) number of molecuels of dioxygen.

- Watch Video Solution

2. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction given below
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

What mass of CaCl_{2} will be formed when 250 mL of 0.76 M HCl reac ts with 1000 g of CaCO_{3} ? Name the limiting reagent. Calculate the number of moles of CaCl_{2} formed in the reaction.

- Watch Video Solution

3. Define the law of multiple proportions, Explain it with two examples.

How des this law point to the existence of atoms?

- Watch Video Solution

4. A b ox contains some identical red coloured balls. Labelleda as A, each weighing 2 g . Another box contains identicla blue coloured balls.

Labelled as B , each weighing 5 g . Consider combination $\mathrm{AB}, A B_{2}, A_{2} B$ and $A_{2} B_{3}$ and show that law of multiple proportions is applicable.

- Watch Video Solution

1. Glucose (dextrose) solutions are given intravenously to patients combined with other drugs. Different concentrations of glucose are used for different purposes. A 5% (w/w) glucose solution is commonly used. The density of this solution is $1.02 \mathrm{~g} m L^{-1}$.

What is the molality of the solution?

- Watch Video Solution

2. Glucose (dextrose) solutions are given intravenously to patients combined with other drugs. Different concentrations of glucose are used for different purposes. A $5 \%(w / w)$ glucose solution is commonly used. The density of this solution is $1.02 \mathrm{~g} m L^{-1}$.

What is the molarity of the solution?
3. Glucose (dextrose) solutions are given intravenously to patients combined with other drugs. Different concentrations of glucose are used for different purposes. A 5% (w/w) glucose solution is commonly used. The density of this solution is $1.02 \mathrm{~g} m L^{-1}$.

What is the mole fraction of glucose in the solution?

- Watch Video Solution

4. Glucose (dextrose) solutions are given intravenously to patients combined with other drugs. Different concentrations of glucose are used for different purposes. A 5% (w/w) glucose solution is commonly used. The density of this solution is $1.02 \mathrm{~g} m L^{-1}$.

How many molecules of glucose are present in 250 mL of the solution?

- Watch Video Solution

5. Glucose (dextrose) solutions are given intravenously to patients combined with other drugs. Different concentrations of glucose are used for different purposes. A $5 \%(w / w)$ glucose solution is commonly used. The density of this solution is $1.02 \mathrm{~g} m L^{-1}$.

How much glucose is needed to prepare 500 mL of 0.05 M solution?

- Watch Video Solution

6. Lithium oxide is used to remove water from air according to the following reaction:

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{LiOH}(s)
$$

90 kg of water is to be removed and 45 kg of $L i_{2} \mathrm{O}$ is available.
Which reactant is the limiting reactant?

- Watch Video Solution

7. Lithium oxide is used to remove water from air according to the following reaction:
$\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{LiOH}(s)$
90 kg of water is to be removed and 45 kg of $\mathrm{Li}_{2} \mathrm{O}$ is available.
Calculate the maximum amount of water that will be removed.

- Watch Video Solution

8. Lithium oxide is used to remove water from air according to the following reaction:
$\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{LiOH}(s)$
90 kg of water is to be removed and 45 kg of $L i_{2} \mathrm{O}$ is available.
How much excess reactant (in kg) left?

- Watch Video Solution

9. Lithium oxide is used to remove water from air according to the following reaction:
$\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{LiOH}(s)$
90 kg of water is to be removed and 45 kg of $L i_{2} \mathrm{O}$ is available.
How many moles of Li2O are needed to completely remove 50 kg of water?

- Watch Video Solution

10. Lithium oxide is used to remove water from air according to the following reaction:

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{LiOH}(s)
$$

90 kg of water is to be removed and 45 kg of $\mathrm{Li}_{2} \mathrm{O}$ is available.
Define limiting reactant.

- Watch Video Solution

1. Properties of a compound are average of the properties of its constituent atoms.

- Watch Video Solution

2. There is no difference in writing mass of an object as 7.00 g or 7.0 g

D Watch Video Solution

3. The number of ozone molecules present in 1 mole of ozone are

- Watch Video Solution

4. Write the differences between mass and weight of an object.
5. A balanced chemical equation is in accordance with

- Watch Video Solution

6. Homogeneous mixtures have sharp melting and boiling points.

- Watch Video Solution

7. The figure 0.02450 has 4 significant figures.

- Watch Video Solution

8. There is no difference between 0.005 or $5.00 \times 10^{-3} \mathrm{~g}$.
9. The empirical and molecular formula of sucrose is same

- Watch Video Solution

10. 0.5 mole of S_{8} and 0.5 mol of P_{4} have same number of polyatomic molecules

- View Text Solution

11. Molarity of a solution changes with temperature but molality does not.

- Watch Video Solution

12. The empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$.
13. 1 gram atom of C and 1 gram atom of sulphur have same mass.

- Watch Video Solution

14. When 3.0 g of H_{2} react with 29.0 g of O_{2} to form water, O_{2} is the limiting reactant. statement is true or false

- Watch Video Solution

15. Nitrogen and oxygen combine to form $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}$ and NO_{2}. This is in accordance with law of reciprocal proportions.

- Watch Video Solution

Revision Exercises Objective Very Short Answer Questions Fill In The Blanks Questions

1. $A Z T$ (azidothymindine) is used for helpingvictims.

- Watch Video Solution

2. The prefix pico stands for

- Watch Video Solution

3. Name the quantity whose one of the units is pascal (Pa)

- Watch Video Solution

4. The number of significant figures in 0.00030 is
5. Decimal equivalent of $2 / 3$ is \qquad upto three significant figures.

- Watch Video Solution

6. The empirical formula of hydrogen peroxide is

- Watch Video Solution

7. The law which does not follow from Dalton's atomic theory is

- Watch Video Solution

8. The mass of a molecule of carbon-14 dioxide $\left({ }^{14} \mathrm{CO}_{2}\right)$ is g .

Watch Video Solution

9. An atom of sulphur is __ times heavier than an atom of carbon.

- Watch Video Solution

10. The ratio of atoms of hydrogen in 1 mole of methane and 1 mole of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is

- Watch Video Solution

11. \qquad mol of N_{2} are needed to produce 3.8 mol of NH_{3} by reaction with hydrogen.

- Watch Video Solution

12. If mole fraction of sodium chloride in sodium chloride aqueous solution is 0.35 , then mole fraction of water in the solution is
13. The molarity of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is \qquad
14. Amount of glucose ($\mathrm{C}_{6} \mathrm{H}_{22} \mathrm{O}_{6}$) required to prepare 100 mL of 0.1 M solution is:

D Watch Video Solution

15. The empirical formula of benzene is: \qquad
16. Assertion : 22 carat gold is a compound.

Reasons : A compound has fixed composition of the elements present in it.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: D

- Watch Video Solution

2. Assertion : Both 32 g of SO_{2} and 8 g of CH_{4} have same number of molecules

Reason : Equal moles of substances have equal number of molecules.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but remain is correct statement.

Answer: A

- Watch Video Solution

3. Assertion: The standard unit for expressing the mass of atoms is a.m.u.

Reason: a.m.u. stands for mass of 1 atom of carbon.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

4. Assertion: The sum of $154.2+6.1+23$ is 183

Reason: The result of addition is reported to the same number of decimal places as that of the term with least number of decimal places.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

5. Assertion: 1 mol of O and 1 mol of O_{2} contain equal number of particles.

Reason: 1 mol of molecules is always double than 1 mol of atoms in all diatomic molecules.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

6. Assertion: Graphite is an element.

Reason: Element is the pure form of a substance containing same kind of atoms.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

7. Assertion: Steam is a mixture.

Reason: In a compound, the composition of the elements must be fixed.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: D

- Watch Video Solution

8. Assertion: Empirical and molecular formula of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is same. Reason: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ does not form hydrate.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

9. Assertion(A) The empirical mass of ethene is half of its molecular mass.

Reason(R) The empirical formula represents the simplest whole number ratio of various atoms present in a compound.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but remain is correct statement.
10. Assertion: Pure water obtained from different sources always contains hydrogen and oxygen in the ratio of $1: 8$ by mass.

Reason: Molecular mass of water is 18.
A. Assertion and reason both are correct statements and reason is correct explanation for assertion.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statements but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: B

- Watch Video Solution

1. Define Avogadro's law

- Watch Video Solution

2. What is meant by a.m.u.?

-
 Watch Video Solution

3. Define significant figures.

D Watch Video Solution

4. What is a mole ?
5. Define precision

- Watch Video Solution

6. State the law of define proportion.

- Watch Video Solution

7. Define atomic mass of an element in terms of mole concept.

- Watch Video Solution

8. Does a balanced chemical equation obey the law of conservation of mass?
9. Define the term 'molarity of a solution'.

- Watch Video Solution

10. Express decimal equivalent of $2 / 7$ to three significant figures

- Watch Video Solution

11. Is the molar volume of NH_{3} different from that of CO_{2} ?

- Watch Video Solution

12. Name a monoatomic gas. What is its valency ?
13. Limiting Reagent

- Watch Video Solution

14. Write 0.000623 cm in a scientific notation.

- Watch Video Solution

15. Define the law of multiple proportions, Explain it with two examples. How des this law point to the existence of atoms?

- Watch Video Solution

16. What is gram molecular mass ? Give one example.
17. Give one example each of a molecule in which the empirical and molecular formulae are (a) same (b) different.

- Watch Video Solution

18. Define mole.

- Watch Video Solution

19. Balance the equation :
$\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{3} \mathrm{BO}_{3} \rightarrow \mathrm{CaSO}_{4}+\mathrm{BF}_{3}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

20. How many atoms of carbon are present in 0.1 mole of $C_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
21. How many hydrogen atoms are present in 60 a.m.u. of ethane?

- Watch Video Solution

22. What is meant by one gram of atom of iron ?

- Watch Video Solution

23. What is the S.I. unit of density ?

- Watch Video Solution

24. Name the law which deals with the ratios of the volumes of the gaseous reactants and products.
25. Name the element which is used as a reference for the atomic masses of the elements.

- Watch Video Solution

26. An atom of an element is 13 times heavier than the mass of a carbon atom. What is its mass in a.m.u. ?

- Watch Video Solution

27. What is the standard for the molecular weights of molecules?

- Watch Video Solution

28. What is the ratio of molar volumes of SO_{2} and SO_{3} ?
29. State law of reciprocal proportions.

- Watch Video Solution

30. What volume will 250 g of mercury occupy ? (Density of mercury
$=13.6 \mathrm{~g} \mathrm{~cm}^{-3}$)

D Watch Video Solution

Revision Exercises Short Answer Questions Carrying 2 Or 3 Marks

1. What do you understand by the terms element, compound and mixture ? Give two examples in each case
2. Explain the term mole. What does one mole of ammonia represent ?

- Watch Video Solution

3. Give the SI units for (i) volume (ii) speed and (iii) force.

- Watch Video Solution

4. What do you understand by the terms (i) empirical formula and (ii) molecular formula ? How are they related to each other ? Illustrate with an example.

D Watch Video Solution

5. Define molarity. What does 1 M solution of sodium carbonate mean
6. Classify the following into elements, compounds or mixtures :
(i) Water (ii) milk (iii) tea (iv) iron (v) sugar (vi) smoke (vii) sulphur (viii)

22 carat gold (ix) iodised table salt (x) gasoline.

(Watch Video Solution

7. What are homogeneous and heterogeneous mixtures ? Which of the following are homogeneous ?
(a) tap water (b) wood (c) soil (d) smoke (e) cloud.

- Watch Video Solution

8. When two substances A and B are mixed together in a pestel and mortar, a large amount of heat is evolved and a new substance C is
formed. C has the properties different from A and B. Is C an element, compound or a mixture?

D Watch Video Solution

9. State the following :
(i) atomic mass (ii) gram atomic mass (iii) gram molar volume.

- Watch Video Solution

10. How would you recover
(i) iodine from a mixture of iodine and salt?
(ii) sulphur from a mixture of carbon and sulphur?

- Watch Video Solution

11. State Avogadro's hypothesis. In what way, has it given support to Dalton atomic theory?

- Watch Video Solution

12. How can you deduce the atomicity of hydrogen with the help of Avogadro's hypothesis ?

- Watch Video Solution

13. State the following laws of chemical combination and give one example in each case
(i) Law of constant composition.
(ii) Law of multiple proportions.
14. What do you understand by a balanced chemical equation? What quantitative information does a balanced chemical equation convey ?

- Watch Video Solution

15. Explain (i) molarity (ii) limiting reagent.

- Watch Video Solution

16. Write the balanced chemical equations for the following reactions :
(i) Manganese dioxide and concentrated hydrochloric acid.
(ii) Sodium thiosulphate and iodine.
(iii) Copper and dilute nitric acid.
(iv) Sulphur dioxide and hydrogen sulphide.

- Watch Video Solution

17. Write the empirical formulae of the compounds having the following molecular formulae :
(i) $C_{6} H_{6}$
(ii) $C_{6} H_{12}$
(iii) $\mathrm{H}_{2} \mathrm{O}_{2}$
(iv) $\mathrm{H}_{2} \mathrm{O}$
(v) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(vi) $B_{2} H_{6}$
(vii) $\mathrm{N}_{2} \mathrm{O}_{4}$

D Watch Video Solution

18. Balance the following equations:
(i) $\mathrm{H}_{3} \mathrm{PO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$
(ii) $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(iii) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{2}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
19. What do you understand by the term formula mass ? How does it differ from molecular mass ?

(D) Watch Video Solution

20. Which of the following has (i) maximum (ii) minimum mass ?
(a) 1 gram atom of C
(b) 1 a.m.u. of an atom
(c) 1 gram mole of sulphur dioxide
(d) 6.02×10^{20} atoms of nitrogen.

- Watch Video Solution

Revision Exercises Long Answer Questions Carrying 5 Marks

1. State the law of conservation of mass. How is it verified experimentally ?

Watch Video Solution

2. What are laws of chemical combinations ? Discuss any three laws in detail.

- Watch Video Solution

3. Why is it necessary to balance a chemical equation ? Outline briefly the various steps for balancing a chemical equation by hit and trial method.

Watch Video Solution

4. Write short notes on
(i) Limiting reagent (ii) Avogadro hypothesis (iii) Dalton's atomic theory.

D Watch Video Solution

5. How is mole related to
(i) mass, (ii) volume and (iii) number of molecules of a substance?

- Watch Video Solution

6. Complete the following:
(a) 2 moles
(b)g,g,g,2g.
(c) $\underset{\text { atoms }}{\ldots}, \ldots \underset{\text { atoms }}{\ldots} H, 6 \underset{\text { atoms }}{10^{23}} H, \ldots \underset{\text { atoms }}{\ldots} H$
(d) $\begin{array}{lllll}6 \times 10^{20} & \ldots . \text {.total } & \ldots & \text { total } & \ldots . . . \text { total } \\ \text { total } & \text { atoms }\end{array}$
7. What are the main postulates of Dalton's atomic theory ? What were its limitations ? How has the theory been modified?

Watch Video Solution

8. Define Avogadro number and mole. What is their importance ?

(D) Watch Video Solution

9. What are the essentials of a chemical equation ? What is the information conveyed by a chemical equation ?
10. Explain the following :
(a) Gay Lussac law
(b) Law of definite composition
(c) Empirical and molecular formula
(d) Relation between mole and volume of gases
(e) Limiting reagent.

D Watch Video Solution

Revision Exercises Numerical Problems

1. State the number of significant figures in each of the following :
A. 0.0037
B. 0.00601
C. 1.0001
D. 0.00236

Answer: A::B::C::D

D Watch Video Solution

2. Express the following numbers to three significant figures :
A. 6.0263
B. 2.362
C. sixty thousand
D. 2.861×10^{5}

Answer:

- Watch Video Solution

3. Express the result of the following calculations to appropriate number of significant figures :
A. $\frac{7.5 \times 206.8}{0.0512 \times 1002}$
B. $4.20+1.6523+0.015$
C. (1.0042-0.0034)(1.23)
D. $\frac{8.5 \times 208.9}{0.054 \times 9261.6}$

Answer: A

- Watch Video Solution

4. Carbon and oxygen are known to form two compounds. The carbon content in one of these is 42.9% while in the other it is 27.3%. Show that this data is in agreement with the law of multiple proportions.

(D) Watch Video Solution

5. Calcualte the amount in grams of:
(i) 2.5 gram atoms of nitrogen
(ii) 3.6 gram mole of carbon dioxide.

- Watch Video Solution

6. Calculate (i) number of molecules present in $2.24 \mathrm{dm}^{3}$ of carbon dioxide at N.T.P.
(ii) mass of an atom of oxygen
(iii) number of oxygen atoms in 2 mol of ozone
(iv) volume occupied by 4.4 g of SO_{2} at N.T.P.

- Watch Video Solution

7. One atom of nickel weighs $9.75 \times 10^{-23} \mathrm{~g}$. Calculate the atomic mass of nickel

- Watch Video Solution

8. How many molecules are present in 1 kg of hydrogen ?

- Watch Video Solution

9. Calculate the total charge of a mole of electrons if the electrical charge on a single electron is $1.60 \times 10^{-19} \mathrm{C}$.

- Watch Video Solution

10. The volume of a drop of rain was found to be 0.448 ml at N.T.P. How many molecules of water and number of atoms of hydrogen are present in this drop ?

- Watch Video Solution

11. Assuming the atomic mass of a metal M to be 56 , calculate the empirical formula of its oxide containing $70.0 \% \mathrm{M}$.

- Watch Video Solution

12. Calculate the number of molecules of oxygen in 150 ml of it at 20°

C and 750 mm pressure

- Watch Video Solution

13. How many moles of hydrogen, phosphorus and oxygen are there in 0.4 moles of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$?

- Watch Video Solution

14. Calculate the molarity of KOH in solution prepared by dissolving $5.6 g$ in enough water to form 250 mL of the solution.

- Watch Video Solution

15. A chemist wishes to prepare 6.022×10^{24} molecules of SO_{2} according to the reaction :
$S+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$

How many gram atoms of S and how many grams of O does he need ?

- Watch Video Solution

16. A sample of iron has a mass of 1.68 g . Calculate (a) the number of moles of iron present, (6) the number of atoms of iron in the sample

- Watch Video Solution

17. 2.5 g of an impure sample of sodium bicarbonate when heated strongly gave 300 ml of carbon dioxide measured at $27^{\circ} \mathrm{C}$ and 760 mm pressure. Calculate the percentage purity of the sample

- Watch Video Solution

18. Which is cheaper
$40 \% \mathrm{HCl}$ at the rate of 6 per kg or $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at the rate of 3.5 per kg required to neutralise 7 kg of KOH .

- Watch Video Solution

19. The compound adrenaline is released in the human body in times of stress. It was found by experiment to have the composition 56.8% C, $6.50 \% \mathrm{H}, 28.4 \% \mathrm{O}$ and $8.28 \% \mathrm{~N}$. What is the empirical formula of adrenaline?
20. What volume of concentrated aqueous sulphuric acid which is $98.0 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.84 \mathrm{~g} m L^{-1}$ is required to prepare 10.0 L of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution ?

(D) Watch Video Solution

Higher Order Thinking Skills Advanced Level Questions With Answers

1. In the combustion of methane, why is methane regarded as the limiting reactant?

- Watch Video Solution

2. What is kg -mole ? How many electrons are present in 1 kg mole of methane $\left(\mathrm{CH}_{4}\right)$?
3. Which aqueous solution has higher concentration:1 molar or 1 molal solution of the same solute?

D Watch Video Solution

4. Will the molarity of a solution at $50^{\circ} \mathrm{C}$ be same, less or more than molarity at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

5. Is the law of constant composition true for all types of compounds?

Explain why or why not.

(Watch Video Solution

6. When and why is molality preferred over molarity in handling solution in Chemistry?

- Watch Video Solution

7. What is the difference in expressing a weight of a solid as $36.5 \times 10^{3} \mathrm{~g}$ and $36.50 \times 10^{3} \mathrm{~g}$?

- Watch Video Solution

8. How many significant figures are there in V ?

- View Text Solution

9. In calculations involving more than one arithmetic operation, rounding off to the proper number of significant figures may be done
once at the end if all the operations are multiplication and/ or division or if they are all additions and/or subtractions but not if they are combinations of additions or subtractions with multiplications or divisions. Explain

- Watch Video Solution

10. Calculate the molarity of water if its density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

- Watch Video Solution

11. Sulphuric acid is generally available in market as 18.0 M solution.

How would you prepare 250 mL of 0.50 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

12. A compound (molecular mass $=246$) has the following data:

From the data find out
(i) atomic masses of the elements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ,
(ii) simple ratio,
(iii) Molecular formula of the compound.

- View Text Solution

13. A compound has the following composition by weight , $N a=18.60 \%, S=25.80 \%, H=4.02 \%$ and $O=51.58 \%$

Assuming that all the hydrogen atoms in the compound are part of water of crystallization, the correct molecular formula of the compound is

- Watch Video Solution

14. The vapour density of mixture consisting of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $26.7^{\circ} \mathrm{C}$. Calculate the number of moles of NO_{2} । 100 g of the mixture.

(D) Watch Video Solution

15. A solid mixture $5 g$ consists of lead nitrate and sodium nitrate was heated below $600^{\circ} \mathrm{C}$ until weight of residue was constant. If the loss in weight is 28% find the amount of lead nitrate and sodium nitrate in mixture.

- Watch Video Solution

16. A sample of hard water contains 20 mg of Ca^{2+} ions per litre. How many milliequivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ would be required to soften 1 litre of sample?
17. Igniting MnO_{2} in air converts it quantitatively to $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite is of the following composition: $\mathrm{MnO}_{2}=80 \%$, SiO_{2} and other inert constituents $=15 \%$, and rest bearing $\mathrm{H}_{2} \mathrm{O}$. The sample is ignited to constant weight. What is the percent of $M n$ in the ignited sample?

- Watch Video Solution

18. The density of gold is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the diameter of a solid gold sphere having a mass of 422 g .

- Watch Video Solution

19. $P_{4} O_{6}$ and $P_{4} O_{10}$ are formed by burning P_{4} with O_{2} as:

$$
\begin{aligned}
& P_{4}+3 O_{2} \rightarrow P_{4} O_{6} \\
& P_{4}+5 O_{2} \rightarrow P_{4} O_{10}
\end{aligned}
$$

What are the masses of $P_{4} O_{6}$ and $P_{4} O_{10}$ that will be produced by the combustion of 2.0 g of P_{4} in 2.0 g of oxygen leaving no P_{4} and O_{2} ?

- Watch Video Solution

Competition File Multiple Choice Questions

1. Which of the following contain highest number of atoms ?
A. 1.0 g of water
B. 1.0 g of silver
C. 1.0 g of nitrogen
D. 1.0 g of propane $\mathrm{C}_{3} \mathrm{H}_{8}$

Answer: D
2. Which of the following has maximum mass ?
A. 1.0 mole of H_{2} gas
B. 0.5 mole of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
C. 1.2 mole of N_{2} at N.T.P.
D. 22.4 L of N_{2} at N.T.P.

Answer: B

- Watch Video Solution

3. How many molecule are present in one $m L$ of water vapour of $S T P$
?
A. 1
B. 1000
C. 2.69×10^{19}
D. 6.02×10^{20}

Answer: C

D Watch Video Solution

4. 2 g of oxygen contains number of atoms equal to that in
A. 0.5 of hydrogen
B. 4 g sulphur
C. 7g nitrogen
D. 2.3 g sodium.

Answer: B

- Watch Video Solution

A. 6.02×10^{23} atoms of H
B. 22.4 litres of N_{2}
C. 6.02×10^{24} molecules of O_{2}
D. 4 g of Na

Answer: A

- Watch Video Solution

6. 0.6 g of carbon was burnt in the air to form CO_{2}. The number of molecules of CO_{2} introduced into the will be : $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

D Watch Video Solution

7. The total number of electrons present in 3.2 g of methane are :
8. The number of atoms in 4.25 g of NH_{3} is approximately

- Watch Video Solution

9. Haemoglobin contains 0.33% of iron by weight. The molecular weight of heamoglobin is approximately 67200 . The number of iron atoms (At. Wt. of $\mathrm{Fe}=56$) present in one molecule of haemoglobin is

- Watch Video Solution

10. How many moles of electrons weigh one kilogram?
(Mass of electron $=9.108 \times 10^{-31} \mathrm{~kg}$, Avogadro's number $=6.023 \times 10^{23}$)
A. 6.022×10^{23}
B. $\frac{1}{9.108} \times 10^{21}$
C. $\frac{6.022}{9.108} \times 10^{24}$
D. $\frac{1}{9.108 \times 6.022} \times 10^{8}$

Answer: D

- Watch Video Solution

11. An alkaloid contains 17.28% of nitrogen and it's molecular mass is
12. The number of nitrogen atoms present in one molecular of alkaloid is
A. five
B. four
C. three
D. two

Answer: D

12. Number of atoms in $558.5 \mathrm{~g} \mathrm{Fe}(a t . w t .55 .85)$ is:
A. twice that in 60 g carbon
B. 6.023×10^{22}
C. half life of 8 g He
D. $558.6 \times 6.023 \times 10^{23}$

Answer: A

- Watch Video Solution

13. The empirical formula of sucrose is :
A. $\mathrm{CH}_{2} \mathrm{O}$
B. CHO
C. $C_{12} H_{22} O_{11}$
D. $\mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

Answer: C

D Watch Video Solution

14. One mole of calcium phosphide on reaction with excess of water gives
A. one mole of phosphate
B. Two moles of phosphoric acid
C. Two moles of phosphine
D. One mole of phosphorus pentoxide

Answer: C

- Watch Video Solution

15. A sample of water contains $\mathrm{x} \%$ of $D_{2} O$. Its molecular weight is 19 .

The value of x^{\prime} ' is
A. 25
B. 50
C. 33.33
D. 75

Answer: B

- Watch Video Solution

16. An organic compound contains, C, H and S. The minimum molecular weight of the compound containing 8% sulphur is :
(atomic weight of $S=32 \mathrm{amu}$)
A. 100
B. 200
C. 350
D. 400

Answer: D

- Watch Video Solution

17. An aqueous solution of 6.3 g of oxalic acid dihydrate is made upto 250 mL . The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is :
A. 40 mL
B. 20 mL
C. 10 mL
D. 5 mL

Answer: A

- Watch Video Solution

18. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $\mathrm{X}+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are
A. $0.01,0.01$
B. $0.02,0.01$
C. 0.01, 0.02
D. $0.02,0.02$

Answer: A

19. In the Haber process, $30 L$ of dhyrgen and $30 L$ of dintrogen were taken for reaction which yielded only 50% of the expectedf product. What will be the xomposition of the gaseous mixturre under the aforesaid condition in the end?
A. $20 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} N_{2}$ and $20 \mathrm{~L} H_{2}$
B. $10 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} \mathrm{~N}_{2}$ and $15 \mathrm{~L} \mathrm{H}_{2}$
C. $20 \mathrm{~L} N H_{3}, 10 \mathrm{~L} N_{2}$ and $30 \mathrm{~L} H_{2}$
D. $20 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} \mathrm{~N}_{2}$ and $15 \mathrm{~L} \mathrm{H}_{2}$

Answer: B

- Watch Video Solution

20. A gas mixture contains 50% helium and 50% methane by volume. What is the percent by weight of methane in the mixture.
A. 0.1997
B. 0.2005
C. 0.5
D. 0.8003

Answer: D

- Watch Video Solution

21. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is
A. 180 kg
B. 270 kg
C. 540 kg
D. 90 kg

Answer: D

Watch Video Solution

22. The crystalline salt $\mathrm{Na}_{2} \mathrm{SO}_{4} . x \mathrm{H}_{2} \mathrm{O}$ on heating loses 55.9% of its weight. The formula of the crystalline salt is
A. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{OI}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Answer: D

23. 20.0 kg of $\mathrm{N}_{2}(\mathrm{~g})$ and 3.0 kg of $H_{2}(g)$ are mixed to produce $\mathrm{NH}_{3}(\mathrm{~g})$. The amount of $\mathrm{NH}_{3}(\mathrm{~g})$ formed is
A. 17 kg
B. 51 kg
C. 60 kg
D. 34 kg

Answer: A

- Watch Video Solution

24. A phosphorus oxide has 43.6% phosphorus (at. mass $=31$). The empirical formula of the compound is
A. $P_{2} O_{5}$
B. $P_{4} O_{6}$
C. $P_{2} O_{3}$
D. $P_{4} O_{8}$

Answer: A

- Watch Video Solution

25. Commercially available concentrated hydrochloric acid contains 38
\% HCl by mass. (i) What is the molarity of the solution if its density is
$1.19 \mathrm{~g} \mathrm{~cm}^{-3}$?
(ii) What volume of concentrated HCl is needed to make 1.0 L of 0.2 M HCl solution ?
A. $10-40 \mathrm{M}$
B. $5-70 \mathrm{M}$
C. 12.38 M
D. 13.46 M

Answer: C

Watch Video Solution
26. The molarity of a solution obtained by mixing 800 mL of 0.5 M HCl with 200 mL of 1 M HCl will be
A. 0.8 M
B. 0.6 M
C. 0.4 M
D. 0.2 M

Answer: B
27. 4 L of water is added to 2 L of 6 M HCl . The molarity of the final
solution is
A. 4 M
B. 2 M
C. 1 M
D. 0.5 M

Answer: B

- Watch Video Solution

28. The volume of 10.50 M solution required to prepare
1.0 L of 0.25 M solution of HNO_{3} is :
A. 250 mL
B. 500 mL
C. 230 mL
D. 23.8 mL

Answer: D

- Watch Video Solution

29. How many moles of sodium chloride present in 250 mL of a 0.50 M NaCl solution ?
A. 0.250 mol
B. 2 mol
C. 0.125 mol
D. 1.0 mol

Answer: C

30. 6 mL of a gaseous hydrocarbon was exploded with excess of oxygen and the product cooled. A contraction of 9 mL was observed. A further contraction of 12 mL was observed on treatment with aqueous KOH . The formula of hydrocarbon is
A. CH_{4}
B. $C_{2} H_{4}$
C. $C_{2} H_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: D

(D) Watch Video Solution

Competition File Multiple Choice Questions From Competitive Examinations Aipmt Neet Other State Board Medical Entrance

1. What volume of oxygen gas $\left(O_{2}\right)$ measured at $0^{\circ} C$ and 1 atm is needed to burn completely $1 L$ of propane gas $\left(C_{3} H_{8}\right)$ measured under the same condition?

(D) Watch Video Solution

2. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?

- Watch Video Solution

3. Volume occupied by one molecule of water (density $=1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$)

- Watch Video Solution

4. Which of the following concentration terms is/are independent of temperature?

- Watch Video Solution

5. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be

- Watch Video Solution

6. The number of molecules in 100 mL of $0.02 \mathrm{NH}_{2} \mathrm{SO}_{4}$ is:

- Watch Video Solution

7. If $1 \frac{1}{2}$ moles of oxygen combine with Al to form $\mathrm{Al}_{2} \mathrm{O}_{3}$ the weight of

Al used in the reaction is ($\mathrm{Al}=27$)
8. For reaction $A+2 B \rightarrow C$. The amount of C formed by starting the reaction with 5 mole of A and 8 mole of B is :
A. 5 moles
B. 8 moles
C. 16 moles
D. 4 moles

Answer: D

Watch Video Solution

9. One kilogram of a sea water sample contains 6 mg of dissolved O_{2}.

The concentration of O_{2} in the sample in ppm is
B. 6
C. 60
D. 16

Answer: B

- Watch Video Solution

10. 25.3 g sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, was dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of $N a^{+}$and carbonate ions are respectively :
A. 0.477 M and 0.477 M
B. 0.955 M and 1.910 M
C. 1.910 M and 0.955 M
D. 1.90 M and 1.910 M

Answer: C

Watch Video Solution

11. The number of atoms in 0.1 mol of a triatomic gas is:
A. 1.800×10^{22}
B. 6.026×10^{22}
C. 1.806×10^{23}
D. 3.600×10^{22}

Answer: C

- Watch Video Solution

12. Which one of the following sets of compounds correctly illustrate the law of reciprocal proportions?
A. $\mathrm{P}_{2} \mathrm{O}_{3} . \mathrm{PH}_{3} . \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{P}_{2} \mathrm{O}_{2}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

13. 20.0 kg of $N_{2}(g)$ and 3.0 kg of $H_{2}(g)$ are mixed to produce
$\mathrm{NH}_{3}(\mathrm{~g})$. The amount of $\mathrm{NH}_{3}(\mathrm{~g})$ formed is
A. 17 kg
B. 34 kg
C. 20 kg
D. 3 kg

Answer: A

- Watch Video Solution

14. What is the volutme of CO_{2} liberted in litres at 1 atmosphere and $0^{\circ} C$ when 10% of 100 pure calcium carbonate is treated with excess dilute sulphuric acid? (at mass of $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16$)
A. 0.224
B. 2.24
C. 22.4
D. 224

Answer: B

- Watch Video Solution

15. Which one of the following is the lightest ?
A. 0.2 mole of hydrogen gas.
B. 6.023×10^{23} molecules of nitrogen.
C. 0.1 mole of oxygen gas.
D. 1 g of water.

Answer: C

- Watch Video Solution

16. When $22.4 L$ of $H_{2}(g)$ is mixed with 11.2 of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at STP, the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to
A. 1 mol of $\mathrm{HCl}(\mathrm{g})$
B. 2 mol of $\mathrm{HCl}(\mathrm{g})$
C. 0.5 mol of $\mathrm{HCl}(\mathrm{g})$
D. 1.5 mol of $\mathrm{HCl}(\mathrm{g})$

Answer: A

- Watch Video Solution

17. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} O_{2}$ in a closed vessel. Which reactant is left in excess and how much?
A. $\mathrm{Mg}, 0.16 \mathrm{~g}$
B. $O_{2}, 0.16 \mathrm{~g}$
C. $\mathrm{Mg}, 0.44 \mathrm{~g}$
D. $O_{2}, 0.28 \mathrm{~g}$

Answer: A

18. The mass of CaCO_{3} required to react completely with 20 mL of 1.0

M HCl as per the reaction:
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ is (At. mass: $\mathrm{Ca}=40, \mathrm{C}=$
$12, \mathrm{O}=16$)
A. 1 g
B. 2 g
C. 10 g
D. 20 g of KOH in 200 mL of solution

Answer: A

- Watch Video Solution

19. Which one of the following has maximum number of molecules ?
A. 16 g of O_{2}
B. 16 g of NO_{2}
C. 4 g of N_{2}
D. 32 g of N_{2}

Answer: D

- Watch Video Solution

20. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(w / w)$. What is the molar ratio of the two gases in the mixture?
A. $16: 1$
B. 2:1
C. 1:4
D. $4: 1$

Answer: D

21. If Avogadro number N_{A} is changed from $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to 6 $.022 \times 10^{23} \mathrm{~mol}^{-1}$, this would change:
A. the ratio of chemical species to each other in a balanced equation.
B. the ratio of elements to each other in a compound.
C. the definition of mass in units of grams
D. the mass of one mole of carbon.

Answer: D

(D) Watch Video Solution

22. The number of water molecules is maximum in
A. 18 gram of water
B. 18 moles of water
C. 18 molecules of water
D. 1.8 gram of water.

Answer: B

- Watch Video Solution

23. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What be the percentage purity of magnsesium carbonate in the sample?
A. 60
B. 84
C. 75
D. 96

Answer: B

Watch Video Solution
24. What is the mole fraction of the solute in a 1.00 m aqueous solution?
A. 0.0354
B. 0.0177
C. 0.177
D. 1.77

Answer: B
25. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of $5.8 \% \mathrm{NaCl}$ solution?
A. 7 g
B. 14 g
C. 28 g of N_{2} and 32 g of O_{2}
D. 3.5 g

Answer: A

- Watch Video Solution

26. Suppose the elements X and Y combine to form two compounds of $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , what are tha atomic masses of X and Y ?
A. 40,30
B. 60,40
C. 20,30
D. 30,20

Answer: A

D Watch Video Solution

27. Which of the following is dependent on temperature?
A. molality
B. molarity
C. mole fraction
D. weight percentage

Answer: B
28. In which case is the number of molecules of water maximum?
A. 18 mL of water
B. 0.18 g of water
C. 0.00224 L of water vapours at 1 atm and 273 K
D. $10^{-3} \mathrm{~mol}$ of water.

Answer: A

- Watch Video Solution

29. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :
A. 40
B. 10
C. 20
D. 30

Answer: D

- Watch Video Solution

Competition File Multiple Choice Questions From Competitive Examinations Jee Main Other State Boards Engineering Entrance

1. If $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one one of a substance will:
A. decrease twice
B. increase two fold
C. remain unchanged
D. be a fraction of molecular mass of the substance.

- Watch Video Solution

2. In the reaction
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}.) \rightarrow 2 \mathrm{Al}^{3+}(a q)+.\mathrm{Cl}^{-}(a q)+.3 \mathrm{H}_{2}(g)$
A.33.6 $\mathrm{L} \mathrm{H}_{2}$ (g) is produced regardless fo temperature and pressure for every mole of Al that reacts.
B. $67.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for every mole of Al that reacts.
C. 11.2 $\mathrm{L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for every mole of $\mathrm{HCl}(\mathrm{aq})$ consumed.
D. $6 \mathrm{~L} \mathrm{HCl}(\mathrm{aq})$ is consumed for every 3 L of $\mathrm{H}_{2}(\mathrm{~g})$ is produced.

Answer: C

3. 80 g of oxygen contains as many atoms as in
A. 10 g of hydrogen
B. 5 g of hydrogen
C. 80 g of hydrogen
D. 1 g of hydrogen

Answer: B

- Watch Video Solution

4. The volume of 10 N and 4 N HCL requied to make 1 L of 7 N HCl are
A. 0.50 L of 10 N HCl and 0.50 L of 4 N HCl
B. 0.60 L of 10 N HCl and 0.40 L of 4 N HCl
C. 0.80 L of 10 N HCl and 0.20 L of 4 N HCl
D. 0.75 L of 10 N HCl and 0.25 L of 4 N HCl

Answer: A

- Watch Video Solution

5. Express of CO_{2} is passed through 50 mL of 0.5 M calcium hydroxide solution. After the completion of the reaction, the solution was evaporated to dryness. The solid calcium carbonated was completely neutralized with 0.1 N hydrochloric acid. The volume of hydrochloric acid required is (At mass of carbon $=40$)
A. $200 \mathrm{~cm}^{3}$
B. $500 \mathrm{~cm}^{3}$
C. $400 \mathrm{~cm}^{3}$
D. $300 \mathrm{~cm}^{3}$

Answer: B

6. How much time (in hours) would it take to distribute one Avogadro number of wheat grains if 10^{20} grains are distributed each second?
A. 0.1673
B. 1.673
C. 16.73
D. 167.3

Answer: B

- Watch Video Solution

7. Two oxides of a metal contain 36.4% and 53.4% of oxygen by mass respectively. If the formula of the first oxide is $\mathrm{M}_{2} \mathrm{O}$, then that of the second is
A. $\mathrm{M}_{2} \mathrm{O}_{2}$
B. MO
C. MO_{2}
D. $\mathrm{M}_{2} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

8. A mixture of ethane and ethene occupies 41 L at atm and 500 K . The mixture reacts compeletly with $10 / 3$ mole of oxygen to produce CO_{2} and water. The mole fraction of ethane and ethene in the mixture are ($\mathrm{R}=0.0821 \mathrm{~L}$ atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively
A. $0.50,0.50$
B. $0.75,0.25$
C. $0.67,0.33$
D. $0.25,0.75$

Answer: C

- Watch Video Solution

9. A mixture of CaCl_{2} and NaCl weighing 4.44 is treated with sodium carbonate solution to precipitate all the Ca^{2+} ions as calcium carbonate. The calcium carbonate so obtained is heated strongly to get 0.56 g of CaO . The percentage of NaCl in the mixture of (atomic mass of $\mathrm{Ca}=40$) is
A. 31.5
B. 75
C. 25
D. 40.2

Answer: B

10. $50 \mathrm{~cm}^{3}$ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued after adding $50 \mathrm{~cm}^{3}$ of NaOH solution. The remaining titration is completed by adding 0.5 N KOH solution. What is the volume of KOH required for completing the titration?
A. $10 \mathrm{~cm}^{3}$
B. $12 \mathrm{~cm}^{3}$
C. $16.2 \mathrm{~cm}^{3}$
D. $21.0 \mathrm{~cm}^{3}$

Answer: A

- Watch Video Solution

11. A 100% pure sample of a divalent metal carbonate weighing 2 g on complete thermal decomposition releases 448 cc of carbon dioxide at STP. The equivalent mass of the metal is
A. 40
B. 20
C. 28
D. 12

Answer: B

12. The total number of electrons present in $18 m L$ of water is
A. 6.02×10^{23} atoms of H
B. 6.02×10^{25}
C. 6.02×10^{24}
D. $6.02 \times 18 \times 10^{23}$

Answer: C

13. The volumes of two HCl solution $\mathrm{A}(0.5 M)$ and $B(0.1 M)$ to be mixed for preparing 2 L of 0.2 M HCl are
A. $0.5 L$ of $A+1.5 L$ of B
B. 1.5 L of $A+0.5 \mathrm{~L}$ of B
C. 1.0 L of $A+1.0 \mathrm{~L}$ of B
D. 0.75 L of $A+125 L$ of B

Answer: A

- Watch Video Solution

14. The number of water molecules present in a drop of water weighing 0.018 g is
A. 6.022×10^{26}
B. 6.022×10^{23}
C. 6.022×10^{19}
D. 6.022×10^{20}

Answer: D

- Watch Video Solution

15. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{MHNO}_{3}$? The concentrated acid is $70 \% \mathrm{HNO}_{3}$:
A. 70.0 g . conc. HNO_{3}
B. 54.0 g of conc. HNO_{3}
C. 45.0 g conc. HNO_{3}
D. 90.0 g conc. HNO_{3}

Answer: C

Watch Video Solution
16. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
A. 0.975 M
B. 0.875 M
C. 1.00 M
D. 1.75 M

Answer: B
17. A gaseous hydrocarbon gives upon combustion, 0.72 g of water and 3.08 g of CO_{2}. The empirical formula of the hydrocarbon is
A. $\mathrm{C}_{7} \mathrm{H}_{8}$
B. $C_{2} H_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{4}$
D. $C_{6} H_{6}$

Answer: A

D Watch Video Solution

18. 10 g of a mixture of BaO and CaO requires $100 \mathrm{~cm}^{3}$ of 2.5 M HCl to react completely. The percentage of calcium oxide in the mixture is approximately (Given molar mass of $\mathrm{BaO}=153, \mathrm{CaO}=56$)
A. 52.6
B. 55.1
C. 44.9
D. 47.4

Answer: A

(Watch Video Solution

19. $25 \mathrm{~cm}^{3}$ of oxalic acid completely neutralised 0.064 g of soldium hydroxied. molarity of the oxalic acid solution is
A. 0.064
B. 0.045
C. 0.015
D. 0.032

Answer: D

20. A 5.82 g silver coin is dissolved in nitric acid. When sodium chloride is added to the solution, all the silver gets precipitated as AgCl . The mass of the precipitated silver chloride is 7.2 g . The percentage of silver in the coin is :
A. 0.603
B. 80%
C. 93.1%
D. 70%

Answer: C

(Watch Video Solution

21. A gases mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. Therefore, the ratio of the number of molecules is:
A. $3: 16$
B. 1: 4
C. 7: 32
D. 1:8

Answer: C

22. The number of Cl^{-}ions in 100 mL of 0.001 M HCl solution is
A. 6.022×10^{23}
B. 6.022×10^{23}
C. 6.022×10^{19}
D. 6.022×10^{24}

Answer: C

- Watch Video Solution

23. 0.30 g of an organic compound containing C, H, and O an combustion yields $0.44 g$ of CO_{2} and 0.18 g of $\mathrm{H}_{2} \mathrm{O}$. If its molecular mass is 60μ the molecular mass is formula will be
A. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
C. $\mathrm{CH}_{2} \mathrm{O}$
D. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$

Answer: B
24. If 27 g of water is formed during complete combustion of pure propene $\left(C_{3} H_{8}\right)$, the mass of propene burnt is
A. 42 g
B. 21 g
C. 14 g of N_{2}
D. 56 g

Answer: B

D Watch Video Solution

25. When 2.46 of hydrated salt $\left(\mathrm{MSO}_{4} x \mathrm{H}_{2} \mathrm{O}\right)$ is completely dehydrated, 1.20 g of anhydrous salt is obtained. It molecular weight of anhydrous salt is $120 \mathrm{gmol}^{-1}$, the value of x is
A. 2
B. 4
C. 5
D. 7

Answer: D

- Watch Video Solution

26. Calculate the molality of a solution that contains 51.2 g of naphthalene, $\left(C_{10} H_{8}\right)$ in 500 mL of carbon tetrachloride. The density of $C C l_{4}$ is $1.60 \mathrm{~g} / \mathrm{m}$
A. 0.250 m
B. 0.500 m
C. 0.750 m
D. 0.840 m

Answer: B

Watch Video Solution
27. An organic compound contains $C=40 \%, H=13.33 \%$, and
$N=46.67 \%$. Its empirical formula will be
A. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}$
B. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
C. $\mathrm{CH}_{4} \mathrm{~N}$
D. CHN

Answer: C

28. At 300 K and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires $375 m L$ air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion. After combustion, the gases occupy 330 mL . Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is
A. $C_{3} H_{6}$
B. $C_{3} H_{6}$
C. $\mathrm{C}_{4} \mathrm{H}_{8}$
D. $C_{4} H_{10}$

Answer: B

- Watch Video Solution

29. You are given 500 mL of 2 N HCl and 500 mL of 5 N HCl . What will be the maximum volume of 3 M HCl that you can make from these two

solutions?

A. 250 mL
B. 500 mL
C. 750 mL
D. 1000 mL

Answer: C

- Watch Video Solution

30. In a flask, the weight ratio of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{SO}_{2}(\mathrm{~g})$ at 298 K and 1 bar is $1: 2$. The ratio of the number of molecules of $S O_{2}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ is
A. 1: 4
B. 4:1
C. 1:2
D. 2:1

Answer: C

Watch Video Solution

31. What will be the normality of the salt solution obtained by neutralizing $x \mathrm{~mL}$ of $\mathrm{y}(\mathrm{N}) \mathrm{HCl}$ with y mL of $\mathrm{x}(\mathrm{N}) \mathrm{NaOH}$ and finally adding $(\mathrm{x}+\mathrm{y}) \mathrm{mL}$ distilled water ?
A. $\frac{2(x+y)}{x y} N$
B. $\frac{x y}{2(x+y)} N$
C. $\frac{2 x y}{x+y} N$
D. $\left(\frac{x+y}{x y}\right) N$

Answer: B

- Watch Video Solution

32. If $3 \cdot 01 \times 10^{20}$ molecules are removed from 98 mg of $\mathrm{H}_{2} \mathrm{SO}_{4}$, then the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ left are
A. $0.5 \times 10^{-3} \mathrm{~mol}$
B. $0.1 \times 10^{-3} \mathrm{~mol}$
C. $9.95 \times 10^{-2} \mathrm{~mol}$
D. $1.66 \times 10^{-3} \mathrm{~mol}$

Answer: A

- Watch Video Solution

33. 10 g of MgCO_{3} decomposes on heating to 0.1 mole CO_{2} and 4 g

MgO . The percent purity of MgCO_{3} is (Given that atomic weights of Mg, C and O are 24,12 and 16 u)
A. 24%
B. 44%
C. 54%
D. 84%

Answer: D

Watch Video Solution

34. The compound $\mathrm{Na}_{2} \mathrm{CO}_{3}$. $x \mathrm{H}_{2} \mathrm{O}$ has $50 \% \mathrm{H}_{2} \mathrm{O}$ by mass. The value of ' x ' is
A. 4
B. 5
C. 6
D. 7

Answer: C

35. $1 g$ of a carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on treatment with excess HCl produces 0.01186 mole of CO_{2}. The molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in gmol^{-1} is
A. 1186
B. 84.3
C. 118.6
D. 11.86

Answer: B

- Watch Video Solution

36. Calculate the molarity of a solution of 30 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution? Consider atomic mass of $\mathrm{Co}=59 \mathrm{u}, \mathrm{N}-14 \mathrm{u}, \mathrm{O}=16 \mathrm{u}, \mathrm{H}$
$=l u$.
A. 0.023 M
B. 0.23 M
C. 0.046 M
D. 0.46 M

Answer: A

- Watch Video Solution

37. How many moles of electrons weigh one kilogram?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{21}$
c. $\frac{6.023}{6.018} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

D Watch Video Solution

38. A metal M (specific heat 0.16) forms a metal chloride with a 65% chlorine present in it. The formula of the metal chloride will be
A. MCl
B. $M C l_{2}$
C. $M C l_{3}$
D. $M C l_{4}$

Answer: B

- Watch Video Solution

39. 1.0 g of Mg is burnt with 0.28 g of O_{2} in a closed vessel. Which reactant is left in excess and how much ?
A. $\mathrm{Mg}, 5.8 \mathrm{~g}$
B. $\mathrm{Mg}, 0.58 \mathrm{~g}$
C. $O_{2}, 0.24 \mathrm{~g}$
D. $O_{2}, 2.4 \mathrm{~g}$

Answer: B

- Watch Video Solution

40.1 mole of FeSO_{4} (atomic weight of Fe is $55.84 \mathrm{gmol}^{-1}$) is oxidized to $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Calculate the equivalent weight of ferrous ion.
A. 55.84
B. 27.92
C. 18.61
D. 111.68

Answer: A

- Watch Video Solution

41. The ration of mass per cent of C and H of an organic compound $\left(C_{x} H_{y} O_{z}\right)$ is6:1. If one molecule of the above compound $\left(C_{x} H_{Y} O_{z}\right)$ contains half as much oxygen as required to burn one molecule of compound $\mathrm{C}_{x} \mathrm{H}_{Y}$ compleltely to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The empirial formula of compound $C_{x} H_{y} O_{z}$ is:
A. $C_{3} H_{6} O_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$

Answer: D

Watch Video Solution
42. 8 g of NaOH is dissolved in 18 g of $\mathrm{H}_{2} \mathrm{O}$. Mole fraction of NaOH in solution and molality (in $\mathrm{mol}_{\mathrm{kg}}{ }^{-1}$) of the solutions respectively are:
A. $0.167,11.11$
B. $0.2,22.20$
C. 0.2, 11.11
D. $0.167,22.20$

Answer: A

43. The amount of sugar $\left(C_{12} H_{22} O_{11}\right)$ required to prepare 22 L of its

0.1 M aqueous solution is:

A. 768.4 g
B. 117.1 g
C. 752.4 g
D. 136.8 g

Answer: C

- Watch Video Solution

44. A solution of sodium sulfate contains 92 g of Na^{+}ions per kilogram of water. The molality of Na^{+}ions in the solution in mol $k g^{-1}$ is
A. 16
B. 8
C. 4
D. 12

Answer: C

- Watch Video Solution

45. The combining ratios of hydrogen and oxygen in water and hydrogen peroxide are 1:8 and 1:16. Which law is illustrated in this example?
A. Law of definite proportions
B. law of multiple proportions
C. law of conservation of mass
D. Gay Lussac's law of combining volume of gases.

Answer: C

D Watch Video Solution

46. The combining ratios of hydrogen and oxygen in water and hydrogen peroxide are 1:8 and 1:16. Which law is illustrated in this example?
A. Law of definite proportions
B. Law of multiple proportions
C. Law of conservation of mass
D. Gay Lussac's law of combining volumes of gases.

Answer: B

- Watch Video Solution

47. The mass of AgCl precipitated when a solution containing 11.70 g of NaCl is added to a solution containing 3.4 g of AgNO_{3} is [Atomic mass of $\mathrm{Ag}=108$, Atomic mass of $\mathrm{Na}=23$]
A. 5.74 g
B. 1.17 g
C. 2.87 g
D. 6.8 g

Answer: A

- Watch Video Solution

48. A solution of methanol in water is 20% by volume. If the solution and pure methanol have densities of 0.964 kg and $0.793 \mathrm{~kg} L^{-1}$ respectively, find the per cent of methanol by weight?
A. 15.8
B. 16.45
C. 17.6
D. 14.8

Answer: B

- Watch Video Solution

49. 8 g of NaOH is dissolved in 18 g of $\mathrm{H}_{2} \mathrm{O}$. Mole fraction of NaOH in solution and molality (in $\mathrm{mol} \mathrm{kg}^{-1}$) of the solutions respectively are:
A. $0.167,11.11$
B. $0.2,22.20$
C. 0.2, 11.11
D. $0.167,22.20$

- Watch Video Solution

50. For a reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, identify dihydrogen
$\left(H_{2}\right)$ as a limiting reagent in the following reaction mixtures.
A. 14 g of $N_{2}+4 \mathrm{~g}$ of H_{2}
B. 28 g of $\mathrm{N}_{2}+6 \mathrm{~g}$ of H_{2}
C. 56 g of $\mathrm{N}_{2}+10 \mathrm{~g}$ of H_{2}
D. 35 g of $\mathrm{N}_{2}+8 \mathrm{~g}$ of H_{2}

Answer: C

- Watch Video Solution

51. At 300 K and 1 atmospheric pressure, 10 mL of a hydrocarbon required 55 mL of O_{2} for complete combustion, and 40 mL of CO_{2} is formed. The formula of the hydrocarbon is:
A. $C_{4} H_{8}$
B. $C_{4} H_{7}$
C. $C_{4} H_{10}$
D. $C_{4} H_{6}$

Answer: D

- Watch Video Solution

52. The amount of sugar $\left(C_{12} H_{22} O_{11}\right)$ required to prepare 22 L of its
0.1 M aqueous solution is
A. 68.4 g
B. 17.1 g
C. 34.2 g
D. 136.8 g

Answer: A

- Watch Video Solution

53. A mixture of 100 m mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ and 2 g of sodium sulphate was dissolved in water and the volume was made up to 100 mL . The mass of calcium sulphate formed and the concentration of OH^{-}in resulting solution, respectively, are: (Molar mass of $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and CaSO_{4} are 74, 143 and $136 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively, $K_{s p}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 5.5×10^{-6})
A. $1.9 \mathrm{~g} 0.14 \mathrm{~mol}^{-1}$
B. $13.6 \mathrm{~g} 0.14 \mathrm{~mol} L^{-1}$
C. $1.9 \mathrm{~g} 0.28 \mathrm{~mol} L^{-1}$
D. $13.6 \mathrm{~g}, 0.28 \mathrm{~mol} L^{-1}$

Answer: C

- Watch Video Solution

54. The percentage composition of carbon by mole in methane is:
A. 80%
B. 25%
C. 75%
D. 20%

Answer: D

55. The mole fraction of a solvent in aqueous solution of a solute is 0.8 . The molality ($\mathrm{in} \mathrm{mol} \mathrm{kg}^{-1}$) of the aqueous solution is:
A. 13.38×10^{-1}
B. 13.88×10^{-2}
C. 13.88
D. 13.88×10^{-3}

Answer: C

- Watch Video Solution

56. A solution of sodium sulfate contains 92 g of Na^{+}ions per kilogram of water. The molality of Na^{+}ions in the solution in mol $k g^{-1}$ is
A. 16
B. 8
C. 4
D. 12

Answer: C

- Watch Video Solution

Competition File Multiple Choice Questions From Competitive Examinations Jee Advance For lit Entrance

1. Given that the abundacne of isotopes $.{ }^{54} \mathrm{Fe}, .{ }^{56} \mathrm{Fe}$, and.${ }^{57} \mathrm{Fe}$ is
$5 \%, 90 \%$ and 5% respectively. The atomic mass of Fe is
A. 55.85
B. 55.95
C. 55.75
D. 56.05

Answer: B

-
 Watch Video Solution

Competition File Multiple Choice Questions With More Than One Correct

Answers

1. Which of the following concentration terms is/are independent of temperature?
A. Mole fraction
B. Molarity
C. Normality
D. Molality

Answer: A::D

2. A solution has 25% of water, 25% ethanol and 50% acetic acid by mass. Calculate the mol e fraction of each component.
A. water $=0.502$
B. Ethanol $=0.302$
C. Acetic acid $=0.196$
D. Ethanol + acetic acid $=4.098$

Answer: A::D

- Watch Video Solution

3.8 g of O_{2} has the same number of oxygen atoms as
A. $11 g \mathrm{CO}_{2}$
B. 14 g of CO
C. 32 g of SO_{2}
D. $8 \mathrm{~g} O_{3}$

Answer: A::B::D

D Watch Video Solution

4. The mass of $\frac{1}{12}$ th of ${ }^{12} C$ is same as that of
A. $\frac{1}{28}$ of N_{2}
B. 1 u
C. $\frac{1}{8} t h$ of O
D. $\frac{1}{12}$ th of He

Answer: A::B

- Watch Video Solution

5. In MgSO_{4} (at. mass: $\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16$), the mass percentage of
A. $M g=80 \%$
B. $M g=20 \%$
C. $S=26.7 \%$
D. $S=53.3$ \%

Answer: B::C

- Watch Video Solution

6. The following substances are present in different containers
(i) One gram atom of nitrogen
(ii) One mole of calcium
(iii) One atom of silver
(iv) One mole of oxygen molecules
(v) 1023 atoms of carbon and
(vi) One gram of iron.

The correct order of increasing masses (in grams) is/are
A. $(i i i)<(v i)<(i)<(v)$
B. $(i i i)<(v i)<(i v)<(i i)$
C. $(v i)<(v)<(i)<(i v)$
D. $(i i i)<(i i)<(v)<(i v)$

Answer: B::C

- Watch Video Solution

7. Which of the following concentration factors is affected by change in temperature?
A. Molality
B. Weight per cent
C. Normality
D. Molarity

Answer: C::D

Watch Video Solution
8. Which of the following units are not correct for the physical quantity?
A. Acceleration: $m s^{2}$
B. Pressure: $\mathrm{kgm}^{-2} \mathrm{~s}^{-2}$
C. Power: Js
D. Frequency: s^{-1}

Answer: B::C

- Watch Video Solution

Competition File Multiple Choice Questions Based On The Given Passage Comprehension

1. A mole is a collection of 6.022×10^{23} particles and the number 6.022×10^{23} is called Avogadro number. The mass of this number of atoms in an element is equal to its gram atomic mass and mass of this number of molecules in a compound is equal to its gram molecular mass. The volume occupied by this number of molecules of a gas at N.T.P is 22.4 L . When 6.022×10^{23} molecules of a substance are dissolved in 1L of solution, the solution is known as 1 molar volume.

The mass of 10 molecules of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$
A. $2.12 \times 10^{22} \mathrm{~g}$
B. $2.12 \times 10^{21} \mathrm{~g}$
C. $2.12 \times 10^{23} \mathrm{~g}$
D. 1280 g

Answer: B

- Watch Video Solution

2. A mole is a collection of 6.022×10^{23} particles and the number 6.022×10^{23} is called Avogadro number. The mass of this number of atoms in an element is equal to its gram atomic mass and mass of this number of molecules in a compound is equal to its gram molecular mass. The volume occupied by this number of molecules of a gas at N.T.P is 22.4 L . When 6.022×10^{23} molecules of a substance are dissolved in 1L of solution, the solution is known as 1 molar volume.

Suppose the chemists would have choosen 10^{20} as the number of particles in a mole, the mass of 1 mole of oxygen gas would be:
A. $5.32 \times 10^{3} \mathrm{~g}$
B. $5.32 \times 10^{-3} \mathrm{~g}$
C. $5.32 \times 10^{-23} \mathrm{~g}$
D. $5.32 \times 10^{3} \mathrm{~g}$

Answer: B

- Watch Video Solution

3. A mole is a collection of 6.022×10^{23} particles and the number 6.022×10^{23} is called Avogadro number. The mass of this number of atoms in an element is equal to its gram atomic mass and mass of this number of molecules in a compound is equal to its gram molecular mass. The volume occupied by this number of molecules of a gas at N.T.P is 22.4 L . When 6.022×10^{23} molecules of a substance are dissolved in 1L of solution, the solution is known as 1 molar volume.

One million atoms of silver (at. mass $=107.81$) atoms weigh
A. $1.79 \times 10^{-16} \mathrm{~g}$
B. $3.58 \times 10^{-16} \mathrm{~g}$
C. $3.58 \times 10^{6} \mathrm{~g}$
D. $5.32 \times 10^{3} \mathrm{~g}$

Answer: A

(D) Watch Video Solution

4. The earliermethod for determining the molecular weight of proteins was based on chemical analysis. The following composition of proteins were found :

Haemoglobin: 0.335\% Fe
Cytochrome protein: $0.376 \% \mathrm{Fe}$
Peroxidase enzyme : 0.29\% Se

If haemoglobin contains 4 atoms of iron, then approximate molecular mass of haemoglobin is (at. mass of $\mathrm{Fe}=55.85$)
A. 16700
B. 33400
C. 66800
D. 1670

Answer: C

- Watch Video Solution

5. The earliermethod for determining the molecular weight of proteins

 was based on chemical analysis. The following composition of proteins were found :Haemoglobin: 0.335% Fe
Cytochrome protein: $0.376 \% \mathrm{Fe}$
Peroxidase enzyme : 0.29\% Se
The mole \% of Se in the enzyme peroxidase is (at. mass of $\mathrm{Se}=78.96$)
A. 2.16×10^{-3}
B. 2.7×10^{5}
C. 3.67×10^{-3}
D. 1.83×10^{3}

Answer: C

6. The earliermethod for determining the molecular weight of proteins was based on chemical analysis. The following composition of proteins were found :

Haemoglobin: 0.335% Fe
Cytochrome protein: $0.376 \% \mathrm{Fe}$
Peroxidase enzyme : 0.29\% Se
If the cytochrome protein contains one atom per molecule then the molecular mass of protein is
A. 14850 u
B. 29600 u
C. 32960 u
D. 12840 u

Answer: A
7. The earliermethod for determining the molecular weight of proteins was based on chemical analysis. The following composition of proteins were found :

Haemoglobin: 0.335\% Fe
Cytochrome protein: $0.376 \% \mathrm{Fe}$
Peroxidase enzyme : 0.29\% Se
How many atoms of Se are present in 1 pg of peroxidase enzyme assuming one molecule of enzyme contains 1 atom of Se (at. mass of $\mathrm{Se}=78.96)$?
A. 2.21×10^{7}
B. 4.52×10^{14}
C. 3.82×10^{21}
D. 2.23×10^{6}

Answer: B

8. The earliermethod for determining the molecular weight of proteins was based on chemical analysis. The following composition of proteins were found:

Haemoglobin: 0.335% Fe
Cytochrome protein: $0.376 \% \mathrm{Fe}$
Peroxidase enzyme : 0.29\% Se
How many moles of iron are present in 1 mg of haemoglobin (assuming a molecule of haemoglobin contains 4 Fe atoms)?
A. 1.50×10^{-8}
B. 6.0×10^{-8}
C. 3.0×10^{-8}
D. 1.875×10^{-9}

Answer: B

- Watch Video Solution

9. Oleum or fuming sulphuric acid contains SO_{3} dissolved in sulphuric acid and has the molecular formula $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$, It is formed by passing SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$. When water is added to oleum, SO_{3} reacts with water to form $\mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
As a result, mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ increases. When 100 g sample of oleum is diluted with desired amount of water (in gram) then the total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known as percentage labelling of oleum.
\% Labelling of oleum = Total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in oleum after dilution
or $=$ Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ initially present + Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produced after dilution

From this, the percentage composition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3} (free) and
SO_{3} (combined) can be calculated.
The percentage of SO_{3} in $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is
A. 9%
B. 36%
C. 40%
D. 60%

Answer: C

- Watch Video Solution

10. Oleum or fuming sulphuric acid contains SO_{3} dissolved in sulphuric acid and has the molecular formula $H_{2} S_{2} O_{7}$, It is formed by passing SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$. When water is added to oleum, SO_{3} reacts with water to form $\mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
As a result, mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ increases. When 100 g sample of oleum is diluted with desired amount of water (in gram) then the total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known as percentage labelling of oleum.
\% Labelling of oleum = Total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in oleum after
dilution
or $=$ Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ initially present + Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ produced after dilution

From this, the percentage composition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3} (free) and SO_{3} (combined) can be calculated.

The percentage of free SO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $112 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is
A. $53.6,46.4$
B. $12.0,88.0$
C. 88.0, 12.0
D. 26.8, 73.2

Answer: A

(D) Watch Video Solution

1. 1.420 g of anhydrous ZnSO_{4} was left in moist air. After a few days its weight was found to be 2.528 g . How many water molecules are present in its hydrated salt formula (molar mass of $\mathrm{ZnSO}_{4}=161.5$)?

- Watch Video Solution

2. Moles of iron which can be made from $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by the use of 294 g of carbon monoxide in the reaction :
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+\mathrm{CO}_{2}$ are:

- Watch Video Solution

3.428 mL of 10 M HCl and 572 mL of 3 M HCl are mixed. The molarity of the resulting solution is

- Watch Video Solution

4. Silver (atomic weight $108 \mathrm{gmol}^{-1}$) has a density of $10.5 \mathrm{gcm}^{-3}$. The number of silver atoms on a surfaces of area $10^{-12} \mathrm{~m}^{2}$ can be expressed in scientific notation as $Y \times 10^{-x}$, The value of x is \qquad

- Watch Video Solution

5. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$ is:

- Watch Video Solution

6. Reaction of Br_{2} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aquesous solution gives sodium bromide bromate with evolution of CO_{2} gas. The number of sodium bromide molecules involved in the balanced chemical equation is:

- Watch Video Solution

7.29.2 \% $(w / w) \mathrm{HCl}$ stock, solution has a density of $1.25 \mathrm{gmL}^{-1}$. The molecular weight of HCl is $36.5 \mathrm{gmol}^{-1}$. The volume $(m L)$ of stock solution required to prepare a 200 mL solution of 0.4 MHCl is :

(D) Watch Video Solution

8. If the value of Avogadro numberis $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the vaueof Boltzmann constant is $1.380 \times 10^{-23} \mathrm{JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is

- Watch Video Solution

9. To measure the quantity of MnCl_{2} dissolved in an queous solution, it was completely converted to KMnO_{4} using the reaction
$\mathrm{MnCl}_{2}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KMnO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$ (equation not balanced).

Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid (225 mg) was added in portions till the colour of the permanganate ion disappeared. Calculate the quantity of MnCl_{2} (in mg) presence in the initial solution.
(Atomic weights in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{Mn}=55, \mathrm{Cl}=35.5$)

- Watch Video Solution

10. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05 . If the density of the solution is $1.2 \mathrm{gcm}^{-3}$, the molarity of urea solution is \qquad
Given data: Molar masses of urea and water are $60 \mathrm{gmol}^{-1}$ and $18 \mathrm{gmol}^{-1}$, respectively)

- Watch Video Solution

