©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLISHERS MATHS (HINGLISH)

MATHEMATICAL INDUCTION

Illustrative Examples

1. If $P(n)$ is the statement $n(n+1)(n+2)$ is divisible is 12 prove that the statements $P(3)$ and $P(4)$ are true, but that $P(5)$ is not true.

- Watch Video Solution

2. If $P(n)$ is the statement $2^{n} \geq 3 n$, and if $P(r)$ is true, prove that $P(r+1)$ is true.

Questions From Ncert Examplar

1. Prove the following by the principle of mathematical induction:
$\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} \quad$ or \quad all \quad natural numbers $n \geq 2$.

- Watch Video Solution

2. Show by the Principle of Mathematical induction that the sum S_{n}, of the nterms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+7^{2}+\ldots$. is given by $S_{n}=\left\{\frac{n(n+1)^{2}}{2}\right.$, if n is even , then $\frac{n^{2}(n+1)}{2}$, if n is odd

- Watch Video Solution

1. Let $\mathrm{P}(\mathrm{n})$ be the statement :
$" n^{2}+n$ is even"
Prove that $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$ by Mathematical Induction

- Watch Video Solution

2. Using the principle of mathematical induction, prove that $n<2^{n}$ for all $n \in N$

- Watch Video Solution

3. By Principle of Mathematical Induction, prove that :
$1+2+3+\ldots .+n=n \frac{n+1}{2}$
$1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ for each given $n \in N$

- Watch Video Solution

4.

For all
$n \geq 1$,
prove
that
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}++\frac{1}{n(n+1)}=\frac{n}{n+1}$

- Watch Video Solution

5. Prove the following by using the Principle of mathematical induction $\forall n \in N$

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \ldots \ldots .\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1}
$$

- Watch Video Solution

6. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

7. Prove by the principle of mathematical induction that $n(n+1)(2 n+1)$ is divisible by 6 for all $\mathrm{n} \in \mathrm{N}$
8. Prove by induction that the sum of the cubes of three consecutive natural numbers is divisible by 9 .

- Watch Video Solution

9. Prove by the principle of mathematical induction that for all $n \in N, 3^{2 n}$ when divided by 8 , the remainder is always 1 .

- Watch Video Solution

10. Prove the rule of exponents $(a b)^{n}=a^{n} b^{n}$ by using principle of mathematical induction for every natural number.

- Watch Video Solution

11. Prove that, $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots \sin n \theta=\frac{\frac{\sin n \theta}{2} \sin \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}$ for all $n \in N$.

- Watch Video Solution

12. Using principle of mathematical induction prove that $\cos \alpha \cos 2 \alpha \cos 4 \alpha \cos \left(2^{n-1} \alpha\right)=\frac{s \in 2^{n} \alpha}{2^{n} s \in \alpha} f$ or all $n N$.

- Watch Video Solution

13. Prove by the principle of mathematical induction that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in N$.

- Watch Video Solution

14. For the proposition $P(n)$, given by,
$1+3+5+\ldots+(2 n-1)=n^{2}+2$ prove that $P(k)$ is true implies
$P(k+1)$ is true. But, $\mathrm{P}(\mathrm{n})$ is not true for all $n \in N$

- View Text Solution

Exercise 4 A Short Answer Type Questions

1. If $\mathrm{P}(n)$ is the statement $\mathrm{n}^{\wedge} 2>100$, prove that whenever $P(r)$ is true, $P(r+1)$ is also true.

- Watch Video Solution

2. Let $P(n)$ be the statement: $2^{n} \geq 3 n$. If $P(r)$ is true, show that $P(r+1)$ is true. Do you conclude that $P(n)$ is true for all $n \in N$

- Watch Video Solution

3. If $P(n)$ is the statement $2^{3 n}-1$. Is an integral multiple 7 , and if $P(r)$ is true, prove that $P(r+1)$ is true.
4. Given an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(1), P(2)$ and $P(3)$ are not true. Justify your answer.

- Watch Video Solution

5. If $\mathrm{P}(\mathrm{n})$ is the statement : $C_{r} \leq n$! for $1 \leq r \leq n$ then:
(i) find $P(n+1)$
(ii) show that $P(3)$ is true

- Watch Video Solution

Exercise 4 B Short Answer Type Questions

1. Give an example of a statement $P(n)$ such that $P(3)$ is true, but $P(4)$ is not true.
2. Prove that the Principle of Mathematical Induction does not apply to the following:
(i) $P(n): n^{3}+n$ is divisible by $3^{\prime \prime}$
(ii) $P(n): n^{3} \leq 100$

- Watch Video Solution

Exercise 4 B Long Answer Type Questions I

1. The nth term of an A.P. whose first term is 'a' and common difference d ' is $a+(n-1) d$. Prove by PMI.

- Watch Video Solution

2.

Prove
by
PMI
that
$1.2+2.3+3.4+\ldots+n(n+1)=\frac{(n)(n+1)(n+2)}{3}, \forall n \in N$
3. $1.2+2.2^{2}+3.2^{3} \ldots . n .2^{n}=(n-1) 2^{n+1}+2$

D Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N: a+a r+a r^{2}+\dot{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

5. The statement $x^{n}-y^{n}$ is divisible by ($\mathrm{x}-\mathrm{y}$) where n is a positive integer is

- Watch Video Solution

6. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .
7. Prove the following by using the Principle of mathematical induction
$\forall n \in N$
$4^{n}+15 n-1$ is divisble by 9.

- Watch Video Solution

8. Using mathematical induction prove that $n^{2}-n+41$ is prime.

- Watch Video Solution

9. Using the principle of mathmatical induction, prove each of the following for all $n \in N$

$$
3^{n} \geq 2^{n}
$$

- Watch Video Solution

1. Shwo that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible 9 for everynatural number n .

- Watch Video Solution

2. Prove that $(1+x)^{n} \geq(1+n x)$, for all natural number n , where $x \succ 1$.

- Watch Video Solution

3. If $P(n)$ is the statement $n^{2}-n+41$ is prime. Prove that $P(1), P(2)$ and $P(3)$ are true. Prove also that $P(41)$ is not true.

- Watch Video Solution

4. If n straight lines be drawn in a plane, no two of them being parallel and no three of them being concurrent, how many points of intersection will be there?

- Watch Video Solution

Objective Type Questions Questions From Ncert Exemplar

1. Let $P(n): 2^{n}<(1 \times 2 \times 3 \times \times n)$. Then the smallest positive integer for which $P(n)$ is true is 1 b .2 c .3 d .4
A. 1
B. 2
C. 3
D. 4

Answer: D

2. A student was asked to prove a statement $\mathrm{P}(\mathrm{n})$ by induction. He proved that $P(k+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true for all $k>5 \in N$ and also that $P(n)$ is true. On the basis of this he could conclude that $P(n)$ is true :
A. for all $n \in N$
B. for all $n>5$
C. for all $n \geq 5$
D. for all $n<5$

Answer: C

- View Text Solution

3. If $10^{n}+3 \times 4^{n+2}+\lambda$ is divisible by 9 or all $n N$, then the least positive integral value of λ is 5 b .3 c .7 d .1
A. 5
B. 3
C. 7
D. 1

Answer: A

D Watch Video Solution

4. For all $n \in N, 3 \cdot 5^{2 n+1}+2^{3 n+1}$ is divisble by-
A. 19
B. 17
C. 23
D. 25

Answer: B

5. If $x^{n}-1$ is divisible by $x-k$ then the least positive integral value of k is
A. 1
B. 2
C. 3
D. 4

Answer: A

Objective Type Questions For Board Examinations

1. For each $n \in N, 3^{2 n}-1$ is divisible by
A. 8
B. 16
C. 32
D. None of these.

Answer: A

- Watch Video Solution

2. For each $n \in N, 2^{3 n}-1$ is divisible by
A. 7
B. 8
C. 16
D. 32

Answer: A

3. For each $n \in N, 3 .\left(5^{2 n+1}\right)+2^{3 n+1}$ is divisible by
A. 17
B. 19
C. 21
D. 23

Answer: A

- Watch Video Solution

4. For all $n \in N, 4^{n}-3 n-1$ is divisible by
A. 3
B. 8
C. 9
D. 27

Answer: C

- Watch Video Solution

5. For each n in $\mathrm{N}, 49^{n}+16 n-1$ is divisible by :
A. 3
B. 19
C. 29
D. 64

Answer: D

- View Text Solution

6. For all $n \in N, n^{3}+2 n$ is divisible by
A. 2
B. 3
C. 5
D. 6

Answer: B

- Watch Video Solution

7. For each $n \in N, n(n+1)(2 n+1)$ is divisible by
A. 6
B. 7
C. 8
D. 15

Answer: A

8. For all positive integers $\left\{x\left(x^{n-1}-n . a^{n-1}+a^{n}(n-1)\right\}\right.$ is divisible by
A. $n>1$
B. $n>2$
C. all $n \in N$
D. None of these.

Answer: C

9. If a, b and n are natural numbers then $a^{2 n-1}+b^{2 n-1}$ is divisible by
A. $a+b$
B. $(a+b)^{2}$
C. $a^{3}+b^{3}$
D. None of these.

- Watch Video Solution

10. For each $n \in N$, the greatest positive integer which divides $(n+1)(n+2)(n+3)$ is :
A. 2
B. 6
C. 24
D. 120

Answer: B

- Watch Video Solution

11. For each $n \in N$ the greatest positive integer which divides $(n+1)(n+2)(n+3) \ldots(n+r)$ is :
A. r
B. r!
C. $(r+1)$!
D. $n+r$

Answer: B

Watch Video Solution
12. The inequality $n!>2^{n-1}$ is true
A. all n
B. no n
C. all $n>1$
D. all $n>2$

Answer: C

13. The inequality $2^{n}<n!n \in N$ is true for :
A. all n
B. all $n>1$
C. all $n>2$
D. all $n>3$

Answer: D

D View Text Solution

14. The statement $n!>2^{n-1}, n \in N$ is true for
A. all $n>1$
B. all $n \in N$
C. all $n>2$
D. all $n \in N$

Answer: B

- Watch Video Solution

15. Let $S(k)=1+3+5+\ldots+(2 k-1)=3+k^{2}$. Then which of the following is true ? (A) $\mathrm{S}(1)$ is correct (B) $\mathrm{S}(\mathrm{k})=\mathrm{S}(\mathrm{k}+1)$ (C) $S(k) \neq S(k+1)$
(D) Principal of mathematical induction can be used to prove the formula
A. $\mathrm{S}(1)$ is correct
B. $S(k) \Rightarrow S(k-1)$
C. $S(k) \Rightarrow S(k+1)$
D. principle of Mathematical Induction can be used to prove the formula.

Answer: C

Objective Type Questions Fill In The Blanks

1. Let $P(n)$ be the statement $n(n+1)$ is even, then $P(4)=$ \qquad

- Watch Video Solution

2. Let $P(n)$ be the statement $3^{\wedge} \mathrm{n}>\mathrm{n}$. If $P(n)$ is true, $P(n+1)$ is also true.

- Watch Video Solution

3. Let $\mathrm{P}(\mathrm{n})$ be the statement $C_{r} \leq n$! for $1 \leq r \leq n$ then $P(n+1)=$

- Watch Video Solution

4. By Principle of Mathematical Induction $1+2+3$ \qquad $+n=$

- Watch Video Solution

5. By Principle of Mathematical Induction :
nth term of A.P. whose first term is 'a' and common difference is 'd' is

- Watch Video Solution

Objective Type Questions True False Questions

1. If $P(n)$ is the statement $n(n+1)(n+2)$ is divisible is 12 prove that the statements $P(3)$ and $P(4)$ are true, but that $P(5)$ is not true.

- Watch Video Solution

2. Let $P(n)$ be the statement $2^{3 n}-1$ is integral multiple of 7. Then $P(3)$ is true.
3. If $P(n)$ is the statement $n^{3}+n$ is divisible 3 is the statement $P(3)$ true ? Is the statement $P(4)$ true?

- Watch Video Solution

4. Let $\mathrm{P}(\mathrm{n})$ be the statement $2^{n} \geq n$. When $\mathrm{P}(\mathrm{r})$ is true, then is it true that $P(r+1)$ is also true ?

- Watch Video Solution

5. Let $\mathrm{P}(\mathrm{n})$ be the statement $(n-4)$ is a whole number. Then $\mathrm{P}(3)$ true

- Watch Video Solution

1. Let $\mathrm{P}(\mathrm{n})$ be the statement. " $P(n)=16 n+3$ is prime. Is $\mathrm{P}(3)$ true ?

- Watch Video Solution

2. If $P(n)$ is the statement $2^{n} \geq 3 n$, and if $P(r)$ is true, prove that $P(r+1)$ is true.

- Watch Video Solution

3. If $P(n)$ is the statement $n^{3}+n$ is divisible 3 is the statement $P(3)$ true ? Is the statement $P(4)$ true?

- Watch Video Solution

4. Let $P(n)$ be the statement." $2^{3 n-1}$ is integral multiple of $7{ }^{7}$. Then, $P(1), P$
(2) and P (3) are true ?
5. Prove the following by the principle of mathematical induction:
$(a b)^{n}=a^{n} b^{n}$ for all $n \in N$.

- Watch Video Solution

Ncert File Exercise 41 Prove The Following By Using The Principle Of Mathematical Induction For All N Inn

1. Prove the following by the principle of mathematical induction: $1+3+3^{2}++3^{n-1}=\frac{3^{n}-1}{2}$

- Watch Video Solution

2. $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

$3.1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+n}=\frac{2 n}{n+1}$

- Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N$
5. $2.3+2.3 .4+\operatorname{dot} \operatorname{dot} \operatorname{dot}+\mathrm{n}(\mathrm{n}+1) \quad(\mathrm{n}+2)=\frac{n(n+1)(n+2)(}{4}$

- Watch Video Solution

5. Prove the following by using the principle of mathematical induction
for all $n \in N: 1.3+2.3^{2}+3.3^{3}+\dot{\vdots} n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction
for all $n \in N: 1.2+2.3+3.4++n(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N:$
$1.3+3.5+5.7+\dot{+}(2 n 1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

- Watch Video Solution

8. Prove the following by using the principle of mathematical induction for all $n \in N: 1.2+2.2^{2}+3.2^{2}++n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction
for all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{\vdots}{2^{n}}=1-\frac{1}{2^{n}}$
10. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

- Watch Video Solution

11. Prove the following by using the principle of mathematical induction for
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\stackrel{\text { all }}{ }+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction
for all $n \in N: a+a r+a r^{2}+\dot{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction
for all $n \in N:\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) 1+\frac{(2 n+1)}{n^{2}}=(n+1)^{2}$

- Watch Video Solution

14. Prove the following by using the principle of mathematical induction
for all $n \in N:\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) 1+\frac{1}{n}=(n+1)$

- Watch Video Solution

15. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{2}+3^{2}+5^{2}+\dot{+}(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}++\frac{1}{(3 n-1)(3 n+1)}=\frac{n}{(3 n+1)}$.

- Watch Video Solution

17. Prove the following by using the principle of mathematical induction $\begin{array}{ll}\text { for } & \text { all } \\ \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}++\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)} . & \end{array}$

- Watch Video Solution

18. Prove that $1+2+3+4 \ldots \ldots .+N<\frac{1}{8}(2 n+1)^{2}$

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

20. Show that $10^{2 n-1}+1$ is divisible by 11 for all natural numbers n .

- Watch Video Solution

21. Prove the following by using the principle of mathematical induction for all $n \in N: x^{2 n}-y^{2 n}$ is divisible by $x+y$.

- Watch Video Solution

22. Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2 n+2}-8 n-9$ is divisible by 8 .
23. $41^{n}-14^{n}$ is a multiple of 27

- Watch Video Solution

24. Prove by mathematical induction that, $2 n+7<(n+3)^{2}$ for all $n \in \mathbb{N}$.

- Watch Video Solution

Exercise

1. $4^{n}-1$ is divisible by 3 , for each natural number n.
2. Using the principle of mathematical induction, prove that $\left(2^{3 n}-1\right)$ is divisible by 7 for all $n \in N$.

- Watch Video Solution

3. $3^{2 n}-1$ is divisible by 8 , for all natural numbers n.

- Watch Video Solution

4. $n^{3}-n$ is divisible by 6 , for each natural numbers $n \geq 2$

- Watch Video Solution

5. $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n .

- Watch Video Solution

6. $n^{2}<2^{n}$, for all natural number $n \leq 5$.

- Watch Video Solution

7. For all $n \in N, 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}++\frac{1}{\sqrt{n}}$

- Watch Video Solution

8. $1+5+9+\ldots+(4 n-3)=n(2 n-1)$ for all natural numbers n

- Watch Video Solution

9. A sequence $b_{0}, b_{1}, b_{2}, \ldots$ is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$, for all natural number k. Show that $b_{n}=5+4 n$, for all natural number n using mathematical induction.

- Watch Video Solution

$\cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$

- Watch Video Solution

Revision Exercise

1. Prove, by Induction, that $2^{n}<n$!for all $n \geq 4$

- Watch Video Solution

2. The number of all possible subsets of a set containing n elements ?

- Watch Video Solution

3. Let $\mathrm{P}(\mathrm{n})$ denote the statement:
$2^{n} \geq n!$.Show that $\mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3)$ are true butP(4) is not true.
4. Prove the following by using the principle of mathematical induction for all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dot{\vdots} \frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

Watch Video Solution

> 5. Using mathematical induction prove that $x+4 x+7 x+\ldots \ldots+(3 n-2) x=\frac{1}{2} n(3 n-1) x$

- Watch Video Solution

6.

Prove
by
PMI
$1.2+2.3+3.4+\ldots+n(n+1)=\frac{(n)(n+1)(n+2)}{3}, \forall n \in N$
that

- Watch Video Solution

7.1. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

Watch Video Solution

8. Prove the following by the principle of mathematical induction:
$7+77+777++777++\ddot{n}-\operatorname{digits} 7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N B$.

- Watch Video Solution

9. Prove by the principle of mathematical induction, that
$1.1!+2.2!+3.3!+\ldots .+(n . n!)-1$ for all natural number $n(n \neq 1 \times$

- Watch Video Solution

10. Prove that for $n \in N, 10^{n}+3.4^{n+2}+5$ is divisible by 9 .
11. By Mathematical Induction, prove the following:
(i) $\left(4^{n}+15 n-1\right)$ is divisible by 9 ,
(ii) $\left(12^{n}+25^{n-1}\right)$ is divisible by 13
(iii) $11^{(n+2)}+12^{(2 n+1)}$ is divisible by 133 for all $n \in N$

- Watch Video Solution

12. For all positive integer n, prove that $\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{2}{3} n^{3}-\frac{n}{105}$ is an integer

- Watch Video Solution

13. Let $U_{1}=1, U_{2}=1$ and $U_{n+2}=U_{n+1}+U_{n} f$ or $n \geq 1$. use mathematical induction to show that:
$U_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\} f$ or all $n \geq 1$.

- Watch Video Solution

14. Using the principle of Mathematical Induction, prove that $\forall n \in N, 4^{n}-3 n-1$ is divisible by 9 .

- Watch Video Solution

Check Your Understanding

1. Does the Principle of Mathematical Induction' apply to :
$P(n): n^{3}>100 ?$

- Watch Video Solution

2. If $P(n)$ is the statement $n(n+1)(n+2)$ is divisible is 12 prove that the statements $P(3)$ and $P(4)$ are true, but that $P(5)$ is not true.

- Watch Video Solution

3. If $P(n)$ is the statement $n(n+1)(n+2)$ is divisible is 12 prove that the statements $P(3)$ and $P(4)$ are true, but that $P(5)$ is not true.

- Watch Video Solution

4. Let $\mathrm{P}(\mathrm{n})$ be the statement : $10 n+3$ is prime. Is $\mathrm{P}(3)$ true ?

- Watch Video Solution

5. Let $\mathrm{P}(\mathrm{n})$ be the statement : $2^{n}>1$. Is $\mathrm{P}(1)$ true ?

- Watch Video Solution

6. If $\mathrm{P}(\mathrm{n})$ is the statement: $n(n+1)$ is even, then what is $\mathrm{P}(4)$?

- Watch Video Solution

7. If $P(n)$ is the statement $n^{3}+n$ is divisible 3 is the statement $P(3)$ true ? Is the statement $P(4)$ true?

- Watch Video Solution

8. Let $\mathrm{P}(\mathrm{n})$ be the statement : $n^{2}+n$ is even Is $\mathrm{P}(\mathrm{n})$ true for all $n \in N$?

- Watch Video Solution

9. Let $\mathrm{P}(\mathrm{n})$ be the statement: $C_{r} \leq n$! for $1 \leq r \leq n$ Is $\mathrm{P}(3)$ true?

- Watch Video Solution

10. Prove by induction that : $2^{n}>n$ for all $n \in N$.

- Watch Video Solution

Chapter Test 4

1. For all $n \in N, 3.5^{2 n+1}+2^{3 n+1}$ is divisble by-
A. 19
B. 17
C. 23
D. 25

Answer: B

- Watch Video Solution

2. For each $n \in N, n(n+1)(2 n+1)$ is divisible by
A. 6
B. 7
C. 8
D. 15

Answer: A

- Watch Video Solution

3. If $P(n)$ is the statement $2^{3 n}-1$. Is an integral multiple 7 , and if $P(r)$ is true, prove that $P(r+1)$ is true.

- Watch Video Solution

4. Let $\mathrm{P}(\mathrm{n})$ be the statement :
$3^{n}>n$
What is $P(n+1)$?

- Watch Video Solution

5. Given an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(1), P(2)$ and $P(3)$ are not true. Justify your answer.

- Watch Video Solution

6. Prove by the principle of mathematical induction that for all $n \in N$:
$1^{2}+2^{2}+3^{2}++n^{2}=\frac{1}{6} n(n+1)(2 n+1)$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{2}+3^{2}+5^{2}+\dot{+}(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

8. Prove the following by using the principle of mathematical induction
for all $n \in N: a+a r+a r^{2}+\dot{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

(Watch Video Solution

9. If n is a positive integer, show that $4^{n}-3 n-1$ is divisible by 9

- Watch Video Solution

10. Prove that $2 n+1<2^{n}$ for all natural numbers $n \geq 3$

- Watch Video Solution

11. Prove the following by using the principle of mathematical induction for $\begin{aligned} & \text { all } \\ & \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}++\frac{1}{n(n+1)(n+2)}= \\ & 4(n+1)(n+2)\end{aligned}$

- Watch Video Solution

12. Prove by the principle of mathematical induction that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in N$.

- Watch Video Solution

