©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLISHERS MATHS (HINGLISH)

MOCK TEST

Section A

1. Suppose $A_{1}, A_{2} \ldots . A_{30}$ are thirty sets each having 5 elements and $B_{1} B_{2} \ldots . B_{n}$ are n sets each having 3 elements ,Let $\bigcup_{i=1}^{30} A_{1}=\bigcup_{j=1}^{n} B_{j}=s$
and each element of S belongs to exactly 10 of the A_{1} and exactly 9 of the value of n.
A. 15
B. 3
C. 45
D. 35

Answer: C

- Watch Video Solution

2. Range of $f(x)=\frac{1}{1-2 \cos x}$ is :
A. $\left[\frac{1}{3}, 1\right]$
B. $\left[-1, \frac{1}{3}\right]$
C. $(-\infty,-1] \cup\left[\frac{1}{2}, \infty\right)$
D. $\left[-\frac{1}{3}, 1\right]$

Answer: B

- Watch Video Solution

3. If $\sec \theta+\cos \theta=2$, then the value of $\sec ^{2} \theta+\operatorname{cosec} \theta$ is :
A. 1
B. 4
C. 2
D. None of these

Answer: D

- Watch Video Solution

4. The complex conjugate of $-21+20 i$ is :
A. $-21-20 i$
B. $21-20 i$
C. $-21+20 i$
D. None of these

- Watch Video Solution

5. If x is a real number and $|x|<3$, then
A. $-3 \leq x \leq 3$
B. $-3<x<3$
C. $x \leq 3$
D. $x>3$

Answer: B

- Watch Video Solution

6. If $\frac{1}{\lfloor 8}+\frac{1}{\lfloor 9}=\frac{x}{\lfloor 10}$, then x is equal to :
A. 10
B. 20
C. 9
D. 100

Answer: D

- Watch Video Solution

7. The sequence $0.3,0.33,0.333$......., to ne terms is :
A. an A.P
B. a G.P
C. an infinite G.P
D. None of these

Answer: D

8. Find the sum to n terms of the series $1^{2}+3^{2}+5^{2}+\ldots$. upto n terms .
A. $\frac{n}{3}\left(4 n^{2}-1\right)$
B. $\frac{n}{3}\left(4 n^{2}-n\right)$
C. $\frac{n}{3}\left(4 n^{2}+1\right)$
D. $\frac{n}{3}\left(4 n^{2}+n\right)$

Answer: A

D Watch Video Solution

9. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$ is :
A. 0
B. 1
C. $\frac{1}{2}$
D. None of these

Answer: A

- Watch Video Solution

10. $p \vee q$ is false when :
A. p and q are both ture
B. p is true and q is false
C. p is false and q is ture
D. p and q are both false .

Answer: D

11. Let R be a relation on Z defined by : $R=\left\{(a, b): a \in Z, b \in Z, a^{2}=b^{2}\right\}$. Then range of $\mathrm{R}=$ \qquad .

- Watch Video Solution

12. $\sin 70^{\circ} \cos 10^{\circ}-\cos 70^{\circ} \sin 10^{\circ}=$ \qquad

- Watch Video Solution

13. If $z_{1}=2-i,+2=-2+i$, find: $\operatorname{Re}\left(\frac{z_{1} z_{2}}{z_{1}}\right)$

Watch Video Solution
14. If $i z^{3}+z^{2}-z+I=0$, then $|z|=$ \qquad
15. If p and q are both false, then $p \Rightarrow q$ is .

- Watch Video Solution

16. The probability that a leap year will have fifty three monday is
\qquad .

- Watch Video Solution

17. Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more than the total number of elements in the power set of the second set. Then the value of m and n are-
A. $m=6, n=3$
B. $m=7, n=5$
C. $m=5, n=3$
D. $m=6, n=4$

D Watch Video Solution

18. Find the value of : $2\left(\sin ^{6} x+\cos ^{6} x\right)-3\left(\sin ^{4} x+\cos ^{4} x\right)+2$.

- Watch Video Solution

19. If $\tan A=\frac{\sin B}{1-\cos B}$, then find the value of $\tan 2 A$.

- Watch Video Solution

20. Write the least positive intergal value of n when $\left(\frac{1+i}{1-i}\right)^{2 n}=1$.
A. 2
B. 4
C. 6
D. 14

Answer:

- Watch Video Solution

21. A committee of 2 boys and 2 girls is to be slected from 4 boys and 3 girls. In how many ways can this be done?

- Watch Video Solution

22. Give that $P(A)=0.5, P(B)=0.35, P(A \cup B)=0.7 \quad$ find $P(A \cap B)$

- Watch Video Solution

23. A and B are two mutually exclusive events, for which $P(A)=0.3, P(B)=p$ and $P(A \cup B)=0.5$. Find the value of p.

Section B

1.

$U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,3,5\} B=,\{2,4,6\}, C=\{4,5,6\}$
Find (i) $A^{c} \cap B^{c}$ (ii) $(A \cup B)^{c} \cap C^{c}$

- Watch Video Solution

2. Show that a real value of x will satisfy hte equation $(1-i x) /(1+i x)=a-i b$ if $a^{2}+b^{2}=1$, wherea, b real.

- Watch Video Solution

3. Let. ${ }^{n} P_{r}$ denote the number of permutations of n different things taken r at a time. Then, prove that
$1+1 \cdot{ }^{1} P_{1}+2 \cdot{ }^{2} P_{2}+3 \cdot{ }^{3} P_{3}+\ldots .+n \cdot{ }^{n} P_{n}=.{ }^{n+1} P_{n+1}$

- Watch Video Solution

4. If the middle term in the expreansion of $(1+x)^{2 n}$ is $\frac{[1.3 .5 \ldots(2 n-1)]}{n!}(k)$, where n is a positive integer, then k is .

- Watch Video Solution

5. If the coefficients of $(2 r+1) t h$ and $(4 r+5)$ th terms is the expansion of $(1+x)^{10}$ are equal then $r=$?

- Watch Video Solution

6. If ' p ' be the measure of the perpendicular segment from the origin on the line whose intercepts on the axes are 'a' and ' b '.then prove that:

$$
\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
$$

7. Show that the triangle vertices $(6,10,10),(1,0,-5)$ and $(6,-10,0)$ is a right - angled triangle .

- Watch Video Solution

8. Show that the point $(3,-1,-1),(5,-4,0),(2,3,-2)$ and $(0,6,-3)$ are the vertices of a parallelogram.

- Watch Video Solution

Section C

1. Let $\mathrm{A}=\{1,2,3,4,5,6,7,8\}$ and R be the relation on A defined by :
$R=\{(x, y): x \in A, y \in A$ and $x+2 y=10\}$.
Find the domains and ranges of R and R^{-1} after expressing them as sets of ordered pairs.
2. If $f(x)=\frac{1}{2 x-1}, x \neq \frac{1}{2} \quad$ then show that $: f(f(x))=\frac{2 x-1}{3-2 x}, x \neq \frac{3}{2}$

Watch Video Solution

3. If $\tan (\alpha+\theta)=n \tan (\alpha-\theta)$, show that : $(n+1) \sin 2 \theta=(n-1) \sin 2 \alpha$.

- Watch Video Solution

4. Solve : $\frac{2 x-3}{4}+8 \geq 2+\frac{4 x}{3}$ and show the solution se on the number line.

- Watch Video Solution

5. Solve the following system of inequtions graphically.
$x+3 y \leq 12,33 x+y \leq 12, x \geq 0, y \geq 0$

- Watch Video Solution

6. If A and G be A.M. and GM., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.

- Watch Video Solution

7. Evaluate : $\lim _{x \rightarrow 1} \frac{\left(x+x^{2}+x^{3}+\ldots \ldots \ldots+x^{n}\right)-n}{x-1}$

- Watch Video Solution

8. A bag contains 50 tickets numbered $1,2,3, . ., 50$ of which five are drawn at random and arranged in ascending order of magnitude ` (x_1

Section D

1. If $s \int h \eta=n \sin (\theta+2 \alpha)$, prove that $\tan (\theta+\alpha)=\frac{1+n}{1-n} \tan \alpha$.

- Watch Video Solution

2. Prove the following by using the Principle of mathematical induction
$\forall n \in N$
$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \ldots \ldots\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1}$

- Watch Video Solution

3. Prove by Principle of Mathematical Induction that $\left(10^{2 n-1}+1\right)$ is divisible by 11 for all $n \in N$.
4. Find the equation of a circle passing through the points $(5,7),(6,6)$ and $(2,-2)$. Find its centre and radius.

- Watch Video Solution

5. For the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$, find the eccentricity , centre , veritces , foci and axes (major , minor).

- Watch Video Solution

