©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MODERN PUBLISHERS CHEMISTRY (HINGLISH)

SOLUTIONS

SOLVED EXAMPLES

1. If 11 g of oxalic acid are dissolved in 500 mL of solution (density $=1.1 \mathrm{~g}$ $m L^{-1}$), what is the mass $\%$ of oxalic acid in solution ?

- Watch Video Solution

2. 2.46 g of sodium hydroxide (molar mass $=40$) are dissolved in water and the solution is made to $100 \mathrm{~cm}^{3}$ in a volumetric flask. Calculate the molarity of the solution.
3. Calculate the molality of a solution containing 20.7 g of potassium carbonate dissolved in 500 mL of soluiton (assume density of solution $=$ $1 g m L^{-1}$)

- Watch Video Solution

4. Calculate molality of 2.5 of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 75 g of benzene.

- Watch Video Solution

5. Calculate the mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in a solution containing 20% of $C_{2} H_{6} O_{2}$ by mass.

- Watch Video Solution

6. Calculate the normality of solution containing 31.5 g of hydrated oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 1250 mL of solution. Multiply answer with 10

- Watch Video Solution

7. $2.82 g$ of glucose (molar mass $=180$) is dissolved in $30 g$ of water.

Calculate the (i) Molality of the solution (ii) mole fractions of (a) glucose (b) water.

Watch Video Solution

8. Calculate the molarity of pure water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$).

- Watch Video Solution

9. A solution has 25% of water 25% ethanol and 50% acetic acid by mass. Calculate the mole fraction of each component.
10. Calculate the number of moles of methanol in 5 litres of its 2 m solution if the density of solution is $0.981 \mathrm{~kg} L^{-1}$ (Molar mass of methanol $=32.0 \mathrm{~g} \mathrm{~mol}^{-1}$.

- Watch Video Solution

11. Calculate the mass precentage of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ when 6.5 gm of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ is dissolved in 450 g of $\mathrm{CH}_{3} \mathrm{CN}$.

- Watch Video Solution

12. A solution of glucose (molar mass $=180 \mathrm{gmol}^{-1}$) in water is labelled as 10% (by mass). What would be the molarity and molality of the solution? Given that the density of the solution is $1.2 g m L^{-1}$.

- Watch Video Solution

13. A commerically availabe sample of sulphuric acid is $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight (density $=1.10 \mathrm{gmL}^{-1}$). Calculate (i) molarity (ii) normality and (iii) molality of the solution.

- Watch Video Solution

14. A sugar syrup of weight $214.2 g$ contains $34.2 g$ of sugar $\left(C_{12} H_{22} O_{11}\right)$.

Calculate
a. the molal concentration.
b. the mole fraction of the sugar in the syrup.

- Watch Video Solution

15. An antifreeze solution is prepared from 222.6 g of ethylene glycol $\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right]$ and 200 g of water. Calculate the molality of the solution. If the density of the solution is $1.072 g m L^{-1}$ then what shall be the molarity of the solution?
16. What is the mole fraction of the solute in 2.5 m aqueous solutions?

- Watch Video Solution

17. Calculate the volume of $80 \% \quad \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight (density $=1.80 \mathrm{gmL}^{-1}$) required to preapre 1 L of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

18. The mole fraction fo benzene in a solution with toluene is 0.50 .

Calculate the mass present of benzene in the solution.

- Watch Video Solution

19. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogen. The level of
contamination was 15 ppm (by mass).
(i) Express this in per cent by mass.
(ii) Determine the molality of chloroform in the water sample.

- Watch Video Solution

20. Molality(m) of a sulphuric acid solution in which the mol fraction of water is 0.85 is : Multiply your answer with 10 and then put value of it

Watch Video Solution

21. Volume of 0.1 MHCI required to react completely with 1 g equimolar mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} is

- Watch Video Solution

22. A 6.90 M solution of KOH contains 30% by weight of $K O H$.

Calculate the density of the solution.
23. If N_{2} gas is bubbled through water at 293 K , how many millimoles of N_{2} gas would dissolve in $1 L$ of water. Assume that N_{2} exerts a partial pressure of 0.987 bar. Given that Henry law constant for N_{2} at 293 K is 76.48 kbar.

- Watch Video Solution

24. The Henry's Law constant for oxygen dissolved in water is $4.34 \times 10^{-4} \mathrm{Catm}^{-1}$ at $25^{\circ} \mathrm{C}$. If partial pressure of exygen in are is 0.2 atm. Under ordinary atmospheric conditions, calculate the concentration (in moles/litre) of dissolved oxygen in water in equilibrium with air at $25^{\circ} C$.

- Watch Video Solution

25. Dry air contains $79 \% N_{2}$ and $21 \% O_{2}$. Determine the proportion of N_{2} and O_{2} (in terms of mole fractions) dissolved in water at 1 atm pressure . Henry's law constant for N_{2} and O_{2} in $H_{2} O$ are $8.54 \times 10^{4} \mathrm{~atm}$ and 4.56×10^{4} atm respectively.

- Watch Video Solution

26. The vapour pressure of ethyl alcohol at 298 K is 40 mm of Hg . Its mole fraction in a solution with methyl alcohol is 0.80 . What its vapour pressure in solution if the mixture obeys Raoult's law ?

- Watch Video Solution

27. An aqueous solution of glucose is made by dissolving 10 g of glucose in 90 g water at 303 K . If the V.P. of pure water at 303 K be 32.8 mm Hg , what would be V.P. fo the solution ?
28. At 298 K , the vapour pressure of pure benzene , $C_{6} H_{6}$ is 0.256 bar and the vapour pressure of pure toluene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ is 0.0925 bar . If the mole fraction of benzene in solution is 0.40 (i) what is the total vapour pressure of the solution? (ii) Calculate the composition of the vapour in terms of mole fraction.

- Watch Video Solution

29. The vapour pressure of chloroform $(\mathrm{CHCl})_{3}$ and dichlorocethene $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K is 200 mmHg and 415 mmHg , respectively. Calculate
a. The vapour pressure of the solution prepared by mixing 25.5 g of CHCl_{3} and 40 g of $\mathrm{CH}_{2}-\mathrm{Cl}(2)$ at 298 K.
b. Mole fractions of each components in vapour phase.

- Watch Video Solution

30. Two liquids X and Y one mixing form an ideal solution. At $30^{\circ} \mathrm{C}$ the vapour pressure of the solution containing 3 moles of X and 1 mole Y is

550 mm Hg . But when 4 moles of X and 1 mole of Y are mixe, the vapour pressur of the solution thus formed is 560 mm Hg . What will be the vapour presure of pure and Pure Y at this temerature ?

- Watch Video Solution

31. Vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mm of Hg and lowering of vapour pressure of a sugar solution is 0.061 mm of Hg . Calculate .
(i) relative lowering of vapour pressure.
(ii) vapour pressure of the solution.
(iii) mole fraction of sugar and water.

- Watch Video Solution

32. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non-volatile, non-electrolyte solid weighting 0.5 g when added to 39.0 g of benzene (molar mass $78 \mathrm{gmol}^{-1}$). The vapour pressure of the solution then is 0.845 bar. What is the molar mass of the solid substance?
33. Calculate the mass of a non-volatile solute (molecular mass 40) which should be dissolved in $114 g$ octane to reduce its vapour pressure to 80%

- Watch Video Solution

34. Calculate the vapour pressure of an aqueous solution which contains 5massperpercent of urea. The vapour pressure of pure water is 23.5 mmHg . The molar mass of urea is 60 .

- Watch Video Solution

35. A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of $2.8 \mathrm{kP}_{a}$ at 298 K . Further 18 g of water is then added to the solution and the new vapur pressure becomes
$2.9 \mathrm{kP}_{a}$ at 298 K . Calculate (i) The moar mass of the solute and (ii) Vapour pressure of water at 298 K .

- Watch Video Solution

36. Molal elevation constant for benzene is $2.52 \mathrm{Km}^{-1}$, A solution of some organic substance in benzene boils at $0.12^{\circ} \mathrm{C}$ higher than benzene .What is the molality of the solution?

- Watch Video Solution

37. The boiling a point of benzene is 353.23 K . When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K . Calculate the molar mass of the solute. K_{b} for benzene is 2.53 K kg mol^{-1}.
38. A solution containing 0.730 g of camphor (molar mass $=152$) in 36.8 g of acetone (b.p. $56.30^{\circ} \mathrm{C}$) boils at $56.55^{\circ} \mathrm{C}$. A solution of 0.564 g of an unknown compound in the same weight of solvent boils at $56.46^{\circ} \mathrm{C}$.

Calculate the molar mass of the unknown compound.

- View Text Solution

39. $3.24 g$ of sulphur dissolved in $400 g$ benzene, boiling point of the solution was higher than that of benzene by $0.081 K . K_{b}$ for benzene is $2.53 \mathrm{Kkgmol}^{-1}$. If molecular formula of sulphur is S_{n}. Then find the value of n. (at.wt.of $S=32$).

- Watch Video Solution

40. What would be the molar mas of a compound if 6.21 g of it dissolved in 24.0 g of chloroform a solution that has a boiling point of $68.04^{\circ} \mathrm{C}$?

Given that the boiling point of pure chloroform is $61.7^{\circ} \mathrm{C}$ and $K_{b} f$ or $c h l$ or $o f$ or $m=3.63^{\circ} \frac{C}{m}$.

- Watch Video Solution

41. A solution of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in water was prepared by dissolving some glycerol in 500 g of water. This solution has a boiling point of $100.42^{\circ} \mathrm{C}$ while pure water boils at $100^{\circ} \mathrm{C}$. What mass of glycerol was dissolved to make the solution ?
$\left(K_{b}\right.$ for water $\left.=0.512 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

42. A solution prepared by dissolving 1.25 g of oil of winter green (methyl sallicylate) in 99.0 g of benzene has a boiling point of $80.31^{\circ} \mathrm{C}$. Determine the molar mass of this compound. (B. P. of pure benzene $=80.10^{\circ} \mathrm{C}$ and K_{b} for benzene $=2.53^{\circ} \mathrm{Ckgmol}$.1)

- Watch Video Solution

43. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in 1 kg of water in a saucepan. At what temperature will the water boil (at 1 atm) ? K_{b} for water is $0.52 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

44. 45 g of ethylene glycol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ is mixed with 600 g of water. Calculate
(a) the freezing point depression and (b) the freezing point of solution.

Given $K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

45. Addition of $0.643 g$ of a compound to 50 mL of benzene (density: $0.879 \mathrm{gmL} L^{-1}$) lower the freezing point from $5.51^{\circ} \mathrm{C}$ to $5.03^{\circ} \mathrm{C}$. If K_{f} for benzene is $5.12 \mathrm{Kkgmol}^{-1}$, calculate the molar mass of the compound.

- Watch Video Solution

46. The molal freezing point depression constant of benzene $\left(C_{6} H_{6}\right)$ is $4.90 \mathrm{Kkgmol}^{-1}$. Selenium exists as a polymer of the type $S e_{x}$. When $3.26 g$ of selenium is dissolved in $226 g$ of benzene, the observed freezing point is $0.112^{\circ} \mathrm{C}$ lower than pure benzene. Deduce the molecular formula of selenium. (Atomic mass of $S e=78.8 \mathrm{gmol}^{-1}$)

- Watch Video Solution

47. 1.02 g of urea when dissolved in 98.5 g of certain solvent decreases its freezing point by 0.211 K .1 .60 g of unknown compound when dissolved in 86.0 g of the same solvent depresses the freezing point by 0.34 K . Calculate the molar mass of the unknown compound (Molar mass of urea $\left.=60 \mathrm{gmol}^{-1}\right)$.

- Watch Video Solution

48. Ethylene glycol (molar mass $=62 \mathrm{gmol}^{-1}$) is a common automobile antyfreeze. Calculate the freezing point of a solution containing 12.4 g of
this substance in 100 g of water. (Given $K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

49. Two elements A and B form compounds having molecular formula $A B_{2}$ and $A B_{4}$. When dissolved in $20 g$ of benzene, $1 g$ of $A B_{2}$ lowers the freezing point by 2.3 K , whereas 1.0 g of $A B_{4}$ lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{Kkgmol}^{-1}$. Calculate the atomic mass of A and B.

- Watch Video Solution

50. $200 \mathrm{~cm}^{3}$ of an aqueous solution of a protein contains 1.26 gof the protein. The osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein.

- Watch Video Solution

51. If 1.71 g of sugar (molar mass $=342$) are dissolved in $500 \mathrm{~cm}^{3}$ of a solution at 300 K , what will be its osmotic pressure?

$$
\left(R=0.083 L \bar{K}^{-1} \mathrm{~mol}^{-1}\right)
$$

- Watch Video Solution

52. Osmotic pressure of a solution obtained by mixing 100 mL of 1.4% solution of urea (mol mass $=60$) and 100 mL of 3.42% of cane sugar solution (mol mass $=342$) at $20^{\circ} \mathrm{C}\left(R=0.0821 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}\right)$

Watch Video Solution

53. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present per litre in its solution has an osmotic pressure of 4.98^{-}. If the osmotic pressure of the solution is 1.52^{-} at the same temperature, what would be its concentration?

- Watch Video Solution

54. A solution of an organic compound was prepared by dissolving 6.8 g in 100 g of water. Calculate the osmotic pressure of this solution at 298 K when boiling point of solution is $100.11^{\circ} \mathrm{C}$. Given K_{b} for water $=0.52$ Km^{-1} and $\mathrm{R}=0.082$ litre atm $\mathrm{k}^{-1} \mathrm{~mol}^{-1}$

D View Text Solution

55. A solution prepared by dissolving 8.95 mg of a given fragment in 35.0 mL of has an osmotic pressure of 0.335 torr at $25^{\circ} \mathrm{C}$. Assuming that the given fragment is non-electolyty. Calculate its molar mass.

- Watch Video Solution

56. A solution containing 15 g urea (molar mass $=60 \mathrm{gmol}^{-1}$) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass $=180 \mathrm{gmol}^{-1}$) in water. Calculate the mass of glucose persent in one litre of its solution.
57. Calculate the boiling point of solution when 2 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(M=142 \mathrm{gmol}^{-1}\right)$ was dissolved in 50 g of water, assuming $\mathrm{Na}_{2} \mathrm{SO}_{4}$ undergoes complete ionization . (k_{b} for water $\left.=0.52 \mathrm{Kkgmol}^{-1}\right)$.

- Watch Video Solution

58. Calculate the amount of $C a C I_{2}\left(\right.$ molar mass $\left.=111 \mathrm{gmol}^{-1}\right)$ which must be added to 500 g of water to lower its freezing point by 2 K assuming CaCI_{2} to be completely dissoviated $\left(K_{f} f\right.$ or $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

59. At $25^{\circ} \mathrm{C}, 3 \mathrm{~g}$ of a solute A in 100 mL of an aqueous solution gave an osmotic pressure of 2.5 atmosphere . What is the nature of solute (

- Watch Video Solution

60. 0.5 g KCl was dissolved in 100 g water, and the solution, originally at $20^{\circ} \mathrm{C}$ froze at $-0.24^{\circ} \mathrm{C}$. Calculate the percentage ionization of salt. K_{f} per 1000 g of water $=1.86^{\circ} \mathrm{C}$.

- Watch Video Solution

61. Two grams of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25.0 g of benzene shows a depression in freezing point equal to 1.62 K . Molal depression constant for benzene is $4.9 \mathrm{Kkg}^{-1} \mathrm{~mol}^{-1}$. What is the percentage association of acid if it forms dimer in solution?

- Watch Video Solution

62. A solution containing 3.100 g of BaCl_{2} in 250 g of water boils at $100.083^{\circ} \mathrm{C}$.Calculate the Van't Hoff factor and molality of BaCl_{2} in this solution . $\left(k_{b}\right.$ for water $=0.52 \mathrm{Km}^{-1}$, molar mass of $\left.\mathrm{BaCl}_{2}=208.3 \mathrm{gmol}^{-1}\right)$

D View Text Solution

63. The freezing point of a solution contaning $0.3 g$ of acetic acid in $43 g$ of benzene reduces by 0.3°. Calculate the Van's Hoff factor
$"\left(K_{f}\right.$ for benzene $\left.=5.12 \mathrm{Kkgmol}^{-1}\right)$ "

- Watch Video Solution

64. A solution contins 0.860 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 500 mL solution. Its osmotic pressure is found to be 0.690 atm at $27^{\circ} \mathrm{C}$. Calculate the value of Van't Hoff factor. (At mass $\mathrm{K}=39.0, \mathrm{~S}=32, \mathrm{O}=16 \mathrm{R}=0.082 \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
65. 0.6 mL of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ having density $1.06 \mathrm{gmL}^{-1}$ is dissolved in $1 L$ of water. The depression in freezing point observed for this strength of acid was $0.0205^{\circ} \mathrm{C}$.Calculate the Van't Hoff factor and dissociation constant of the acid. K_{f} for $H_{2} O=1.86 \mathrm{Kkg}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

66. Calculate the freezing point depression expected for 0.0711 m aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. If this solution actually freezes at $-0.320^{\circ} C$, what would be the value of Van't Hoff factor ?
(K_{f} for water is $1.86^{\circ} \mathrm{Cmol}^{-1}$).

- Watch Video Solution

67. What mass of $\mathrm{NaCI}\left(\right.$ molar mass $\left.=58.5 \mathrm{gmol}^{-1}\right)$ be dissolved in 65 g of water to tower the freezing point by $7.5^{\circ} \mathrm{C}$? The freezing point depression constant, K_{f}, for water is $1.86 \mathrm{Kkgmol}^{-1}$. Assume van't Hoff factor for $N a C I$ is 1.87 .

- Watch Video Solution

68. (a) Calculate the freezing point of solution when 1.9 g of MgCl_{2} ($\mathrm{M}=$ $95 \mathrm{~g} \mathrm{Mol}{ }^{-1}$) was dissolved in 50 g of water, assuming MgCl_{2} undergoes complete ionization. (K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$).
(b) (i) Out of 1 M glucose and 2 M glucose, which one has a higher boiling point and why?
(ii) What happens when the external pressure applied becomes more than the osmotic pressure of solution?

- Watch Video Solution

69. Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250 g of water . $\left(K_{b}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right.$ and molar mass of NaCl $=58.44 \mathrm{~g} \mathrm{~mol}^{-1}$)

- Watch Video Solution

70. A 1.00 molal aqueous solution of trichloroacetic acid $\left(\mathbb{C l}_{3} \mathrm{COOH}\right)$ is heated to its boiling point. The solution has the boiling point of $100.18^{\circ} \mathrm{C}$. Determine the van't Hoff factor for trichloroacetic acid. $\left(K_{b}\right.$ for water $\left.=0.512 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

71. A $0.1 M$ solution of potassium sulphate $K_{2} S O_{4}$ is dissolved to the extent of 80%. What would be its osmotic pressure at $27(\circ) C$.

- Watch Video Solution

72. 3.9 g of benzoic acid dissolved in 49 g of benzne shows a depreesion in freezing point of 1.62 K . Calculate the van't Haff factor and predict the nature of solutei (associated or dissociated). [Given : Molar mass of benzoic acid $=122 \mathrm{gmol}^{-1}, K_{f}$ for benzene $=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \mathrm{]}$.

- View Text Solution

1. Calculate the percentage composition in terms of mass of solution obtained by mixing 300 g of a 25% and 400 g of a 40% solution by mass.

- Watch Video Solution

2. 18 g of glucose (molar mass $180 \mathrm{gmol}^{-1}$) is present in $500 \mathrm{CM}^{3}$ of its aqueous solution. What is the molarity of the solution? What additional data is required if the molality of the solution is also required to be calculated?

- Watch Video Solution

3. A solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in water is labelled as 10% by weight . What would be the molality of the solution ?
4. What volume of $10 \%(\mathrm{w} / \mathrm{v})$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will be required to neturalise 100 mL of HCl solution containing 3.65 g of HCl ?

Watch Video Solution

5. What volume of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight $\left(d=1.85 \mathrm{gmL}^{-1}\right)$ and what mass of water must be taken to prepare 100 mL of 15% solution of $H_{2} S O_{4}\left(d=1.10 g m L^{-1}\right)$

- Watch Video Solution

6. What is the mole fraction of ethanol and water respectively in a sample of rectified spirit which contains 95% of ehtanol by weight ?

- Watch Video Solution

7. Calculate the mole fraction of water in mixture of 12 g water, 108 g acetic acid and 92 g ethanol.

- Watch Video Solution

8. One litre of a solution of $\mathrm{N} / 2 \mathrm{HCl}$ was heated in beaker and it was observed that when the volume of solution got reduce to $600 \mathrm{~mL}, 3.25 \mathrm{~g}$ of HCl was lost. Calculate the normality of the resulting solution.

- Watch Video Solution

9. Concentrated sulphuric acid has density of $1.9 \mathrm{~g} / \mathrm{mL}$ and $99 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass. Calculate the molarity of the acid.

- Watch Video Solution

10. Calculate the molarity and mole fraction of the solute in aqueous solution containing 3.0 g of urea per 250 gm of water (Mol. Wt. of urea $=$ 60)

- Watch Video Solution

11. The molality of a solution of ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in water is 1.55 m . How many grams of ethyl alcohol are dissolved in 2 kg of water ?

- Watch Video Solution

12. Commerically available concentrated hydrochloric acid contains 38% HCl by mass and density $1.19 \mathrm{gcm}^{-3}$. Calculate the molarity of this solution.

- Watch Video Solution

13. Calculate the formality of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ solution, 1.24 g of which are dissolved in $100 \mathrm{~cm}^{3}$ of the solution.

- Watch Video Solution

14.4 .0 g of NaOH are present in one decilitre of solution. Calcute Mole fraction of NaOH

Molality of solution
Molarity of solution.

- Watch Video Solution

15. What would be the molality of a solution obtained by mixing equal volumes of 30% by weight $H_{2} \mathrm{SO}_{4}\left(d=1.218 \mathrm{gmL}^{-1}\right)$ and 70% by weight $H_{2} \mathrm{SO}_{4}\left(d=1.610 \mathrm{gmL} L^{-1}\right)$? If the resulting solution has density $1.425 \mathrm{gmL}^{-1}$.
16. If at a particular temperature, the density of $18 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is $1.8 \mathrm{gcm}^{-3}$, calculate (a) molality, (b) $\%$ concentrating by weight of solute and solvent (c) mole fraction of water and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

17. Calculate the number of molecules of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 100 mL of 0.2 N oxalic acid solition.

- Watch Video Solution

18. In a solution of benzene in chlorofrom $\left(\mathrm{CHCl}_{3}\right)$, the mole fraction on benzene is 0.45 . Calculate its percentage by weight in the mixture .

- Watch Video Solution

19. $8.0575 \times 10^{-2} \mathrm{~kg}$ of Glauber's slat is dissolved in water to obtain $1 d \mathrm{~m}^{3}$ of a solution of density $1077.2 \mathrm{kgm}^{-3}$. Calculate the molarity, molality and mole fraction of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in solution.

- Watch Video Solution

20. Calculate the molarity of a solution of CaCl_{2} if on chemical analysis it is found that 500 mL of CaCl_{2} solution contain $1.505 \times 10^{23} \mathrm{Cl}^{-}$ions.

- Watch Video Solution

21. 100 mL of a solution containing 5 g of NaOH are mixed with 200 mL of $\frac{M}{5} \mathrm{NaOH}$ solution. Calculate the molartiy of the resulting solutions.

- Watch Video Solution

22. Density of 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of same solution is:

Watch Video Solution

23. Concentrated HNO_{3} is 69% by mass of nitric acid. Calculate the volume of the solution which contains $23 g$ of HNO_{3}. (Density of concentrated HNO_{3} solution is $1.41 \mathrm{gml}^{-1}$)

- Watch Video Solution

24. Battery acid is $4.27 \mathrm{M}_{2} \mathrm{SO}_{4}$ (aq) and has density of $1.25 \mathrm{~mL} \mathrm{~L}^{-1}$. What is the molality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution ?

- Watch Video Solution

25. Hunderd gram of $\mathrm{Al}\left(\mathrm{NHO}_{3}\right)_{3}$ [molar mass $213 \mathrm{gmol}^{-1}$] is dissolved in 1 L of water at $20^{\circ} \mathrm{C}$. The density of water at this temperature is $0.9982 \mathrm{~cm}^{-3}$ and the density of resulting solution is $0.999 \mathrm{gcm}^{-3}$. Calculate the molarity and molality of this solution.

- Watch Video Solution

26. What concentration of nitrogen should be present in a glass of water at room temperatrure ? Assume a temperature of $25^{\circ} \mathrm{C}$, a total pressure of one atmosphere and mole fraction of nitrogen in air as 0.78 (K_{H} for nitrogen $=8.42 \times 10^{-7} \frac{M}{m m H g}$

- Watch Video Solution

27.1 kg of water under a nitrogen pressure of 1 atmosphere dissolves 0.02 gm of nitrogenat 293 k. Calculate Henry' s law constant :
28. Cacluate the amount of CO_{2} dissolved at 4 atm in $1 \mathrm{dm}^{3}$ of water at 298 K . The Henry's law constant for CO_{2} at 298 K is 1.67 k bar .

- Watch Video Solution

29. At what partial pressure, oxygen will have a solubility of $0.06 \mathrm{gL} L^{-1}$ in water at 298 K ? Henry's law constant $\left(K_{H}\right)$ of O_{2} in water at 303 K is 46.82 k bar .(Assume the density of the solution to be the same as that of water).

- Watch Video Solution

30. The mole fraction of He gas in a saturated solution at $20^{\circ} \mathrm{C}$ is 1.25×10^{-6}. Calculate the pressure of He gas above the solution. (K_{H} of He at $20^{\circ} \mathrm{C}=144.98 \mathrm{k}$ bar)

- Watch Video Solution

31. The vapour pressure of methyl alcohol at 298 K is 0.158 bar. The vapour pressure of this liquid in solution with liquid B is 0.095 bar. Calculate the mole fraction of methyl alcohol in the solution if the mixture obeys Raoult's law.

- Watch Video Solution

32. At 293 K , ethyl acetate has vapour pressure of 72.8 torr of Hg and ethyl propionate has vapour pressure of 27.7 torr of Hg . Assuming their mixtures to obey Raoult's law determine the vapour pressure of a mixture containing 25 g of ethyl acetate and 50 g of ethyl propionate.

- Watch Video Solution

33. An aqueous solution containing 28% by mass of a liquid A (molecular mass $=140$) has a vapour pressure of 160 mm at $37^{\circ} \mathrm{C}$. Find the vapour pressure of pure liquid A (the vapour pressure of water at $37^{\circ} C$ is 150 mm)
34. Benzene and toluene form nearly ideal solution. At 298 K , the vapour pressure of pure benzene is 150 torr and of pure toluence is 50 torr.

Calculate the vapour pressure of the solution, containing equal weights of two substances at this temperature?

- Watch Video Solution

35. The vapour pressure of ethanol and methanol ate 44.5 mmHg and 88.7 mmHg , respectively. An ideal solution is formed at the same temperature by mixing $60 g$ of ethanol and $40 g$ of methanol. Calculate the total vapour pressure of the solution and the mole fraction of methanol in the vapour.
36. Methanol and ethanol froms nearly ideal solution at 300 K . A solution is made by mixing 32 g methanol and 23 g ethanol. Calculate the partial pressure of its constituents and the total pressure of the solution. (at $\left.300 \mathrm{~K}, p_{\left(\mathrm{CH}_{3} \mathrm{OH}\right)}^{\circ}=90 \mathrm{~mm} \mathrm{Hg}, p_{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)}^{\circ}=51 \mathrm{~mm} \mathrm{Hg}\right)$.

- Watch Video Solution

37. At $20^{\circ} \mathrm{C}$, the vapour pressure of pure liquid A is 22 mm Hg and that of pure liquid B is 75 mmHg . What is the composition of the solution of these two components that has vapour pressure of 48.5 mmHg at this temperature?

- Watch Video Solution

38. Two liquids A and B have vapour pressure of 0.658 bar and 0.264 bar respectively. In an ideal solution of the two , calculate the mole fraction of A at which the two liquids have equal partical pressure .
39. The liquids X and Y from ideal solution having vapour pressures 200 and 100 mm Hg respectively. Calculate the mole fraction of component X in vapour phase in equilibrium with an equimolar solution of the two .

- Watch Video Solution

40. At a certain temperature, the vapour pressure (in mm Hg) of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution is represented by $\mathrm{P}=119 \mathrm{x}+135$ where x is the mole fraction of $\mathrm{CH}_{3} \mathrm{OH}$. What are the vapour pressure of pure components at this temperature ?

- View Text Solution

41. 30 g of urea $\left(\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure
water at 298 K is 23.8 mm Hg .
(b) Write two differences between ideal solutions and non-ideal solutions,

- Watch Video Solution

42. The vapour pressure of water is 12.3 kPa at 300 K . Calculate vapour pressure of 1 molal solution of a solute in it.

- Watch Video Solution

43. The vapour pressure of pure water at $20^{\circ} \mathrm{C}$ is 17.5 mm of Hg . A solution of sucrose is prepared by dissoving 68.4 g of sucrese in 1000 g of water. Calculate the vapour pressure of the solution.

- Watch Video Solution

44. The vapour pressure of pure benzene at a certain temperature is 262 bar. At the same temperature the vapour pressure of a solution
containing 2 g of non - volatil, non -electrolytic solid in 100 g of benzene is 256 bar. What is the molecular mass of the solid ?

- Watch Video Solution

45. The vapour pressures of pure liquids $A B$ are 450 mm and 700 mm of Hg respectively at 350 K . Calculate the compositon of the liquid mixture if total vapour pressure is 600 mm of Hg . Also find the composition in the Vapour phase.

- Watch Video Solution

46. The vapour pressure of a 5% aqueous solution of a non-volatile organic substance at 373 K . Is 745 mm . Calculate the molecular mass of the solute.

- Watch Video Solution

47. At $25^{\circ} \mathrm{C}$, the vapour pressure of pure water is 23.76 mm of Hg and that of an aqueous dilute solution of urea is 22.98 mm of Hg . Calculate the molality of the solution.

- View Text Solution

48. What weight of the non-volatile solute urea' $\left(\mathrm{NH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}\right)$ needs to be dissolved in $100 g$ of water in order to decrease the vapour pressure of water by 25% ? What will be the molality of the solution?

- Watch Video Solution

49. What weight of the non -volatile solute, urea needs to be dissolved in 100 g of water, in order to decrease the vapour pressure of water by 25% ? What will be the molality of the solution?

- Watch Video Solution

50. The vapour pressure of water at 298 K is 0.0231 bar and the vapour pressure of a solution of 108.24 g of a compound in 1000 g of water at the same temperature is 0.0228 bar.Calculate the molar mass of the solute.

D View Text Solution

51. A solution containing 8 g of substances in 100 g of diethyl ether bolis at $36.86^{\circ} C$, whereas pure ether boils at $35.60^{\circ} C$. Determine the molecular mass of the solute. (For ether $K_{b} 2.02 \mathrm{Kgmol}^{-1}$)

(Watch Video Solution

52. The boiling of a solution containing 1.5 g of dichlorobenzene in 100 g of benzene was higher by $0.268^{\circ} \mathrm{C}$. Calculate the molar mass of dichlorobenzene (k_{b} for benzene 2.62 degree/molal)

- Watch Video Solution

53. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in 1 kg of water in a saucepan. At what temperature will the water boil (at 1 atm) ? K_{b} for water is $0.52 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

54. The boiling point of water $\left(100^{\circ} \mathrm{C}\right)$ becomes $100.52^{\circ} \mathrm{C}$ if 3 g of a non

- volatile solute is dissolved in 20 ml of it. Calculate the molar mass of the solute (k_{b} for water $=0.52 \mathrm{Km}^{-1}$).

- Watch Video Solution

55. A solution containing 0.513 g of naphthalene (molar mass $=128$) in 50 g of CCl_{4} gives a boiling point elevation of $0.402^{\circ} \mathrm{C}$ while a solution of 0.625 g of an unknown solute gives a boiling point elevation of $0.650^{\circ} \mathrm{C}$. Find the molar mass of the unknown solute .
56. 10 gram of a non -volatile solute when dissolved in 100 gram of benzene raises its boiling point 1°. What is the molecular mass of the solute ? $\left(k_{b}\right.$ for benzene $\left.\mathrm{Kmol}^{-1}\right)$.

- Watch Video Solution

57. What elevation in boiling point of alcohol is to be expected when 5 g of urea (molar mass $=60$) are dissolved in 75 g of it ? The molal elevation constant for alcohol is $1.15^{\circ} \mathrm{C}$.

- Watch Video Solution

58. At solution containing 12.5 g of non - electrolyte substance in 175 g of water gave boiling point elevation of 0.70 K . Calculate the molar mass of the substance. Molal elevation constant $\left(K_{b}\right)$ for water $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$?

- Watch Video Solution

59. A 4% solution (w / w) of sucrose ($\mathrm{M} 342 \mathrm{~g} \mathrm{~mol}^{-1}$) in water has a freezing point of 271.15 K Calculate the freezing point of 5% glucose ($M=$ $180 \mathrm{~g} \mathrm{~mol}^{-1}$) in water.
(Given: Freezing point of pure water 273.15 K)

- Watch Video Solution

60. Calculatate the mass of compound (molar mass $=256 \mathrm{gmol}^{-1}$ be the dissolved in 75 g of benzene to lower its freezing point by $0.48 K\left(k_{f}=5.12 \mathrm{Kkgmol}^{-1}\right.$.

- Watch Video Solution

61. A solution containing 18 g of a non - electrolytic solute in 200 g of $\mathrm{H}_{2} \mathrm{O}$ freezes at 272.07 K . Find the molecular mass of the solute . ($\left.K_{f}=1.86 \mathrm{Km}^{-1}\right)$.
62. 1.00 g of non - electrolyte dissolved in 100 g of $C S_{2}$, the freezing point lowered by 0.40 K . Find the molar mass of the solute .
$\left(k_{f}\right.$ for $\left.C S_{2}=5.12 \mathrm{Kkgmol}^{-1}\right)$.

- Watch Video Solution

63. When 2.56 g of sulphur is dissolved in 100 g of $C S_{2}$, the freezing point of the solution gets lowerd by 0.383 K . Calculate the formula of sulphur $\left(S_{x}\right)$. [Given K_{f} for $C S_{2}=3.83 \mathrm{Kkgmol}^{-1}$], [Atomic mass of sulphur=32g mol^{-1}]

- Watch Video Solution

64. What mass of ethylene glycol (molar mass $=62.0 \mathrm{~g} \mathrm{~mol}^{-1}$) must be added to 5.50 kg of water to lower the freezing point of water from $0^{\circ} \mathrm{C}$ to $-10.0^{\circ} C\left(k_{f}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$.
65. Visha took two aqueous solutions, one containing 7.5 g of urea (Molar mass $=60 \mathrm{~g} / \mathrm{mol}$) and the other containing 42.75 g of substance Z in 100 g of water, respectively. It was observed that both the solutions froze at the same temperature. Calculate the molar mass of Z.

- Watch Video Solution

66. When 30.0 g of a non - volatile solute having the empirical fromual $\mathrm{CH}_{2} \mathrm{O}$ are dissolved in 800 g of water, the solution freezes at $-1.16^{\circ} \mathrm{C}$. What is the molecular formula of the solute ? (k_{f} for water $=1.86 \mathrm{Km}^{-1}$)

- View Text Solution

67. In winter, the normal temperature in a Himalayan's valley was found to be $-10^{\circ} \mathrm{C}$. Is a 30% by mass of aqueous solution of ethylene glycol (molar mass $=62$) suitable for car radiator ? $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{~K} / \mathrm{m}\right)$.
68. An aqueus solution freezes at 272.07 K while pure water freezes at 273
K. Determine the molality and boiling point of the solution. Given $K_{f}=1.86 K / m, K_{b}=0.512 K / m$.

- Watch Video Solution

69. A solution of urea in water has a boiling point $101.128^{\circ} \mathrm{C}$. Calculate the freezing point of the same solution. Molal constant for water,k_{f} and k_{b} are $1.86 \mathrm{Km}^{-1}$ and $0.512 \mathrm{Km}^{-1}$ respectively.

- View Text Solution

70. Ethylene glycol $\left(\mathrm{HOH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}\right)$ is used as an antifreeze for water to be used in car radiators in cold places. How much ethylene glycol should be added to 1 kg of water to prevent it from freezing at $-10^{\circ} \mathrm{C}$? Molal depression constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
71. A solution of sucrose (molar mass $=342 \mathrm{~g} / \mathrm{mol}$) is prepared by dissolving 68.4 g of it per litre of solution, what is its osmotic pressure at 273 K ?
$\left(R=0.081 \mathrm{Latm}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

72. Osmotic pressure of a solution containing 3.5 g of dissolved protein per 50 cc of a solution is $25 \mathrm{~mm}(\mathrm{Hg})$ at $37^{\circ} \mathrm{C}$. Calculate the molar mass of protein.

- View Text Solution

73. The osmotic pressure of a solution containing 9.2 g of a substance (molar mass $=176$) in 302 ml of solution was found to be 4.1 atmosphere at $15.5^{\circ} \mathrm{C}$. Calculate the value of solution constant.

(D) Watch Video Solution

74. Calculte the osmotic pressure of a solution obtained by mixing 100 mL of 4.5% solution of urea (mol. Mass $=60$) and $100 \mathrm{~mL} \mathrm{pf} 3.42 \%$ solution of cane sugar (mol. Mass =342) at 300 K. (GivenR $\left.=0.0821 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}\right)$

Watch Video Solution

75. Three grams of non - volatile solute whenn dissolved in a litre of water shows an osmotic pressure of 2 bar at 300K. Calculate the molar mass of the solute. $\left(R=0.083 L \bar{K}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

76. Calculate the osmotic pressure of a solutions containing 10 gram each of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in $1000 \mathrm{~cm}^{3}$ of the solution at $25^{\circ} \mathrm{C} .\left(R=0.083 L \bar{K}^{-1} \mathrm{~mol}^{-1}\right)$.

(D) Watch Video Solution

77. A solution containing 10.2 g of glycrine per litre is found to be isotonic with 2% solution of glucose (molar mass $=180 \mathrm{gmol}^{-1}$). Calculate the molar mass of glycrine.

- Watch Video Solution

78. A 5% solution of cane sugar is isotonic with 0.877% solution of urea. Calculate the molecular mass of urea if the molecular mass of cane sugar is 342 .

- Watch Video Solution

79. The concentration in g / L of a solution of cane sugar (Molecular weight $=342$) which is isotonic with a solution containing 6 g of urea (Molecular weight =60) per litre is
80. Osmotic pressure of a solution contaning 7 g .of a protein per $100 \mathrm{~cm}^{3}$ of solution is 3.3×10^{-2} atm at $37^{\circ} \mathrm{C}$. Calculate the molar mass of protein.

- Watch Video Solution

81. A solution of an organic compound is preaped by dissolving 68.4 g in 1000 g of water .Calculate pressure of the solution at 293 K when elevation in boiling point is 0.104 and K_{b} for water is $0.53 \mathrm{Km}^{-1}$.

- View Text Solution

82. A solution of an organic compund is prepared by dissolving 34.2 g in 500 g of water.Calculate the molecular mass of the compound and freezing point of the solution. Given that k_{b} for water $=0.52 \mathrm{Km}^{-1}$, b.pt of solution $=100.14^{\circ} C, K_{f}$ for water $=1.87 \mathrm{Km}^{-1}$.
83. The average osmotic pressure of human blood is 7.7 atm at $40^{\circ} \mathrm{C}$.
(a) What would be the total concentrationn of various solutes in the blood?
(b) Assuming the concentration to be essentially the same as the molality , calculate the freezing point of blood (k_{f} for water $=1.86^{\circ} \mathrm{Cm}^{-1}$).

- Watch Video Solution

84. The osmotic pressure of blood is 8.2 atm at $37^{\circ} \mathrm{C}$. How much glucose should be used per litre of for an intravenous injection that is isotonic with blood?

- Watch Video Solution

85. 600 mL of aqueous solution contining 2.5 g of a protein shows an osmotic pressure of 25 mm Hg at $27^{\circ} \mathrm{C}$. Determine the molecular mass of
protein.

- View Text Solution

86. A decinormal solution of NaCl exerts an osmotic pressure of 4.6 atm. at 300 K. Calculate its degree of dissociation.
$\left(R=0.082 \mathrm{Latm} . \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

87. Calculate the freezing point of the one molar aqueous solution (density $1.04 g L^{-1}$) of $\mathrm{KCl}\left(k_{f}\right.$ for wateer $=1.86 \mathrm{kgmol}^{-1}$, atomic mass of $\mathrm{K}=39, \mathrm{Cl}=35.5$)

- View Text Solution

88. KBr undergoes 80% dissociation in its 0.5 M aqueous solution.Calculate the osmotic pressure of this solution at $287^{\circ} \mathrm{C}$.
89. Calculate the amount of sodium chloride (electrolyte) which must be added to one kilogram of water so that the freezing point is depressed by 3 K . Give k_{f} for water $=1.86 \mathrm{Kkgmol}^{-1}$

- Watch Video Solution

90. Phenol associates in benzene to from dimer $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)_{2}$. The freezing point of a solution containing 5 g of phenol in 250 g of benzene is lowered by $0.70^{\circ} \mathrm{C}$. Calculate the degree of association of phenol in benzene . $\left(k_{f}\right.$ for benzene $\left.=5.12 \mathrm{Km}^{-1}\right)$

- Watch Video Solution

91. 1.5 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ dissolved in 100 g of water shows a depression in freezing point equal to $0.28^{\circ} \mathrm{C}$. What is the percentage dissociation of
the salt ? $\left(k_{f}\right.$ for water $=1.86 K / m$ and molar mass of $\left.\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=261\right)$.

- View Text Solution

92. Calculate the difference between the boiling points of $0.2 \mathrm{~m} \mathrm{Na} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and 0.5 m glucose assuming complete dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. (K_{b} for water $\left.=0.52 \mathrm{Km}^{-1}\right)$.

- Watch Video Solution

93. The freezing point of solution containing $0.2 g$ of acetic acid in $20.0 g$ of benzene is lowered by $0.45^{\circ} \mathrm{C}$. Calculate the degree of association of acetic acid in benzene.

$$
\left(K_{f}=5.12 K^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}^{-1}\right)
$$

- Watch Video Solution

94. Calculate the normal freezing point of a sample of sea water containing $3.8 \% \mathrm{NaCl}$ and $0.12 \% \mathrm{MgCl}_{2}$ by mass . k_{f} for water $\left.=1.86 \mathrm{~km}^{-1}\right)$.

- Watch Video Solution

95. Calculate the molality of NaCl solution whose elevation in boiling point is equal to the depression in freezing point of 0.25 m sodium carbonate solution in water assuming complete dissociation of salts. ($\left.k_{f}=1.86 \mathrm{Km}^{-1}, k_{b}=0.52 \mathrm{Km}^{-1}\right)$

- View Text Solution

96. A $0.01 m$ aqueous solution of $K_{3}\left[F e(C N)_{6}\right]$ freezes ar $-0.062^{\circ} C$. What is the apparent percentage of dissociation? $\left[K_{f}\right.$ for water $=1.86$]

- Watch Video Solution

97. Calculate the amount of KCl which must be added to 1 kg of water so that the freezing point is depressed by $2 K$. (K_{f} for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$.

- Watch Video Solution

98. An aqueous solution containing 4.9 g of solute dissolved in 500 mL of the soluiton shows an osmotic pressure of 2.1 atmosphere at $27^{\circ} \mathrm{C}$. What is the nature of the solute (associated or dissociated, if the molar mass of solute is 57 a.m.u) ?

- Watch Video Solution

99. 0.01 M solution of KCl and CaCl_{2} are separately prepared in water. The freezing point of KCl is found to be $-2^{\circ} C$. What is the freezing point of CaCl_{2} aq. Solution if it is completely ionized?
100. Calculate the freezing point of an aquteous containing 10.50 g of MgBr_{2} in 200 g of water (molar mass of $M g B r_{2}=184 \mathrm{~mol}^{-1}, K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

ADVANCED LEVEL (PROBLEMS)

1. Concentrated sulphuric acid has density of $1.9 \mathrm{~g} / \mathrm{mL}$ and $99 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass. Calculate the molarity of the acid.

- Watch Video Solution

2. Calculate the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution whose molarity and molality are 10.8 M and 92.6 m respectively.
3. How many grams of wet NaOH contianing 15% water is required to prepare 6 L of 0.5 M NaOH solution?

Watch Video Solution

4. Calculate the resulting molarity of a solution obtained by adding 6.2 g of KOH to 500 mL of $\frac{M}{5} \mathrm{KOH}$ solution (density $=1.06 \mathrm{gml}^{-1}$). The density of resulting solution is $1.10 \mathrm{gm} L^{-1}$.

- Watch Video Solution

5. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05 . If the density of the solution is $1.2 \mathrm{gcm}^{-3}$, the molarity of urea solution is \qquad
Given data: Molar masses of urea and water are $60 \mathrm{gmol}^{-1}$ and $18 \mathrm{gmol}^{-1}$, respectively)

- Watch Video Solution

6. The mole fraction of X in the vapours in equilibrium with homogenous mixtuer of liquids X and Y is 0.42 . The vapour pressure of liquids X and Y at the same temperature are 406.5 and 140 torr respectively. Calculate the mole fraction of X in the solution.

- View Text Solution

7. Liquids A and B form ideal solution over the entire range of composition. At temperature T, equimolar binary solution of liquids A and B has vapour pressure 45 torr. At the same temperature, a new solution of A and B having mole fractions x_{A} and x_{B}, respectively, has vapours pressure of 22. torr. The value of x_{A} / x_{B} in the new solution is \qquad .
(Given that the vapour pressure of pure liquid A is 20 torr at temperature T).

- Watch Video Solution

8. A solution of A and B with $30 \mathrm{~mol} \% \mathrm{~A}$ is in equilibrium with its vapour which contains $40 \mathrm{~mol} \% \% \mathrm{~B}$. Assuming that the solution and the vapour behave ideally, calculate the ratio of vapour pressure of pure A and pure B.

- Watch Video Solution

9. How many grams of sucrose (molecular weight 342) should be dissolved in 100 g water in order to produce a solution with $105^{\circ} \mathrm{C}$ difference between the freezing point and the boiling point ? $\left(K_{b}=0.51^{\circ} \mathrm{Cm}^{-1},\left(K_{f}=1.86^{\circ} \mathrm{Cm}^{-1}\right)\right.$

- Watch Video Solution

10. If the boiling point of an aqueous solution containing a non-volatile solute is $100.15^{\circ} \mathrm{C}$. What is its freezing point? Given latent heat of fusion and vapourization of water $80 \mathrm{calg}^{-1}$ and $540 \mathrm{calg}^{-1}$, respectively.
11. A very small amount of a non-volatile solute (that does not dissociate) is dissolved in $56.8 \mathrm{~cm}^{3}$ of benzene (density $0.889 \mathrm{gcm}^{3}$). At room temperature, vapour pressure of this solution is 98.88 mmHg while that of benzene is 100 mmHg . Find the molality of this solution. If the freezing temperature of this solution is 0.73 degree lower than that of benzene, what is the value of molal the freezing point depression constant of benzene?

- Watch Video Solution

12. Calculate the amount of ice that will separate out on cooling a solution containing 50 g of ethylene glycol in 200 g water to $-9.3^{\circ} \mathrm{C}$ (K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)

- Watch Video Solution

13. At $10^{\circ} \mathrm{C}$, the osmotic pressure of urea solution is 500 mm . The solution is diluted and the temperature is raised to $25^{\circ} \mathrm{C}$. when the osmotic pressure is found to be 105.3 mm . Determine the extent of dilution.

- Watch Video Solution

14. One hundred gram of a 5 m urea solution are cooled to $-6^{\circ} \mathrm{C}$. What amount of urea will seprate out ? $\left(K_{f}=1.86 \mathrm{Km}^{-1}\right)$?

- View Text Solution

15. On dissolving 0.5 g of non-volatile, non-ionic solute to 39 g of benzene, its vapour pressure decreases from 650 mm of Hg to 640 mm of Hg . The depression of freezing point of benzene (in K) upon addition of the solute is \qquad .
(Given data: Molar mass \& molar freezing point depression is 78 g $\left.\mathrm{mol}^{-1} \& 5.12 \mathrm{Kkgmol}^{-1}\right]$

- Watch Video Solution

16. A 1.2% solution (w / v) of NaCl is isotonic with 7.2% solution $(\mathrm{w} / \mathrm{v})$ of glucose. Calculate degree of ionization and Van't Hoff factor of NaCl .

- Watch Video Solution

17. To $500 \mathrm{~cm}^{3}$ of water, $3.0 \times 10^{-3} \mathrm{~kg}$ acetic acid is added. If 23% of acetic acid is dissociated, what will be the depression in freezing point? K_{f} and density of water are $1.86 \mathrm{Kkgmol}^{-1}$ and $0.997 \mathrm{gcm}^{-3}$ respectively.

- Watch Video Solution

18. The freezing point of a 0.08 molal solution of NaHSO^{4} is $-0.372^{\circ} \mathrm{C}$.

Calculate the dissociation constant for the reaction.
K_{f} for water $=1.86 \mathrm{Km}^{-1}$

(D) Watch Video Solution

19. A storage battery contains a solution of $\mathrm{H}_{2} \mathrm{SO}_{4} 38 \%$ by weight. At this concentration, the Vant't Hoff factor is 2.50 . At what temperature will the battery contents freeze? $\left(K_{f}=1.86^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}\right)$

- Watch Video Solution

20. A certain mass of a substance when dissolved in $100 g C_{6} H_{6}$ lowers the freezing point by $1.28^{\circ} \mathrm{C}$. The same mass of solute dissolved in 100 g of water lowers of the freezing point by $1.40^{\circ} \mathrm{C}$. If the substance has normal molecular weight in benzene and is completely dissocited in water, into how many ions does it dissocite in water ? K_{f} for $\mathrm{H}_{2} \mathrm{O}$ and $C_{6} H_{6}$ are 1.86 and $5.12 \mathrm{Kmol}^{-1} \mathrm{~kg}^{\text {respectively. }}$

- Watch Video Solution

21. The plot given below shows P - T curves (where P is the pressure and T is the temperature) for two solvent X and Y and isomolal solution of NaCl in these solvents. NaCl compeletly dissociates in both the solvents.

On addition of equal number of moles of nonvolatile solute S in equal amount (in kg) of these solvents, the elevation of boiling point of solvent X is three times that solvent Y . Solute S is known to undergo dimerization is 0.7 in solvent Y, then what is the degree of dimerization in solvent X ?

- View Text Solution

CONCEPTUAL QUESTIONS

1. Which aqueous solution has higher concentration: 1 molar or 1 molal solution of the same solute?
2. Ethanol is an organic compound, yet it is freeely miscible with water, Explain.

Watch Video Solution

3. What is the normality of .
(a) $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, (b) $1.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ (c) 1.0 M NaOH ?

- Watch Video Solution

4. Which out of molarity or molality will change with change in temperature and why?

- Watch Video Solution

5. Will the molarity of a solution at $50^{\circ} \mathrm{C}$ be same, less or more than molarity at $25^{\circ} \mathrm{C}$?
6. The sum of mole fraction of all components of a solution is unity.

- Watch Video Solution

7. Differentiate between molarity and molality of a solution .How can we change molality value of solution in to molarity value?

- Watch Video Solution

8. How is partial pressure of a gas related to its mole fraction?

- Watch Video Solution

9. At a same temperature, hydrgone is more soluble in water than helium
. Which of them will have a higher value of K_{H} and why ?
10. What is the relation between normallity and molarity of a give solution of sulphuric acid?

- Watch Video Solution

11. What is the effect of temperataure on the solubility of sodium sulphtae decahydrate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4} 10, \mathrm{H}_{2} \mathrm{O}\right)$?

- View Text Solution

12. The dissolution of ammonium chloride in water is an endothermic process. What is the effect of temperature on its solubility?

- Watch Video Solution

13. Given reason, at higher altitudes, people suffere from a disease called anoxia. In the disease, they become weak and cannot think clearly.

- Watch Video Solution

14. What happens to the vapour pressure of water if a table spoon of sugar is added to it?

- Watch Video Solution

15. Explain why cooking is faster in a pressure cooker.

- Watch Video Solution

16. Why is the vapour pressure of liquid constant at a constant temperature?
17. Two liquids A and B are mixed and the resulting solution is found to be cooler. What do you conclude about the deviation from ideal behaviour?

- Watch Video Solution

18. Can we separate the components of azeotropic mixture by distillation?

- Watch Video Solution

19. Mixing of acetone with chloroform takes place with reduction in volume? What type of deviation from Raoult's law is shown in this case?

- Watch Video Solution

20. The bottle of liquid ammonia is generally cooled before opening the seal. Assign reson.
21. Two liquids A and B boil $145^{\circ} \mathrm{C}$ and $190^{\circ} \mathrm{Crespectivly}$. Which of them has a higher vapour pressre at $80^{\circ} C$?

- Watch Video Solution

22. Two liquids A and B on mixing produce a warm solution. Which type of deviation from Raoult's law does it show?

- Watch Video Solution

23. A solution of chloroform and acetone is an axemple of maximum boiling azeotrope. Explain.

- Watch Video Solution

24. The dissolution of ammonium chloride in water is an endothermic process. What is the effect of temperature on its solubility?

- Watch Video Solution

25. Out of 0.1 molal aqueous solution of glucose and 0.1 molal aqueous solution of KCl , which one will have higher boiling point and why?

- Watch Video Solution

26. Find the Van't Hoff factor of
a. $\mathrm{CH}_{3} \mathrm{COOH}$ in $\mathrm{H}_{2} \mathrm{O}$,
b. $\mathrm{CH}_{3} \mathrm{COOH}$ in benzene

- Watch Video Solution

27. What happens when the external pressure applied becomes more than the osmotic pressure of solution?

- Watch Video Solution

28. Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
1.2% sodium chloride
0.4% sodium chloride
1.2\% sodium chloride
0.4% sodium chloride.

- Watch Video Solution

29. When dehydrated fruits and vegetables are placed in water, they slowly swell and return to original form. Why? Would a temperature increase accelerate the process? Explain.
30. Why is great care taken in intravenous injections to have comparable concentration of solutions to be injected to that of blood plasma?

- Watch Video Solution

31. Which colligative property is preferred for the molar mass determination of macromolecules (i.e.,proteins and polmers)?

(Watch Video Solution

32. Will the depression in freezing point be same or different if 0.1 mole of sugar or 0.1 mole of glucose is dissolved in one litre of water?

- Watch Video Solution

33. Outer hard shells of two eggs are removed. One of the eggs is placed in pure water and the other is placed in saturated solution of sodium chloride. What will be observed and why?

- Watch Video Solution

34. Are equimolar solutions of sodium chloride and urea isotonic? Why?

- Watch Video Solution

35. Why is it advised to add ethylene glycol to water in car radiator while driving in a hill station?

- Watch Video Solution

36. Sodium chloride solution freezes at lower temperature then water but boils at higher temperature than water. Explain.
37. What is de-icing agent? How does it work?

- Watch Video Solution

38. Why is camphor preferred as a solvent for measuring the molecular mass of naphthalene by Rast method?

- Watch Video Solution

39. What will happen to the freezing point of a solution when mercuric iodide is added to an aqueous solution of potassium iodide ?

- Watch Video Solution

40. Arrange the following in increasing order of freezing point: $0.2 \mathrm{MNaOH}, 0.2 \mathrm{MNa}_{2} \mathrm{Co}_{3}, 0.1 \mathrm{MAgNO}_{3}, 0.1 M\left(\mathrm{NH}_{4}\right)_{2}, \mathrm{SO}_{4}, \mathrm{FeSO}_{4}, \mathrm{H}_{2}($

D View Text Solution

41. Why an azeotropic mixture gets distilled without any CHMange is composition ?

D Watch Video Solution

42. Under what condition Van't Hoff factor
(i) is
(a) equal to unity, (b) less than 1 , and c greater than 1.

Explain your answer.

- Watch Video Solution

43. State the condition resulting in reverse osmosis.

- Watch Video Solution

44. Which of the following solution has higher freezing point ? Justify your answer.
$0.05 \mathrm{MAI}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$0.1 \mathrm{MK}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.

- Watch Video Solution

NCERT FILE (IN-TEXT QUESTIONS)

1. Calculate the mass percentage of benzene $\left(C_{6} H_{6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ if $22 g$ of benzene is dissoved in $122 g$ of carbon tetrachloride.
2. Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.

- Watch Video Solution

3. Calculate the molarity of each of the following solutions:
a. 30 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution
b. 30 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ diluted to 500 mL .

- Watch Video Solution

4. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required in making 2.5 kgof
0.25 molal aqueous solution.

- Watch Video Solution

5. Calculate the (a) molality, (b) molartiy, and (c) mole fraction of $K I$ if the density of 20% (mass / mass) aqueous $K I$ is $1.202 g m L^{-1}$.

- Watch Video Solution

6. $H_{2} S$, a toxic gas with rotten egg like smell, is used for the qualitative analysis.If the solubility of $H_{2} S$ in water at $S T P$ is $0.195 m$, calculate Henry's law constant.

- Watch Video Solution

7. Henry's law constant for CO_{2} in water is $1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K .

Calculate the quantity of CO_{2} in 500 mL of soda water when packed under $2.5 \mathrm{atmCO} \mathrm{O}_{2}$ pressure at 298 K .

- Watch Video Solution

8. The vapour pressure of pure liquids A and B is 450 and 700 mmHg , respectively, at 350 K . Find out the composition of the liquid mixture if the total vapour pressure is 600 mmHg . Also find the composition of the vapour phase.

- Watch Video Solution

9. Vapour pressure of pure water at 298 K is 23.8 mmHg .50 g of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

- Watch Video Solution

10. The boiling point of water at 750 mmHg is $99.63^{\circ} \mathrm{C}$. How much sucrose is to be added to 500 g of water such that it boils at $100^{\circ} \mathrm{C}$.

- Watch Video Solution

11. Calculate the mass of ascorbic acid (Vitamin $C, C_{6} H_{8} O_{6}$) to be dissolved in 75 g of acetic acid to lower its melting poit by $1.5^{\circ}{ }^{C} . K_{f}=3.9 \mathrm{Kkgmol}^{-1}$

- Watch Video Solution

12. Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at $37^{\circ} \mathrm{C}$.

- Watch Video Solution

NCERT FILE (TEXTBOOK EXERCISES)

1. Define the term solution. How many types of solutions are formed ?

Write briefly about eaCHM type with an example.
2. Suppose a solid solution is formed between two substances, one whose particles are very large and the other whose particles are very small. What kind of solide solution is this likely to be ?

- Watch Video Solution

3. Define the following terms :
a. Mole fraction b. Molality
c. Molarity `d. Mass percentage.

- Watch Video Solution

4. Concentrated nitric acid used for laboratory works is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the density of solution is $1.504 \mathrm{gmL}^{-1}$?

- Watch Video Solution

5. A solution of glucose in water is labelled as 10 percent w / w, what would be the molality and mole fraction of each component in the solution? If the density of the solution is $1.2 g m L^{-1}$, then what shall be the molarity of the solution?

(Watch Video Solution

6. Volume of $0.1 M H C I$ required to react completely with 1 g equimolar mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} is

- Watch Video Solution

7. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solutionby mass. Calculate the mass percentage of solute in the resulting solution.

- Watch Video Solution

8. An antifreeze solution is prepared from 222.6 g of ethylene glycol $\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right]$ and 200 g of water. Calculate the molality of the solution. If the density of the solution is $1.072 \mathrm{gmL} L^{-1}$ then what shall be the molarity of the solution?

- Watch Video Solution

9. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogen. The level of contamination was 15 ppm (by mass).
(i) Express this in per cent by mass.
(ii) Determine the molality of chloroform in the water sample.

- Watch Video Solution

10. What role does the molecular interaction play in a solution of alcohol and water?
11. Why do gases always tend to be less soluble in liquids as the temperature is raised?

- Watch Video Solution

12. State Henry's law and mention some important applications ?

- Watch Video Solution

13. The partial pressure of ethane over a saturated solution containing $6.56 \times 10^{-2} g$ of ethane is 1 bar. If the solution contains $5.00 \times 10^{-2} g$ of ethane, then what shall be the partial pressure of the gas?

- Watch Video Solution

14. What is meant by positive and negative deviations from Raoult's law and how is the sign of $\Delta_{m i x} H$ related to positive and negative deviations from Raoult's law?

- Watch Video Solution

15. An aqueous solution of 2 per cent $(w t . / w t)$ non-volatile solute exerts a pressure of 1.004 bar at the boiling point of the solvent. What is the molecular mass of the solute?

- Watch Video Solution

16. Heptane and octane form ideal solution. At 373 K , the vapour pressures of the two liquid components are 105.2 kPa and 46.8 kPa respectively. What will be the vapour pressure of a mixture of 26.0 g of heptane and 35 g of octane ?
17. The vapour pressure of water is 12.3 kPa at 300 K . Calculate vapour pressure of 1 molal solution of a solute in it.

- Watch Video Solution

18. Calculate the mass of a non-volatile solute (molecular mass 40) which should be dissolved in $114 g$ octane to reduce its vapour pressure to 80%

- Watch Video Solution

19. A solution containing 30 g of a non-volatile non-electrolyte solute exactly in 90 g water has a vapour pressure of $2.8 k P a$ at 298 K . Further, 18 g of water is then added to solution, the new vapour pressure becomes $2.9 k P a$ at 298K. The solutions obey Raoult's law and are not dilute, molar mass of solute is
20.A 5% solution (by mass) of cane sugar in water has freezing point of 271 K. Calculate the freezing point of a 5% glucose (by mass) in water. The freezing point of pure water is 273.15 K .

- Watch Video Solution

21. Two elements A and B form compounds having molecular formula $A B_{2}$ and $A B_{4}$. When dissolved in $20 g$ of benzene, $1 g$ of $A B_{2}$ lowers the freezing point by 2.3 K , whereas 1.0 g of $A B_{4}$ lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{Kkgmol}^{-1}$. Calculate the atomic mass of A and B.

- Watch Video Solution

22. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present per litre in its solution has an osmotic pressure of 4.98^{-}. If the osmotic pressure of the solution is 1.52^{-} at the same temperature, what would be its concentration?
23. Suggest the most important type of intermolecular attractive interaction in the following pairs :
a. n - Hexane and n - octane
b. I_{2} and $C C l_{4}$
c. NaClO_{4} and water
d. Methanol and acetone
e. Acetonitrile $\left(\mathrm{CHM}_{3} \mathrm{CN}\right)$ and acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$

- Watch Video Solution

24. Based on solute - solvent interactions, arrange the following in order of increasing solubility in n-octane and explain the result. Cyclohexane, $\mathrm{KCl}, \mathrm{CHM}_{3} \mathrm{OH}, \mathrm{CHM}_{3} \mathrm{CN}$.

- Watch Video Solution

25. Among the following compounds, identify which are insoluble, partially soluble, and highly soluble in water ?
a. Phenol b. Toluene
c. Formic acid d. Ethylene glycol
e. CHMloroform f. Pentanol

- Watch Video Solution

26. If the density of some lake water is $1.25 \mathrm{gmL}^{-1}$ and contains $92 g$ of $N a^{\oplus}$ ions per $k g$ of water, calculate the molality of $N a^{\oplus}$ ions in the lake.

- Watch Video Solution

27. If the solubility product of $C u S$ is 6×10^{-16}, calculate the maximum molarity of CuS in aqueous solution.

- Watch Video Solution

28. Calculate the mass percentage of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CHM}_{3} \mathrm{CN}\right)$ when 6.5 g of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ is dissolved in 450 g of $\mathrm{CHM}_{3} \mathrm{CN}$.

- Watch Video Solution

29. Nalorphene $\left(C_{19} H_{22} \mathrm{NO}_{3}\right)$, similar to morphine , is used to combat withdrawal symptoms in narcotic users. The dose of nalorphene generally given is 1.5 mg . Calculate the mass of solution of $1.5 \times 10^{-3} \mathrm{~m}$ aqueous solution required for the above dose.

(Watch Video Solution

30. Calculate the amount of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ required for preparing 250 ml of 0.15 M solution in methanol.

- Watch Video Solution

31. The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid, and trifluoroacetic acid increases in the order given above. Explain briefly.

- Watch Video Solution

32. Calculate the depression in freezing point of water when 10 g of $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{CI}) \mathrm{COOH}$ is added to 250 g of water. $K_{a}=1.4 \times 10^{-3}, K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

33. 19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in the freezing point of water observed is $1.0^{\circ} \mathrm{C}$. Calculate the Van't Hoff factor and dissociation constant of fluoroacetic acid.

- Watch Video Solution

34. Vapour pressure of water at 293 K is 17.535 mm Hg. Calculate the vapour pressure of water at 293 K when 25 g of glucose is dissoved in 450 g of water.

- Watch Video Solution

35. Henry's law constant for the molality of methane in benzene at 298 K is $4.27 \times 10^{5} \mathrm{~mm} \mathrm{Hg}$. Calculate the solubility of methane in benzene at 298 K under 760 mm Hg .

- Watch Video Solution

36. 100 g of liquid A (molar mass $140 \mathrm{gmol}^{-1}$) was dissolved in 1000 g of liquid $B\left(\right.$ molar mass $\left.180 \mathrm{gmol}^{-1}\right)$. The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is $475 T$ or r
37. Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and naphthalene at 300 K are 50.71 mmHg and 32.06 mmHg , respectively. Calculate the mole fraction of benzene in vapour phase if $80 g$ of benzene is mixed with $100 g$ of naphthalene.

- Watch Video Solution

38. The air is a mixture of a number of gases. The major components are oxygen and nitrogen with approximate proportion of $20 \%: 79 \%$ by volume at 298 K . The water is in equilibrium with air at a pressure of 10atm At 298 K if Henry's law constants for oxygen and nitrogen at 298 K are $3.30 \times 10^{7} \mathrm{~mm}$ and $6.51 \times 10^{7} \mathrm{~mm}$, respectively, calculate the composition of these gases in water.

- Watch Video Solution

39. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 L of water at $25^{\circ} \mathrm{C}$, assuming that it is completely dissociated.

- Watch Video Solution

NCERT EXEMPLAR PROBLEMS (MULTIPLE CHOICE QUESTIONS (TYPE -I))

1. Which of the following units is useful in relating concentration of solution with its vapour pressure?
A. mole fraction
B. parts per million
C. mass percentage
D. molality

Answer: A

2. On dissolving sugar in water at room temperature solution feels cool to touch. Under which of the following cases dissolution of sugar will be most rapid?
A. Sugar crystals in cold water
B. Sugar crystals in hot water,
C. Powdered sugar in cold water.
D. Powdered sugar in hot water.

Answer: D

- Watch Video Solution

3. At equilibrium the rate of dissolution of a solid solute in a volatile liquid solvent is \qquad .
A. less than the rate of crystallisation
B. greater than the rate of crystallisation
C. equal to the rate of crystallisation
D. zero

Answer: C

- Watch Video Solution

4. A beaker contains a solution of substance'A' precipitation of substance ' A ' takes place when small amount of ' A ' is added to the solution. The solution is \qquad
A. saturated
B. supersaturated
C. unsaturated
D. concentrated

Answer: B

5. Maximum amount of a solid aolute that can be dissolved in a specified amount of a given liquid solvent does not depend upon \qquad
A. Temperature
B. Nature of solute
C. Pressure
D. Nature of solvent

Answer: C

- Watch Video Solution

6. Low concentration of oxygen in the blood and tissues of people living at high altitude is due to
A. low temperature
B. low atmospheric pressure
C. high atmospheric pressure
D. both low temperature and high atmospheric pressure

Answer: B

- Watch Video Solution

7. Considering the formation, breaking and stregth of hydrogen bond, pradict which of the following mixture will show a positive devition from Raoult's law?
A. Methanol and acetone.
B. Chloroform and acetone.
C. Nitric acid and water.
D. Phenol and aniline.

Answer: A

8. Colligative properties depend on
A. the nature of the solute particles dissolved in solution.
B. the number of solute particles in solution.
C. the physical properties of the solute particles dissolved in solution.
D. the nature of solvent particles.

Answer: B

- Watch Video Solution

9. Which of the following aqueous solution should have the highest boiling point?

A. 1.0 MNaOH

B. $1.0 \mathrm{MNaSO}_{4}$
C. $1.0 \mathrm{MNH}_{4} \mathrm{NO}_{4}$
D. $1.0 \mathrm{MKNO}_{3}$

Answer: B

- Watch Video Solution

10. The unit of ebullioscopic constant is \qquad .
A. $\mathrm{K} \mathrm{kg} \mathrm{mol}^{-1}$ or $\mathrm{K}(\text { molality })^{-1}$
B. $\mathrm{mol} \mathrm{kg} k^{-1}$ or K^{-1} (molality)
C. $\mathrm{kg} \mathrm{mol}^{-1}$ or $k^{-1}(\text { molality })^{-1}$
D. K mol kg^{-1} or K (molality)

Answer: A

- Watch Video Solution

11. In coparison to a 0.01 M solution of glucose, the depression in freezing point of a $0.01 \mathrm{M} \mathrm{MgCl}_{2}$ solution is......
A. the same
B. about twice
C. about three times
D. about six times

Answer: C

- Watch Video Solution

12. An unriped mango placed in a concentrated salt solution to prepare pickle shrivels because......
A. it gains water due to osmosis.
B. it loses water due to reverse osmosis.
C. it gains water due to reverse osmosis.
D. it loses water due to osmosis.

Answer: D

- Watch Video Solution

13. At a given temperature, osmotic pressure of a concentrated solution of a substance \qquad
A. is higher than that of a dilute solution.
B. is lower than that of a dilute solution.
C. is same as that of a dilute solution.
D. cannot be compared with osmotic pressure of dilute solution

Answer: A

- Watch Video Solution

14. Which of the following statements is false?
A. Two different solutions of sucrose of same molality prepared in different solvents will have the same depression in freezing point.
B. The osmotic pressure of a solution is given by the equation $\pi=c R T$ (where c is the molarity of the solution).
C. Decreasing order of osmotic pressure for 0.01 M aqueous solutions of barium chloride, potassium chloride, acetic acid and sucrose is $\mathrm{BaCl}_{2},>\mathrm{KCl}>\mathrm{CH}_{3} \mathrm{COOH}>$ sucrose.
D. According to Raoult's law, the vapour pressure exerted by a volatile component of a solution is directly proportional to its mole fraction in the solution.

Answer: A

- Watch Video Solution

15. The values of van't Hoff factors for $\mathrm{KCl}, \mathrm{NaCl}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$, respectively, are \qquad
A. 2, 2 and 2
B. 2, 2 and 3
C. 1, 1 and 2
D. 1, 1 and 1

Answer: B

- Watch Video Solution

16. Which of the following statements is false
A. Units of atmospheric pressure and osmotic pressure are the same.
B. In reverse Osmosis, solvent molecules move through a semipermeable membrane from a region of lower concentration of solute to a region of higher concentration.
C. The value of molal depression constant depends on nature of solvent.
D. Relative lowering of vapour pressure, is a dimensionless quantity.

Answer: B

- Watch Video Solution

17. Value of Henry's constant $K_{H} \ldots$
A. increases with increase in temperature.
B. decreases with increase in temperature.
C. remains constant.
D. first increases then decreases.

Answer: A

18. Value of Henry's constant $K_{H} \ldots$
A. greater for gases with higher solubility.
B. greater for gases with lower solubility.
C. constant for all gases.
D. not related to the solubility of gases.

Answer: B

- Watch Video Solution

19. Consider the figure given below and mark the correct option.
A. water will move from side (A) to side (B) if a pressure lower than osmotic pressure is applied on piston (B).
B. water will move from side (B) to side (A) if a pressure greater than
C. water will move from side (B) to side (A) if a pressure equal to osmotic pressure is applied on piston (B).
D. water will move from side (A) to side (B) if pressure equal to osmotic pressure is applied on piston (A).

Answer: B

- View Text Solution

20. We have three aqueous solutions of NaCl labelled as A, B and C with concentration $0.1 \mathrm{M}, 0.01 \mathrm{and} 0.001 \mathrm{M}$, respectively. The value of van't Hoff factor for these solutions will be in the order :
A. $i_{A}<i_{B}<l_{C}$
B. $i_{A}>i_{B}>i_{C}$
C. $i_{A}=i_{B}=i_{C}$
D. $i_{A}<i_{B}>i_{C}$

Answer: C

D Watch Video Solution

21. On the basic of information given below mark the Correct option .Information:
(P)In bromoethane and choroethane mixture intermolar interactions of A.A and B.B tupesare nearly same as A .B type intersections. (Q) In ethanol and acetone mixture A.A or B.B type inetermolecular interaction are stronger than A.B type interactions.
(R) In chloroform and acetone mixture A.A or B.B type intermolecular interactions are weaker than A. B type interactions.
A. Solution (B) and (C) will follow Raoult's law.
B. Solution (A) will follow Raoult's law.
C. Solution (B) will show negative deviation from Raoult's law.
D. Solution (C) will show positive deviation from Raoult's law.

Answer: B

- Watch Video Solution

22. Two beakers of capacity 500 mL were taken. One of these beakers, labelled as "A", was filled with 400 ml water whereas the beaker labelled " B " was filled with 400 mL of 2 M solution of NaCl . At the same temperature both the beakers were placed in closed containers of same material and same capacity as shown in figure given below:

At a given temperature, which of the following statement is correct about the vapour pressure of pure water and that of NaCl solution.
A. vapour pressure in container (A) is more than that in container (B).
B. vapour pressure in container (A) is less than that in container (B).
C. vapour pressure is equal in both the containers.
D. vapour pressure in container (B) is twice the vapour pressure in

Answer: A

- View Text Solution

23. If two liquids A and B from minimum boiling azeotrope at some specific composition then
A. $A-B$ interactions are stronger than those between $A-A$ or $B-B$.
B. vapour pressure of solution increases because more number of molecules of liquids A and B can escape from the solution.
C. vapour pressure of solution decreases because less number of molecules of only one of the liquids escape from the solution.
D. A-B interactions are weaker than those between $A-A$ or $B-B$.

Answer: D

- Watch Video Solution

24. 4 L of 0.02 M aqueous solution of NaCl was diluted by adding 1 L of water. The molality of the resultant solution is........
A. 0.004
B. 0.008
C. 0.012
D. 0.016

Answer: D

(Watch Video Solution

25. On the basis of information given below mark the correct option. Information : On adding acetone to methanol some of the hydrogen bonds between methanol molecules breaks.
A. At specific composition, methanol-acetone mixture will form minimum boiling azeotrope and will show positive deviation from Raoult's law.
B. At specific composition, methanol-acetone mixture forms maximum boiling azeotrope and will show positive deviation from Raoult's law
C. At specific composition, methanol-acetone mixture will form minimum boiling azeotrope and will show negative deviation from

Raoult's law
D. At specific composition, methanol-acetone mixture will form maximum boiling azeotrope and will show negative deviation from

Raoult's law.

Answer: B

- Watch Video Solution

26. K_{H} value for $\operatorname{Ar}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{HCHO}(\mathrm{g})$ and $C H_{4}(g)$ are $40.39,1.67$, 1.83×10^{-5} and 0.413 respectively. Arrange these gases in the order of their increastively solubility.
A. $\mathrm{HCHO}<\mathrm{CH}_{4}<\mathrm{CO}_{2}<\mathrm{Ar}$
B. $\mathrm{HCHO}<\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{Ar}$
C. $\mathrm{Ar}<\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{HCHO}$
D. $\mathrm{Ar}<\mathrm{CH}_{4}<\mathrm{CO}_{2}<\mathrm{HCHO}$

Answer: C

- Watch Video Solution

NCERT EXEMPLAR PROBLEMS (MULTIPLE CHOICE QUESTIONS (TYPE -II))

1. Which of the following factor (s) affect the solubility of a gaseous solution in the fixed volume of liquid solvent?
(i) Nature of solute
(ii) Temperatute
(iii) Pressure
A. nature of solute (ii) temperature (iii) pressure
B. (i) and (iii) at constant T
C. (ii) and (iii) constant P
D. (iii) only

Answer: A::B

D Watch Video Solution

2. Intermolecular forces between two benzene molecules are nearly of same strength as those between two toluene molecules. For a mixture of benzene and toluene, which of the following are not true?
A. $\Delta_{\text {mix }} H=$ zero
B. $\Delta_{\text {mix }} V=z e r 0$
C. These will form minimum boiling azeotrope .
D. These will not form ideal solution.

Answer: C::D

3. Relative lowering of vapour pressure is a colligative property because
A. It depends on the concentration of a non electrolyte solute in solution and does not depends on the nature of the solute molecules.
B. It depends on number of particles of electrolyte solute in solution and does not depends on the nature of the solute particles
C. It depends on the concentratio of an electrolyte is solution as well as on the nature of the solute molecules.
D. It depends of the conentration of an electrolyte or non electrolyte solute in solution as well as on the nature of solute molecules.

Answer: A: B

- Watch Video Solution

4. van't Hoff factor (i) is given by the expression
A. $i=\frac{\text { Normal molar mass }}{\text { Abnormal molar mass }}$
B. $i=\frac{\text { Abnormal molar mass }}{\text { Normal molar mass }}$
C. $i=\frac{\text { Observed colligative property }}{\text { Calculated colligative property }}$
D. $i=\frac{\text { Calculated colligative property }}{\text { Observed colligative property }}$

Answer: A::C

- Watch Video Solution

5. Isotonic solutions must have the same.
A. solute
B. density
C. elevation in boiling point
D. depression in freezing point

- Watch Video Solution

6. Which of the following binary mixture will have same composition in liquid and vapour phase?
A. Benzene-Toluence
B. Water - Nitric acid
C. Water - Ethanol
D. n-Hexane - n -Heptane

Answer: B::C

- Watch Video Solution

7. What are isotonic solutions?
A. solute and solvent both are same
B. osmotic pressure is same
C. solute and solvent may or not be same
D. solute is always same solvent may be different.

Answer: A::B

- Watch Video Solution

8. For a binary ideal liquid solution, the variation total vapour pressure versus composition of solution is given by which of the curves?
A.
B.
B.
C.
D.
9. Colligative properties are observed when \qquad
A. a non volatile solid is dissolved in a volatile liquid
B. a non volatile liquid is dissolved in another volatile liquid.
C. a gas is dissolved in non vol
D. solute is always same solvent may be different.

Answer: A::B

- Watch Video Solution

NCERT EXEMPLAR PROBLEMS (SHORT ANSWER TYPE QUESTIONS)

1. Components of a binarey mixture of two liquids A and B were being
separted by distillation. After some time separation of components stopped and composition of vapour phase vecame same as that of liquid
phase. Both the components stated coming in the distillate. Explain why this happened?

- Watch Video Solution

2. Explain in why on addition of 1 mole of NaCl to 1 L of water, the boiling point of water increases, while addition of 1 mole of methyl alcohol to 1 L of water decreases its boiling point .

- Watch Video Solution

3. Explain the solubility rule "like dissolves like" in terms of intermolecular forces that exist in solutions,

- Watch Video Solution

4. Concentration terms such as mass percentage, ppm, mole fraciton and molality are independent of temperature, however molarity is a function
of temperature. Explain.

- Watch Video Solution

5. What is the significance of Hanry's law constant K_{H} ?

- Watch Video Solution

6. why are the aquatic species more comofortable in cold water in comparision to warm water?

- Watch Video Solution

7. (a) Explain the following phenomena with the help of Henry's law.
(i) Painful condition known as bends.
(ii) Feeling of weakness and discomfort in breating at high altitude.
(b) Why soda water bottle kept at room temperature fizzes on opening?
8. Why is the vapous pressure of an aqueous solution of gulucose lower than that of water ?

- Watch Video Solution

9. How does sprinking of salt help in clearing the snow covered roads in hilly areas? Explain the phenomenon involved in the process.

- Watch Video Solution

10. What is "semi permeable membrane"?

D Watch Video Solution

11. Give an example of a material used for makin gsemipermeable membrance for carrying out reverse osmosis.

NCERT EXEMPLAR PROBLEMS (MATCHING TYPE QUESTIONS)

1. Match the items given in Column I and Column II.

- View Text Solution

2. Match the items given in column I with type of solutions given in Column II.
3. Match the laws given in Column I with expresions given in Column II.
4. Match the terms given in Column I with expressions given in Column II.

- View Text Solution

NCERT EXEMPLAR PROBLEMS (ASSERTION AND REASON TYPE QUESTIONS)

1. Assertion (A) Molarity of a solution in liquid state changes with temperature.

Reason (R) The volume of a solution charges with change in temperature.
A. Assertion and reason both are correct statemens and reason is correct explanation for assertion.
B. Assertioin and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion and reason both are incorrect statements.

Answer: A

- Watch Video Solution

2. Assertion (A) When methyl alcohol is added to water, boiling point of water increases.

Reason (R) When a volatile solute is added to a volatile solvent evevation in boiling point is observed.
A. Assertion and reason both are correct statemens and reason is correct explanation for assertion.
B. Assertioin and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion and reason both are incorrect statements.

Answer: D

- Watch Video Solution

3. Assertion (A) When NaCl is added to water a depression in freezing point is observed.

Reason (R) The lowering of vapour pressure of a solution causes depression in the freezing point.
A. Assertion and reason both are correct statemens and reason is correct explanation for assertion.
B. Assertioin and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion and reason both are incorrect statements.

Answer: A

4. Assertion (A) When solution is separted from the pure solved semipermeable membrane, the solvent molecules pass through it from pure solvent side to the solution side.

Reason (R) Diffusion solvent occurs from a region of concentration solution to a region of low concentration soluton.
A. Assertion and reason both are correct statemens and reason is correct explanation for assertion.
B. Assertioin and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion and reason both are incorrect statements.

Answer: C

- Watch Video Solution

QUICK MEMORY TEST (SAY TRUE OR FALSE)

1. Both molality and mole fraction are independent of temperature.

- Watch Video Solution

2. The solubilities of all ionic substances increase with increase of temperature.

- Watch Video Solution

3. Depression in freezing point of solution of electrolytes are generally

- Watch Video Solution

4. If observed value of the colligative property is more than the normal value of same property then Van't Hoff factor is more than one.
5. Van't Hoff factor, $i<1$ if there is association of the solute in the solution.

- Watch Video Solution

6. In coparison to a 0.01 M solution of glucose, the depression in freezing point of a $0.01 \mathrm{M} \mathrm{MgCl}_{2}$ solution is......

- Watch Video Solution

7. Lowering in vapour pressure is a colligative property.

- Watch Video Solution

8. Two liquids A and B boil at $125^{\circ} \mathrm{C}$ and $146^{\circ} \mathrm{C}$ respectively. Liquid A will have higher vapour pressure.
9. Why is freezing point depression of 0.1 M sodium chloride solution nealy twice than that of 0.1 M glucose solution ?

- Watch Video Solution

10. Why does a solution of ethanol and cyclohexane show positive deviation from Raoult's law?

- Watch Video Solution

11. Colligative properties of a solution depends upon

- Watch Video Solution

12. Which liquids pair shows a positive deviation from Raoult's law?

QUICK MEMORY TEST (COMPLETE THE MISSING LINKS)

1. For a non-ideal solution showing positive deviation from Raoult's law,
$\Delta H_{\text {mixing }}$ mixing is and $\delta V_{\text {mixing }}$ is \qquad

- View Text Solution

2. The solubility of sodium hydroxide increases with increase of temperature.

- Watch Video Solution

3. For 100% dissociation of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, Van't Hoff factor $\mathrm{i}=$......
4. If observed molar mass of a solute is more than calculated molar mass, then the solute undergoes \qquad in the solvent.

- View Text Solution

5. Assertion (A): 0.1 M solution of NaCl has greater osmotic pressure than 0.1 M solution of glucose at same temperature.

Reason (R): In solution, NaCl dissociates to produce more number of particles.

- Watch Video Solution

6. The molarity of pure water is

- Watch Video Solution

7. The boiling point of 0.1 MKCl solution is \qquad than $100^{\circ} \mathrm{C}$.
8. A solution which has lower osmotic pressure compared to that of other solution is called \qquad

- Watch Video Solution

9. $\Delta H_{\text {mixing }}$ for solution having positive deviations from Raoult's law is

- Watch Video Solution

10. The best colligative property used for the determination of molecular mases of polymers is :

- Watch Video Solution

11. Desalination of sea water is based on the phenomenon.
12. People taking lot of salt experience puffiness or swelling of the body due to

- Watch Video Solution

QUICK MEMORY TEST (CHOOSE THE CORRECT ALTERNATIVE)

1. The concentration term independent of temperature is molarity/molality.

- View Text Solution

2. Chloroform + Benzene form non-ideal solution showing positive/negative deviations.
3. A pure NaCl solution with concentration more than 0.91% is called hypertonic/hypotonic.

- Watch Video Solution

4. Assertion (A): 0.1 M solution of NaCl has greater osmotic pressure than 0.1 M solution of glucose at same temperature.

Reason (R): In solution, NaCl dissociates to produce more number of particles.

- Watch Video Solution

5. A solution showing a large positive deviation from ideal behaviour have

- Watch Video Solution

6. The freezing of aqueous $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$, solution is less / more than 0.2 M NaOH solution.

- Watch Video Solution

7. For a solute undergoing association in a solvent, the van't hoff factor

(Watch Video Solution

8. What will happen if pressure greater than the osmotic pressure is applied on the solution separated by a semi-permeable membrane from the solvent?

D Watch Video Solution

9. Elevation in boiling point of 0.1 m CaCl , solution less / more than 0.1 m NaCl solution.

REVISION EXERCISES (MULTIPLE CHOICE QUESTIONS)

1. Which of the following concentration terms is independent on temperature ?
A. Normality
B. Mass - Volume per cent
C. Molality
D. Molarity

Answer: C

- Watch Video Solution

2. Colligative properties of the solution depend on:
A. the nature of the solute
B. the nature of the solvent
C. the number of particles of solute
D. the molecular mass of solute

Answer: C

D Watch Video Solution

3. What are constant boiling mixture called?
A. ideal solutions
B. azeotropes
C. isotonic
D. None of these

Answer: B

4. The molality of pure water is
A. 55.5
B. 50.5
C. 18
D. 60.5

Answer: A

- Watch Video Solution

5. The value of Henry's constant K_{H}.
A. increases with increase in temperature
B. decreases with increase in temperature
C. remains constant
D. first increases, then decreases

Answer: A

- Watch Video Solution

6. An aqueous solution containing 6 g of urea in 500 mL of solution has a density equal to 1.05 . If the molar mass of urea is 60 , then the molality of solution is :
A. 0.2
B. 0.19
C. 0.1
D. 1.2

Answer: B

D Watch Video Solution

7. The mole fraction of solute in 2.5 m aqueous solution is
A. 0.055
B. 0.043
C. 0.86
D. 0.25

Answer: B

- Watch Video Solution

8. Battery acid is $4.27 \mathrm{MH}_{2} \mathrm{SO}_{4}$, (aq) and has the density of $1.25 \mathrm{~g} m L^{-1}$.

The molality of $\mathrm{H}_{2} \mathrm{SO}_{4}$, in the solution is
A. 3.416 m
B. 3.342 m
C. 5.135 m
D. 2.135 m

Answer: C

D Watch Video Solution

9. A 7 M solution of potassium hydroxide (KOH) in water contains 40% by weight of KOH . The density of the solution is
A. 1.96
B. 1.28
C. 0.49
D. 0.98

Answer: D

- Watch Video Solution

10. The vapour pressure of a pure liquid 'A' is 70 torr at $27^{\circ} \mathrm{C}$. It forms an ideal solution with another liquid B. The mole fraction of B is 0.2 and total
pressure of the solution is 84 torr at $27^{\circ} \mathrm{C}$. The vapour pressure of pure liquid B at $27^{\circ} \mathrm{C}$ is :
A. 14 torr
B. 56 torr
C. 140 torr
D. 70 torr

Answer: C

- Watch Video Solution

11. The vapour pressure of a solution prepared by dissolving 1 mol of liquid A and 2 mol of liquid B has been found to be 38 torr. The vapour pressure of pure A and pure B are 45 and 36 torr respectively. The solution
A. shows negative deviation
B. is a minimum boiling azeotrope
C. is an ideal solution
D. has A Hmixing positive

Answer: A

- View Text Solution

12. Which pair will not form an ideal solution ?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
B. $C_{6} H_{5} B r$ and $C_{6} H_{5} I$
C. $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Answer: D

- Watch Video Solution

13. The partial pressure of oxygen in air is 0.2 atm. What is the conentration of dissolved oxygen in water in equilibrium with air at $25^{\circ} \mathrm{C}$? (K_{H} for oxgyen at $25^{\circ} C$ is $\left.4.3410^{4} \mathrm{~atm}\right)$.
A. $2.56 \times 10^{-4} M$
B. $3.68 \times 10^{-6} M$
C. $4.26 \times 10^{-4} M$
D. $2.96 \times 10^{-6} M$

Answer: A

- Watch Video Solution

14. A solution of solute X in benzene boils at $0.126^{\circ} \mathrm{C}$ higher than benzene. What is the molality of the solution?
A. 0.05
B. 2
C. 1
D. 20

Answer: A

- Watch Video Solution

15. The osmotic pressure of 0.2 molar solution of urea at $300 K(R=0.082)$ litre atm $\mathrm{mol}^{-1} K^{-1}$ is
A. 4.92 atm
B. 1 atm
C. 0.2 atm
D. 27 atm

Answer: A

16. An aqueous solution containing 1 g of urea boils at $100.25^{\circ} \mathrm{C}$. The aqueous solution containing 3 g of glucose in the same volume will boil be
A. $100.75^{\circ} \mathrm{C}$
B. $100.5^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$
D. $100.25^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

17. When $0.6 g$ of urea dissolved in $100 g$ of water, the water will boil at (K_{b} for water $=0.52 k J . \mathrm{mol}^{-1}$ and normal boiling point of water $\left.=100^{\circ} C\right)$:
A. 372.48 K
B. 273.52 K
C. 373.052 K
D. 273.052 K .

Answer: C

- Watch Video Solution

18. The osmotic pressure of equimolar solutions of $\mathrm{BaCl}_{2}, \mathrm{NaCl}$,and glucose follow the order
A. $\mathrm{BaCl}_{2},>\mathrm{NaCl}>$ glucose
B. $\mathrm{BaCl}_{2}>$ glucose $>\mathrm{NaCl}$
C. Glucose $>\mathrm{BaCl}_{2}>\mathrm{NaCl}$
D. $\mathrm{NaCl}>\mathrm{BaCl}_{2}>$ glucose

Answer: A

19. The van't Hoff factor for $0.1 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74 . The degree of dissociation is
A. 91.3%
B. 0.87
C. 1
D. 0.74

Answer: B

- Watch Video Solution

20. 0.01 M solution each of urea, common salt and sodium sulphate are taken, the ratio of depression in freezing point of these solutions is
A. 1:1:1
B. 1:2:1
C. 1:2:1
D. 1:2:3

Answer: C

- View Text Solution

21. Which of the following solutions shows maximum depression in freezing point?
A. $0.5 M L i_{2} S O$
B. 1 M NaCl
C. $0.5 \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{2}$
D. $0.5 \mathrm{MBaCl}_{2}$

Answer: C

22. The number of moles of NaCl in 3 litres of 3 M solution is:
A. 1
B. 3
C. 9
D. 27

Answer: C

Watch Video Solution

23. $C a C l_{2}$ is used as
A. to minimise the effect of snow on roads
B. to minimise pollution
C. to minimise the accumulation of dust on the road
D. to minimise the wear and tear of the roads

D Watch Video Solution

24. For solutes which do not undergo any association or dissociation in a solute, van't Hoff factor (i) will be
A. less than 1
B. more than 1
C. equal to 1
D. zero

Answer: C

- Watch Video Solution

25. Which of the following 0.1 m aqueous solution is likely to have the highest boiling points ?
A. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. KCl
C. Glucose
D. Urea

Answer: A

- Watch Video Solution

26. Which of the following aqueous solutions will have the minimum freezing point?
A. 0.1 m FeCl 3
B. $0.1 \mathrm{~m} \mathrm{BaCl} l_{2}$
C. 0.1 m NaCl
D. 0.1 m Urea
27. Which has the minimum freezing point ?
A. same boiling point
B. same vapour pressure
C. same melting point
D. same osmotic pressure

Answer: D

- Watch Video Solution

28. Mole fraction of a solute in 2.5 molal aqueous solution is
A. 0.43
B. 0.043
C. 4.3
D. 43

Answer: B

- Watch Video Solution

29. Which of the following is not ture for acidic solutions at room temperature.
A. molality
B. molarity
C. mass\%
D. mole fraction

Answer: B

30. Two solutions A and B are separated by semipermeable membrane. If liquid flows from A to B, than
A. A is more concentrated than B
B. A is less concentrated than B
C. both A and B are of same concentration
D. both A and B get diluted

Answer: B

- Watch Video Solution

31. The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively.
A. less than one and greater than one
B. less than one and less than one
C. greater than one less than one
D. greater than one and greater than one

Answer: C

- Watch Video Solution

32. At the higher altitudes the boiling point of water lowers because
A. the atmospheric pressure is low
B. the atmospheric pressure is high
C. the temperature is low
D. the temperature is high

Answer: A

- Watch Video Solution

33. Maximum amount of a solid slute that can be dissolved in a specified amount of a given liquid solvent does not depend upon \qquad . .
A. pressure
B. temperature
C. nature of solute
D. nature of solvent

Answer: A

- Watch Video Solution

34. Low concentration of oxygen in the blood ndtissues of people living at high altitude is due to.
A. low temperature
B. low atmospheric pressure
C. high atmospheric pressure
D. none of the above

Answer: B

- Watch Video Solution

35. The units of ebullioscopic constant is.
A. Kkgmol^{-1}
B. $m o l k g k^{-1}$
C. $k m o l k g^{-1}$
D. none of the above

Answer: A

- Watch Video Solution

36. Molar solution means 1 mole of solute present in
A. 1000 g of solvent
B. 1000 g of solution
C. 1 litre of solvent
D. 1 litre of solution

Answer: D

- Watch Video Solution

37. Increasing the temperature of an aqueous solution wil case
A. decrease in molality
B. decrease in molarity
C. decrease in mole fraction
D. decrease in mass percent

Answer: B

38. Colligative properties depend on \qquad
A. shapes of the particles
B. nature of the particles only
C. nature of the solvent only
D. number of particles only

Answer: D

- Watch Video Solution

39. Molal elevation constant.
A. Cryoscopic constant
B. Gas constant
C. Ebullioscopic constant
D. Freezing point depression constant

Answer: C

- Watch Video Solution

40. Which of the following has highest value of Van't Hoff factor?
A. $0.1 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. $0.1 \mathrm{M} C_{6} H_{12} O_{6}$
C. $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
D. 0.1 MNaCl

Answer: A

- Watch Video Solution

1. Ethylene glycol in water is commonly used as an antifreeze solution is car radiators. 12.4 g of this substance is dissolved in 100 g of water (k_{f} and k_{b} for water are $1.86 \mathrm{~km}^{-1}$ and $0.52 \mathrm{~km}^{-1}$ respectively).

What is the mole fraction of ethylene glycol in the solution ?

- Watch Video Solution

2. Ethylene glycol (molar mass $=62 \mathrm{gmol}^{-1}$) is a common automobile antyfreeze. Calculate the freezing point of a solution containing 12.4 g of this substance in 100 g of water. (Given $K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

3. Ethylene glycol (molar mass $=62 \mathrm{gmol}^{-1}$) is a common automobile antyfreeze. Calculate the freezing point of a solution containing 12.4 g of this substance in 100 g of water. (Given $K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$
4. Ethylene glycol (molar mass $=62 \mathrm{gmol}^{-1}$) is a common automobile antyfreeze. Calculate the freezing point of a solution containing 12.4 g of this substance in 100 g of water. (Given $K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

5. Ethylene glycol (molar mass $=62 \mathrm{gmol}^{-1}$) is a common automobile antyfreeze. Calculate the freezing point of a solution containing 12.4 g of this substance in 100 g of water. (Given $K_{f} f$ or water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$

Watch Video Solution

6. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at body temperature, 37° C Hence, molarity of an intravenous
glucose solution be to have the same osmotic pressure as blood is :

- Watch Video Solution

7. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at body temperature, 37° C Hence, molarity of an intravenous glucose solution be to have the same osmotic pressure as blood is :

- Watch Video Solution

8. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at body temperature, 37° C Hence, molarity of an intravenous glucose solution be to have the same osmotic pressure as blood is :

- Watch Video Solution

9. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at body temperature, 37° C Hence, molarity of an intravenous
glucose solution be to have the same osmotic pressure as blood is :

- Watch Video Solution

10. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at body temperature, 37° C Hence, molarity of an intravenous glucose solution be to have the same osmotic pressure as blood is :

- Watch Video Solution

11. Given below is the sketch of a plant for carrying out a process .

Name the process occurring in the above plant.

- View Text Solution

12. Given below is the sketch of a plant for carrying out a process .

To which container does the net flow of solvent take place?

- View Text Solution

13. Given below is the sketch of a plant for carrying out a process .

Name one SPM which cane be used in this plant.

- View Text Solution

14. Given below is the sketch of a plant for carrying out a process .

Give one particle use of the plant.

- View Text Solution

15. Given below is the sketch of a plant for carrying out a process .

Give one use of the process opposite to the process in.

- View Text Solution

REVISION EXERCISES (ASSERTION REASON QUESTIONS)

1. Assertion (A): $\Delta_{m i x} H$ and $\Delta_{m i x} V$ are zero for an ideal solution.

Reason (R): The interactions between the particles of the components of
a solution are almost identical as between the particles in liquids.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

2. Assertion (A): The increasing pressure on water decreases its freezing point.

Reason (R):The density of water is maximum at 273 K .
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

3. Assertion (A): $0.1 M$ solution of glucose has same increment in freezing point than has $0.1 M$ solution of urea.

Reason (R): K_{f} for both has different value.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: D

D Watch Video Solution

4. Assertion (A): Cooking time in pressure cooker is reduced.

Reason (R): The boiling point inside the pressure cooker is raised.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

5. The sum of mole fraction of all components of a solution is unity.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: B

- Watch Video Solution

6. Assertion (A): Sodium chloride used to clear snow on the roads.

Reason (R): Sodium chloride depresses the freezing point of water.
A. Assertion and reason both are correct statements and reason is
correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

7. Assertion (A): The osmotic pressure of $0.1 M$ urea solution is less than
0.1 MNaCl solution.

Reason (R): Osmotic pressure is not a colligative property.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

8. Assertion (A): The elevation in boiling point for two isotonic solutions may not be same.

Reason (R): The boiling point depends upon the concentration of the solute.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

9. Assertion (A): Iodine is more soluble in $C C l_{4}$ than in water.

Reason(R): Non-polar solutes are more soluble in non-polar solvents.
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: A

- Watch Video Solution

10. Camphor is often used in molecular mass determination because
A. Assertion and reason both are correct statements and reason is correct explanation for assertions.
B. Assertion and reason both are correct statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.
D. Assertion is wrong statement but reason is correct statement.

Answer: C

- Watch Video Solution

REVISION EXERCISES (VERY SHORT ANSWER QUESTIONS)

1. Give one example of (a) solution of a gas in a liquid (b) solution of number of gases.

- Watch Video Solution

2. Why does not molality of the solution cange with temperature?
3. What will be mole fraction of water in methanol solution containing equal number of moles of water and methanol ?

- Watch Video Solution

4. Molal depression constant is calculated from the enthalpy of fusion
$\left(\Delta H_{f}\right)$ and boiling point of solvent using the relation

- Watch Video Solution

5. As branching in alkane increases, boiling point decreases due to

- Watch Video Solution

6. Sodium choride or calcium chloride is used to clear snow from the roads. Why?
7. What is the effect of increase in temperature on the solubility of a gas in water?

- Watch Video Solution

8. Vant Hoff Factor

- Watch Video Solution

9. The factor or process which best explains the rise of water from roots (100 mts) to the top of tall tree is

- Watch Video Solution

10. What is the effect of temperature on molarity of a solution?
11. Calculate the normality of $1.5 \mathrm{MH}_{2} \mathrm{SO}_{2}$

- Watch Video Solution

12. How are ΔT_{b} and ΔT_{f} related to the molar mass of the solute ?

- Watch Video Solution

13. Define molarity and also write its formula.

- Watch Video Solution

14. Two liquids A and B boil $145^{\circ} \mathrm{C}$ and 190° Crespectivly. Which of them has a higher vapour pressre at $80^{\circ} \mathrm{C}$?
15. Under what condition Van't Hoff factor
(i) is
(a) equal to unity, (b) less than 1 , and c greater than 1.

Explain your answer.

Watch Video Solution

16. Under what condition Van't Hoff factor
(i) is
(a) equal to unity, (b) less than 1 , and c greater than 1 .

Explain your answer.

- Watch Video Solution

17. (a) Define Kohlraush's law.
18. Rubbing isopropyl alcohol often gives a cooling sensation to the skin. Why?

- Watch Video Solution

19. Azeotropic mixture:

- Watch Video Solution

20. Explain why concentration in terms of molality is preferred in comparison to molarity.

- Watch Video Solution

21. The enthalpy of reaction, $\Delta_{r} H$, is

- Watch Video Solution

22. Which law defines entropy in thermodynamics

- Watch Video Solution

23. The sum of mole fraction of all components of a solution is unity.

- Watch Video Solution

24. Differentiate between molarity and molality of a solution. How can we change molality value of solution in to molarity value?

- Watch Video Solution

25. Calculate the value of van't Hoff factor for a dilute solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water.

- Watch Video Solution

26. State the condition resulting in reverse osmosis.

Watch Video Solution

REVISION EXERCISES (SHORT ANSWER QUESTIONS)

1. Define the following terms: Ray
A. Molality
B. Osmotic pressure
C. Van't Hoff factor
D. Molarity

- Watch Video Solution

2. The mole fraction of solute in one molal aqueous solution is
3. When and why is molality preferred over molarity in handling solution in Chemistry?

- Watch Video Solution

4. Ethanol has higher boiling point than ethanol because

- Watch Video Solution

5. Define Avogadro's law

- Watch Video Solution

6. Colligative property.
7. Colligative properties of the solution depend on:

- Watch Video Solution

8. Define osmotic pressure of a solution. How is the osmotic pressure orelated to the concentration of a solute in a solution ?

- Watch Video Solution

9. What is meant by positive and negative deviations from Raoult's law and how is the sign of $\Delta_{m i x} H$ related to positive and negative deviations from Raoult's law ?

- Watch Video Solution

10. Why a person suffering from high blood pressure is advised to take minimum quantity of common salt?
11. Dry seeds when placed in water swell up due to

- Watch Video Solution

12. The bottle of liquid ammonia is generally cooled before opening the seal. Assign reson.

- Watch Video Solution

13. $K_{4}\left[F e(C N)_{6}\right]$ is used to detect

- Watch Video Solution

14. What is osmotic pressure and how is it related with the molecular mass of a non-volatile substance? What advantage the osmotic pressure
method has over the elevation of boiling point method for determining molecular masses?

- Watch Video Solution

15. What are minimum boiling azeotropes? Give one example.

- Watch Video Solution

16. Vapour pressure of the solution of a non- volatile solute is always \qquad .

- Watch Video Solution

17. Sodium chloride solution freezes at lower temperature then water but boils at higher temperature than water. Explain.

- Watch Video Solution

18. Define osmotic pressure.

- Watch Video Solution

19. Colligative property.

- Watch Video Solution

20. What will happen if an animal cell is placed in hypertonic solution ?

- Watch Video Solution

21. The relative lowering in vapour pressure is:

- Watch Video Solution

23. Colligative properties

- Watch Video Solution

24. Mention two applications of Hess's law.

- Watch Video Solution

25. When mercuric iodide is added to aqueous KI solution:

- Watch Video Solution

26. A solution showing a large positive deviation from ideal behaviour have
27. Which colligative property is generally used for determining the moar mass of a solute?

- Watch Video Solution

28. Define an ideal solution and write one of its characteristics.

- Watch Video Solution

29. State Raoult's law for the solution containing volatile components.

What is the similarity .
between Raoult's law and Henry's law?

- Watch Video Solution

30. Azeotropic mixture:
31. What type of liquids form ideal solutions?

- Watch Video Solution

32. Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
1.2\% sodium chloride
0.4% sodium chloride
1.2% sodium chloride
0.4% sodium chloride.

- Watch Video Solution

33. CaCl_{2} is preferred over NaCl for clearing ice on roads particularly in very cold countries. This is because:
34. Define the following terms:
(i) Colligative properties (ii) Molality (m)

- Watch Video Solution

35. Sodium chloride solution freezes at lower temperature then water but boils at higher temperature than water. Explain.

(Watch Video Solution

36. Depression in freezing point of solution of electrolytes are generally

- Watch Video Solution

37. (a) State Henry's law.
(b) At the same temperature, CO_{2}, gas is more soluble in water than O_{2},
gas. Which one of them will have higher value of K_{H} ?

- Watch Video Solution

38. Calculate the value of van't Hoff factor for a dilute solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water.

- Watch Video Solution

39. Why vapour pressure of a liquid decreases when a non - volatile solute is added to it ?

- Watch Video Solution

40. What will be the Van't Hoff factor for a dilute aqueous solution of $B a C I_{2}$?
41. Statement-1 : When metyl alcohol is added to water, boliling point of water increases.

Statement-2 : When a volatile solute is added to a volatile solvent elevation in boiling point is observed.

- Watch Video Solution

42. Colligative properties

- Watch Video Solution

43. Boiling point of an ideal liquid solution containing non-volatile solute depends on:

- Watch Video Solution

44. Define osmotic pressure of a solution. How is the osmotic pressure orelated to the concentration of a solute in a solution ?

Watch Video Solution

45. For a non-volatile solute

- Watch Video Solution

46. Define the following terms:
(i) Ideal solution
(ii) Molarity (M)

- Watch Video Solution

47. Define the following terms:
(i) Abnormal molar mass (ii) Van't Hoff factor (i)
48. The azeotropic solution of two miscible liquids:

- Watch Video Solution

49. Derive the relationship between relative lowering in vapour pressure and molar mass of the solute.

- Watch Video Solution

50. State Raoult's law for a solution containing volatile components.

Write two characteristics of the solution which obeys Raoult's law at all concentrations.

- Watch Video Solution

51. Write two differences between an ideal solution and a non-ideal solution.

- Watch Video Solution

52. State Henry's law and mention some important applications ?

- Watch Video Solution

53. What is reverse osmosis? Write any one of its applications.

- Watch Video Solution

54. State Roult's law for solution law for volatile liquid components.

Taking a sutiable example, explanin the meaning of poitive from Raoult' law.
55. Define the terms, 'osmosis' and 'osmotic pressure'. What is the advantage of using osmotic pressure as compared to other colligative for the determination of molar masses of solutes in solutions?

- Watch Video Solution

56. State (i) Charles's law (ii) Dalton's law of partial pressures.

- Watch Video Solution

57. Why do gases always tend to be less soluble in liquids as the temperature is raised?

- Watch Video Solution

58. State Raoult's law for a binary solution containing volatile components.

- Watch Video Solution

59. (i) Gas A is more soluble in water than Gas (B) at the same temperature. Which one of the two gases will have the higher value of K_{H} (Henry's constant) and why?
(ii) In non-ideal solution, what type of deviation shows the formation of maximum boiling azeotrops ?

- Watch Video Solution

60. Give reasons for the following :
(a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
(b) Aquatic animals are more comfortable in cold water than in warm
water .
(c) Elevation of boiling point of 1 MKCl solution is nearly double than that of 1 M sugar solution.

- Watch Video Solution

REVISION EXERCISES (LONG ANSWER QUESTIONS)

1. What type of non-idealities are exhibited by cyclohexane-ethanol and acetone-chloroform mixture? Give reasons for your answer.

- Watch Video Solution

2. What is osmotic pressure ? Why it is a colligative property ?

- Watch Video Solution

3. Calculate the molarity of a solution containing $5 g$ of NaOH in 450 mL solution.

Watch Video Solution

4. Converting molarity to mole fraction, mass percent and molality: A 0.750 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water has a density of $1.049 \mathrm{gmL}^{-1}$ at $20^{\circ} \mathrm{C}$. What is the concentration of this solution in (a) mole fraction, (b) mass percent. And (c) molality?

- Watch Video Solution

5. (a) Define the terms osmosis and osmotic pressure. Is the osmotic pressure of a solution a colligative property? Explain.
(b) Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250.0 g of water. (K_{b} for water $=0.512 \mathrm{Kkgmol}^{-1}$, Molar mass of $\mathrm{NaCl}=58.44 g)$
6. Number of moles of a solute per kilogram of a solvent is called
A. Mole fraction
B. Molality
C. Molarity
D. Molar mass

- Watch Video Solution

7. The van't Hoff factor can be expressed as :

- Watch Video Solution

8. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non-volatile, non-electrolyte solid weighting $0.5 g$ when added to
39.0 g of benzene (molar mass $78 \mathrm{gmol}^{-1}$). The vapour pressure of the solution then is 0.845 bar. What is the molar mass of the solid substance?

- Watch Video Solution

9. The boiling a point of benzene is 353.23 K . When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K . Calculate the molar mass of the solute. K_{b} for benzene is 2.53 K $\mathrm{kg} \mathrm{mol}^{-1}$.

- Watch Video Solution

10. (i) Prove that depression in freezing point is a colligative property.
(ii) 45 g of ethylene glycol $\left(C_{2} H_{6} O_{2}\right)$ is mixed with 600 g of water.

Calculate the freezing point depression. (K_{f} for water $=1.86 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$)

- Watch Video Solution

11. (i) Prove that osmotic pressure is a colligative property.
(ii) Calculate the molar of urea solution if it exerts an osmotic pressure of 2.45 atmosphere at $300 \mathrm{~K} .\left(\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$.

- Watch Video Solution

12. Vapor pressure of a solution of Volatile components and composition of vapor: Consider a solution containing $738 g$ of water and $253 g$ of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ at 323 K . At this temperature, the vapour pressure of pure ethanol is 0.292 atm and the vapor pressure of pure water is 0.122 atm . Calculate the vapour pressure of the solution and mole fraction of every component in vapour phase.

- Watch Video Solution

13. (a) Define the following terms:
(i) Molarity
(ii) Molal elevation constant $\left(k_{b}\right)$
(b) A solution containing 15 g (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) per liter of solution water has the same osmotyic pressure (isotonic) as a solution of glucose (molar mass $=180 \mathrm{~g} \mathrm{mo}^{-1}$) in water calculte the mass of glucose present in one liter of its solution.

- Watch Video Solution

14. (a) Define the following terms:
(i) Mole fraction
(ii) Ideal solution
(b) 15.0 g of an unknown molecular material is dissolved in 450 g of water .

The resulting solution freezes at $-0.34^{\circ} \mathrm{C}$. What is the molar mass of the material ?
$\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

15. (a) Explain the following :
(i) Henry's law about dissolution of a gas in a liquid
(ii) Boiling point elevation constant for a solvent
(b) A solution of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in water was prepared by dissolving some glycerol in 500 g of water. This solution has a boiling point of $100.42^{\circ} \mathrm{C}$. what mass of glycerol was dissolved to make this solution ? (K_{b} for water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)

- Watch Video Solution

16. (a) State Raoult law for a solution containing volatile components.

How does Raoult' s law become a special case of Henry's law?
(b) 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K . Find the molar mass of the solute. $\left(K_{f}\right.$ for benzene $\left.=5.12 \mathrm{kgmol}^{-1}\right)$

- Watch Video Solution

17. A solution of glucose (molar mass $=180 \mathrm{gmol}^{-1}$) in water is labelled as 10% (by mass). What would be the molarity and molality of the solution? Given that the density of the solution is $1.2 \mathrm{gmL} L^{-1}$.

(D) Watch Video Solution

18. (a) Define the following terms:
(i) Molarity
(ii) Molal elevation constant $\left(k_{b}\right)$
(b) A solution containing 15 g (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) per liter of solution water has the same osmotyic pressure (isotonic) as a solution of glucose (molar mass $=180 \mathrm{~g} \mathrm{mo}^{-1}$) in water calculte the mass of glucose present in one liter of its solution.

- Watch Video Solution

19. What type of devation is shown by a mixture of ethnol and acetone? What type of azeotrope is formed on mixing the two ?

- Watch Video Solution

20. (a) A 10% solution (by mass) of sucrose in water has freezing point of 269.15K. Calculate the freezing point of 10% glucose in water, if the freezing point of pure water is 273.15 K .

Given: (molar mass of sucrose $=342 \mathrm{~g} \mathrm{~mol}^{-1}$)
(Mola mass of glucose $=180 \mathrm{~g} \mathrm{~mol}^{-1}$)
(b) Define the following terms:
(i) Molality (m)
(ii) Abnormal molar mass

- Watch Video Solution

21. 30 g of urea $\left(\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg .
(b) Write two differences between ideal solutions and non-ideal solutions,
22. Depression in freezing point of 0.1 molal solution of HF is $-0.201^{\circ} \mathrm{C}$. Calculate percentage degree of dissociation of HF. $\left(K_{f}=1.86 \mathrm{Kkgmol}^{-1}\right)$.

- Watch Video Solution

2. 100 mg of a protein was disoved in just enough water to make 10 mL of the solution. If the solution has an osmotic pressure of 13.3 mm Hg at $25^{\circ} \mathrm{C}$, what is the mass of prtein $\left(R=0.0821 \mathrm{Latmmol}^{-1} \mathrm{~K}^{-1}\right)$

- Watch Video Solution

3. What mass of ethylene glycol (molar mass $=62.0 \mathrm{~g} \mathrm{~mol}^{-1}$) must be added to 5.50 kg of water to lower the freezing point of water from $0^{\circ} \mathrm{C}$ to $-10.0^{\circ} C\left(k_{f}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$.
4. 15.0 g of an unknown molecular material was dissolved in 450 g of water. The reusulting solution was found to freeze at $-0.34 .{ }^{\circ} \mathrm{C}$. What is the the molar mass of this material. (K_{f} for water $=1.86 \mathrm{Kkgmol}^{-1}$)

- Watch Video Solution

5. What mass of $\mathrm{NaCI}\left(\right.$ molar mass $\left.=58.5 \mathrm{gmol}^{-1}\right)$ be dissolved in 65 g of water to tower the freezing point by $7.5^{\circ} \mathrm{C}$? The freezing point depression constant, K_{f}, for water is $1.86 \mathrm{Kkgmol}^{-1}$. Assume van't Hoff factor for $N a C I$ is 1.87 .

- Watch Video Solution

6.6 g of a substance is dissolved in 100 g of water depresses the freezing point by $0.93^{\circ} \mathrm{C}$. The molecular mass of the substance will be: (K_{f} for water $=1.86^{\circ} \mathrm{C} / \mathrm{molal}$)
7. 5.85 g of NaCl are dissolved in 90 g of water. The mole fraction of NaCl is-

- Watch Video Solution

8. Calculate the boiling point of a 1 M aqueous solution (density 1.04 g

$$
\begin{array}{lclc}
\left.M l^{-1}\right) & \text { of } & \text { Potassium } & \text { chloride } \\
\left(K_{b} \text { for water }=0.52 \mathrm{Kkgmol}^{-1},\right. & \text { Atomic masse }: K=39 u, C I=39 .
\end{array}
$$

Assume, Potassium chloride is completely dissociated in solution.

- Watch Video Solution

9. Calculate the osmotic pressure of 0.5% solution of glucose (molecular mass 180) at $18^{\circ} C$. The value of solution constant is $0.0821 l i t r e-a t m \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
10. Calculate the molar mass of a substance $1 g$ of which when dissolved in 100 g of water gave a solution boiling at $100.1^{\circ} \mathrm{C}$ at a pressure of 1 atm $\left(K_{b}\right.$ for water $\left.=0.52 \mathrm{Kkgmol}^{-1}\right)$

- Watch Video Solution

11. 0.70 g of an organic compund when dissolved in 32 g of acetone produces in an elevation in boiling point of $0.25^{\circ} \mathrm{C}$. Calculate the molecular mass of the organic compound. $\left(K_{b}\right.$ for acetone $\left.=1.72 \mathrm{Kkgmol}^{-1}\right)$.

- Watch Video Solution

12. Calculate the freezing point depression and boiling point elevation of a solution of 10.0 g of urea $\left(M_{B}=60\right)$ in 50.0 g of water at 1 atm . pressure. K_{b} and K_{f} for water $0.52^{\circ} \mathrm{Cm}^{-1}$ and $1.86^{\circ} \mathrm{Cm}^{-1}$ respectively.
13. The vapour pressure of pure benzene at a certain temperature is 640 mmHg . A non-volatile solid weighing 2.175 g is added to 39.0 g of benzene. The vapour pressure of the solution is 600 mmHg . What is the molar mass of the solid substance?

- Watch Video Solution

14. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in 1 kg of water in a saucepan.

At what temperature will the water boil (at 1 atm) ? K_{b} for water is $0.52 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

15. The freezing point depression of 0.1 molal solution of acetic acid in benzene is $0.256 \mathrm{~K}, K_{f}$ for benzene is $5.12 \mathrm{~K} \mathrm{Kg} \mathrm{mol}{ }^{-1}$. What conclusion can you draw about the molecular state of acetic acid in benzence?
16. (a) Define the following terms:
(i) Mole fraction
(ii) Ideal solution
(b) 15.0 g of an unknown molecular material is dissolved in 450 g of water.

The resulting solution freezes at $-0.34^{\circ} \mathrm{C}$. What is the molar mass of the material ?
(K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)

- Watch Video Solution

17. 1.0 g of non-electrolyte solute dissolved in 50.0 g of benzene lowered the freezing point of benzene by 0.40 K . The freezing point depression constant of benzene is $5.12 \mathrm{kgmol}^{-1}$. Find the molecular mass of the solute.
18. Why a person suffering from high blood pressure is advised to take minimum quantity of common salt?

- Watch Video Solution

2. The mixture of ethanol and water cannot be separated by distillation because

- Watch Video Solution

3. Explain why the melting point of a substance gives an indication of the purity of a substance.

- Watch Video Solution

4. If glycerol and methanol were sold at the same price in the market, which would be cheaper for perparing an antifreeze solution for the radiator of an automobile ?

- Watch Video Solution

5. What will be the freezing point of a 0.5 m KCl solution ? The molal freezing point constant of water is $1.86^{\circ} \mathrm{Cm}^{-1}$.

- Watch Video Solution

6. Why is camphor preferred as a solvent for measuring the molecular mass of naphthalene by Rast method?

- Watch Video Solution

7. The following figure shows vapour pressure curves of two pure liquids and solution of the two. Which curves I, II, or III represent pure liquids and which represents the solution?

- View Text Solution

8. The vapour pressure of high b. pt. liquids is........then the vapour pressure of a low boiling liquid:

- Watch Video Solution

9. The vapour pressure of pure benzene and toluene at $40^{\circ} \mathrm{C}$ are 184.0 torr and 59.0 torr, respectively. Calculate the partial presure of benzene and toluene, the total vapour pressure of the solution and the mole fraction of benzene in the vapour above the solution that has 0.40 mole fraction of benzene. Assume that the solution is ideal.
10. 45 g of ethylene glycol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ is mixed with 600 g of water. Calculate (a) the freezing point depression and (b) the freezing point of solution. Given $K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

11. The degree of dissociation of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in a dilute aqueous solution, containing 7.0 g of the salt per 100 g of water at $100^{\circ} \mathrm{C}$ is 70%. If the vapour pressure of water at $100^{\circ} \mathrm{C}$ is 760 mm , calculate the vapour pressure of the solution.

- Watch Video Solution

12. A motor vehicle raditor was filled with $8 L$ of water to which $2 L$ of methyl alcohol (density $0.8 g m L^{-1}$) was added. What is the lowest temperature at which the vehicle can be parked outdoors without the
danger that the water in the raditor will freeze? Given that K_{f} for water is $1.86 \mathrm{Kkgmol}^{-1}$

- Watch Video Solution

13. Benzene and toluene form nearly ideal solution. If at $300 K P_{\text {bentezne }}=103.01 \mathrm{~mm}$.
(i) Calculate the vapour pressure of a solution containing 0.6 mole fraction of toluene.
(ii) Calculate the mole fraction of toluene in the vapour form for this composition of liquid.

- Watch Video Solution

14. The freezing point of a solution containing $50 \mathrm{~cm}^{3}$ of ethylene glycol in 50 g of water is found to be $-34^{\circ} \mathrm{C}$. Assuming ideal behaviour, Calculate the density of ethylene glycol (K_{f} for water $=1.86 \mathrm{Kkgmol}^{-1}$).

COMPEIITION FILE (A. MULTIPLE CHOICE QUESTIONS(MCQ))

1. 2.5 litre of 1 M NaOH solution are mixed with another 3 litre of 0.5 M

NaOH solution Then the molarity of the resulting
A. 0.80 M
B. 0.1 M
C. 0.73 M
D. 0.50 M

Answer: C

- Watch Video Solution

2. The volumes of $4 N H C I$ and 10 NHCI required to make 1 litre of 6 NHCI are
B. 0.25 litreof 4 N HCl and 0.75 litre of 10 N HCl
C. 0.67 litre of 4 N HCl and 0.33 litre of 10 N HCl
D. 0.50 litre of 4 N HCl and 0.20 litre of 10 N HCl

Answer: C

- Watch Video Solution

3. The mole fraction of methanol in its 4.5 molal acqueous solution is
A. 0.25
B. 0.125
C. 0.100
D. 0.075

Answer: D

4. Density of 3 M NaCl solution is $1.28 \mathrm{~g} / \mathrm{cc}$. The molality of the solution is
A. 2.79 molal
B. 0.279 molal
C. 1.279 molal
D. 3.85 molal

Answer: A

- Watch Video Solution

5. What volumes of 10 M HCl and 3 M HCl should be mixed to get 1 L of 6 M HCl solution?
A. 200800
B. 700300
C. 250750
D. 400600

Answer: C

- Watch Video Solution

6. What volume of $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (density $1.83 \mathrm{~g} / \mathrm{mL}$) is required to prepare 4 litre of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A. $14.7 m L$
B. $29.4 m L$
C. $6.8 m L$
D. 13.60 mL

Answer: D

- Watch Video Solution

7. Which of the following plots represents the behavior of an ideal binary liquid solution?
A. plot of $1 / p_{\text {total }}$ vs y_{A} is linear (mol fraction of A in vapour phase).
B. plot of $p_{\text {total }}$ vs y_{B} is linear.
C. plot of $p_{\text {total }}$ vs y_{A} is linear.
D. plot of $1 / p_{\text {total }}$ vs y_{B} is non- linear

Answer: A

- Watch Video Solution

8. When a gas is bubbled through water at 298 K , a very dilute solution of gas is obtained. Henry's law constant for the gas is 100 kbar. If gas exerts a pressure of 1 bar, the number of moles of gas dissolved in 1 litre of water is
A. 0.555
B. 5.55
C. 0.0555
D. 55.5

Answer: A

- Watch Video Solution

9. The vapour pressure of two pure isomeric liquids X and Y are 200 torr and 100 torr respectively at a given temperature. Assuming a solution of these components to obey Raoults law, the mole fraction of component X in vapour phase in equilibrium with the solution containing equal amounts of X and Y, at the same temperature is :
A. 0.22
B. 5.55
C. 0.0555
D. 55.5

Answer: D

- Watch Video Solution

10. If two substances A and B have $p_{A}^{\circ}: p_{B}^{\circ}=1: 2$ and have mole fraction in solution as 1:2 then mole fraction of A in vapour phase is
A. 0.25
B. 0.80
C. 0.50
D. 0.20

Answer: B

- Watch Video Solution

11. Normal boiling point of a liquid is that temperature which vapour pressure of the liquid is equal to:
A.
B.
.
c.
D.

Answer: A

- Watch Video Solution

12. Two liquids P and Q have vapour pressures 450 and 200 torr respectively at certain temperature. In an ideal solution of the two, the mole fraction of P at which two liquids have equal partial pressures is.
A. 0.80
B. 0.308
C. 0.444
D. 0.154

Answer: B

- Watch Video Solution

13. An aqueous solution of glucose boils at $100.01^{\circ} \mathrm{C}$. The molal elevation constant for water is $0.5 \mathrm{kmol}^{-1} \mathrm{~kg}$. The number of molecules of glucose in the solution containing $100 g$ of water is
A. 1.2×10^{21}
B. 2.0×10^{22}
C. 3.0×10^{23}
D. 6.0×10^{11}

Answer: A

- Watch Video Solution

14. The vapour pressure of a solvent decreased by 10 mm of Hg when a non-volatile solute was added to the solvent. The mole fraction of solute in solution is 0.2 , what would be the mole fraction of solvent if the decrease in vapour pressure is 20 mm of Hg ?
A. 0.6
B. 0.8
C. 0.4
D. 0.2

Answer: A

- Watch Video Solution

15. For an aqueous solution freezing point is $-0.186^{\circ} C$. The boiling point of the same solution is $\left(K_{f}=1.86^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}\right)$ and $\left(K_{b}=0.512 \mathrm{~mol}^{-1} \mathrm{~kg}\right)$
A. $0.93^{\circ} \mathrm{C}$
B. $-0.93^{\circ} \mathrm{C}$
C. $1.86^{\circ} \mathrm{C}$
D. $-1.86^{\circ} \mathrm{C}$

Answer: D

16. The vapour pressure of pure liquid solvent 0.50 atm When a nonvolatile solute B is added to the solvent, its vapour pressure drops to 0.30 atm Thus,mole fraction of the component B is
A. 0.33
B. 6.0
C. 3.0
D. 0.66

Answer: C

- Watch Video Solution

17. Which of the following have equal boiling point ?
A. Urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$
B. Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
C. Sodium chloride (NaCl)
D. Calcium chloride $\left(\mathrm{CaCl}_{2}\right)$

Answer: C

- Watch Video Solution

18. Which one of the following pairs of solution can we expect to be isotonic at the same temperature
A. 0.1 M urea and 0.1 M NaCl
B. 0.1 M urea and $0.1 \mathrm{M} \mathrm{MgCl}_{2}$,
C. 0.1 M NaCl and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $0.1 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, and $0.1 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: D

19. A 0.2 molal aqueous solution of a weak acid $H X$ is 20% ionized. The freezing point of the solution is $\left(k_{f}=1.86 \mathrm{Kkgmole}^{-1}\right.$ for water):
A. $-0.45^{\circ} \mathrm{C}$
B. $-0.90^{\circ} \mathrm{C}$
C. $-0.31^{\circ} \mathrm{C}$
D. $-0.53^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

20. An electrolyte A gives 3 ions and B is a non-electrolyte. If 0.1 M solution of B produces an osmotic pressure P, then 0.05 M solution of A will produce an osmotic pressure, assuming that the electrolyte is completely ionised :
A. plot of $1 / p_{\text {total }}$ vs y_{A} is linear (mol fraction of A in vapour phase).
B. $1.5 p$
C. $0.5 p$
D. $0.75 p$

Answer: B

- Watch Video Solution

21. Which of the following 0.10 M aqueous solution will have the lowest freezing point?
A. $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
D. $K I$
22. In a 0.2 molal aqueous solution of a weak acid HX the degree of ionization is 0.3 . Taking K_{f} for water as 1.85 , the freezing point of the solution will be nearest to
A. $-0.360^{\circ} C$
B. $0.206^{\circ} \mathrm{C}$
C. $+0.480^{\circ} \mathrm{C}$
D. $-0.480^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

23. Which of the following solutions are isotonic with one another?
24. 0.15 M urea 2. $0.05 \mathrm{MCaCI}_{2}$

3. $0.1 \mathrm{MMgSO}_{4} 4.0 .15 \mathrm{M}$ glucose

Select the correct answer using the codes given below.
A. 1 and 4
B. 2 and 3
C. 1,2 and 4
D. 2,3 and 4

Answer: C

- Watch Video Solution

24. If P° and P_{S} are the vapour pressure of the solvent and its solution respectively and x_{1} and x_{2} are the mole fraction of the solvent and solute respectively, then
A. $p_{A}^{\circ} / p_{B}^{\circ}$
B. $p_{B}^{\circ} / p_{A}^{\circ}$
C. $p_{A}^{\circ}-p_{B}^{\circ}$
D. $p_{B}^{\circ}-p_{A}^{\circ}$

Answer: B

- Watch Video Solution

25. A solution showing a large positive deviation from ideal behaviour have
A.
B.
.
C.
D.

Answer: C

26. Dry air was passed successively through a solution of 5 g of a solutte in 80 g of water and then through pure water. The loss in mass of solution was 2.5 g and that of pure solvent was 0.04 g The molecular mass of the solute is :
A. 48
B. 32
C. 40
D. 35

Answer: A

- Watch Video Solution

COMPETITION FILE (B. MULTIPLE CHOICE QUESTIONS(MCQ))

1. 0.002 m aqueous solution of an ionic compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right) \mathrm{CI}$ freezes at $-0.00732^{\circ} \mathrm{C}$. Number of moles of ions which 1 mole of ionic
compound produces in water will be $\left(K_{f}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
A. 3
B. 4
C. 1
D. 2

Answer: D

- Watch Video Solution

2. At 300 K the vapour pressure of an ideal solution containing 1 mole of liquid A and 2 moles of liquid B is 500 mm of Hg . The vapour pressure of the solution increases by 25 mm of Hg , if one more mole of B is added to the above ideal solution at 300 K . Then the vapour pressure of A in its pure state is
A. 300 mm of Hg
B. 40 mm of Hg
C. 500 mm of Hg
D. 600 mm of Hg

Answer: A

D Watch Video Solution

3. Henry's law constant of oxygen is $1.4 \times 10^{-3} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~atm}^{-1}$ at 298 K . How much of oxygen is dissolved in 100 mL at 298 K when the partial pressure of oxygen is 0.5 atm ?
A. 1.4g
B. 3.2g
C. 22.4 mg
D. 2.24 mg

Answer: D

4. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ions, Na^{+}and carbonate ions, CO_{3}^{2-} are respectively (Molar mass of $\mathrm{NaCO}_{3}=106 \mathrm{gmol}^{-1}$)
A. 1.90 M and 1.910 M
B. 0.477 M and 0.0477 M
C. 0.955 M and 1.910 M
D. 1.910 M and 0.955 M

Answer: D

(D) Watch Video Solution

5. An aqueous solution is 1.00 molalin KI . Which change will cause the vapour pressure of the solution to increase?
A. addition of 1.00 molal KI
B. addition of water
C. addition of NaCl
D. addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

6. A solution of sucrose (molar mass $=342 \mathrm{gmol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$
A. $+0.372^{\circ} \mathrm{C}$
B. $-0.570^{\circ} \mathrm{C}$
C. $-0.372^{\circ} C$
D. $-0.520^{\circ} \mathrm{C}$

Answer: C

7. The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively.
A. less than one and greater than one
B. less than one and less than one
C. greater than one and less than one
D. greater than one and greater than one

Answer: C

- Watch Video Solution

8. P_{A} and P_{B} are the vapour pressure of pure liquid components ,Aand

B respectively of an ideal binary solution,If x_{A} represents the mole fraction of component A, the total pressure of the solution will be
A. $p_{A}+x_{A}\left(p_{B}-p_{A}\right)$
B. $p_{A}+x_{A}\left(p_{A}-p_{B}\right)$
C. $p_{B}+x_{A}\left(p_{B}-p_{A}\right)$
D. $p_{B}+x_{A}\left(p_{A}-p_{B}\right)$

Answer: D

- Watch Video Solution

9. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of solution is :
A. 0.001 M
B. $0.1 M$
C. $0.02 M$
D. 0.01 M
10. 6.02×10^{20} molecules of urea are present in 100 ml of its solution. The concentration of solution is :
A. $90.0 \mathrm{gconH} \mathrm{NO}_{3}$
B. 70.0 gconc. HNO_{3}
C. $54.0 \mathrm{gconc} \mathrm{HNO}_{3}$
D. $45.0 \mathrm{gconc} . \mathrm{HNO}_{3}$

Answer: D

- Watch Video Solution

11. 0.01 M solution of KCl and CaCl_{2} are separately prepared in water. The freezing point of KCl is found to be $-2^{\circ} \mathrm{C}$. What is the freezing point of CaCl_{2} aq. Solution if it is completely ionized?
A. $-2^{\circ} \mathrm{C}$
B. $-3^{\circ} \mathrm{C}$
C. $-1.5^{\circ} \mathrm{C}$
D. $-1.66^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

12. Henry's law constant for the solubility of nitrogen gas in water at 298 K is $1.0 \times 10^{-5} \mathrm{~atm}$. The mole fraction of nitrogen in air is 0.8 . The number of moles of nitrogen from air dissolved in 10 mol of water at 298 K and 5 atm pressure is
A. 1×10^{-4}
B. 2×10^{-4}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: C

D Watch Video Solution

13. If 2 mL of acetone is present in 45 mL of its aqueous solution, calculate the concentration of this solution .
A. 20
B. 40
C. 50
D. 60

Answer: C

D Watch Video Solution

14. Of the following 0.10 m aqueous solutions, which one will exhibits the largest freezing point depression?
A. KCl
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $A l_{2}\left(S O_{4}\right)_{3}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4}$

Answer: C

- Watch Video Solution

15. The boiling point of $0.2 \mathrm{molkg}^{-1}$ solution of X in water is greater than equimolal solution of Y in water. Which of the following statements is true in this case?
A. Molecular mass of X is less than the molecular mass of Y .
B. Y is undergoing dissociation in water while X undergoes no change.
C. X is undergoing dissociation in water.
D. Molecular mass of X is greater than the molecular mass of Y.

Answer: C

D Watch Video Solution

16. Which of the following electrolytes has the same value of van't Hoff factor (i)is that of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (if all are 100% ionised?
A. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
B. $K_{4}\left[F e(C N)_{6}\right]$
C. $K_{2} S O_{4}$
D. $K_{3}\left[F e(C N)_{6}\right]$

Answer: B

D Watch Video Solution

17. What is the mole fraction of the solute in a 1.00 m aqueous solution ?
A. 0.0354
B. 0.0177
C. 0.177
D. 1.770

Answer: B

- Watch Video Solution

18. The density of 2.0 M solution of a solute is $1.2 g m L^{-1}$. If the molecular mass of the solute is $100 \mathrm{gmol}^{-1}$, then the molality of the solution is
A. 2.0 m
B. 1.2 m
C. 1.0 m
D. 0.6 m
19. For associative solutes
A. $\alpha=\frac{n(i-1)}{1-n}$
B. $\alpha=\frac{i(n-1)}{1+n}$
C. $\alpha=\frac{i(n+1)}{1-n}$
D. $\alpha=\frac{i(n+1)}{n-1}$

Answer: A

Watch Video Solution

20. Vapour pressure of a solvent containing nonvolatile solute is:
A. 103 mm Hg
B. 99 mm Hg
C. 97 mm Hg

D. 101 mm Hg

Answer: C

- Watch Video Solution

21. Which of the following statements about the composition of the vapour over an ideal $1: 1 \mathrm{~mol}$ mixture of benzene and toluene is correct? Assume that the temperature is constant at $25^{\circ} \mathrm{C}$. (Given: vapour pressure Date at $25^{\circ} C$, benzene $=12.8 \mathrm{kP}$, toluene $=3.85 \mathrm{kPa}$)
A. The vapour will contain equal amounts of benzene and toluene.
B. Not enough information is given to make a prediction.
C. The vapour will contain a higher percentage of benzene.
D. The vapour will contain a higher percentage of toluene.

Answer: C

22. At $100^{\circ} \mathrm{C}$ the vapour pressure of a solution of 6.5 g of an solute in 100 g water is 732 mm .If $K_{b}=0.52$, the boiling point of this solution will be :
A. $102^{\circ} \mathrm{C}$
B. $103^{\circ} \mathrm{C}$
C. $101^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

23. Which one of the following is incorrect ?
A. $\Delta H_{\text {mix }}=0$
B. $\Delta V_{\text {mix }}=0$
C. $\Delta P=P_{\text {obs }}-P_{\text {calculated by Raoult's law }}=0$
D. $\Delta G_{\text {mix }}=0$

Answer: D

- Watch Video Solution

24. The van't hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is
A. 0
B. 1
C. 2
D. 3

Answer: D

25. IF molality of the dilute solution is doubled the value of molal depression constant $\left(K_{f}\right)$ will be \qquad .
A. halved
B. tripled
C. unchanged
D. doubled

Answer: C

- Watch Video Solution

26. For an ideal solution, the correct option is:
A. $\Delta_{\text {mix }} S=0$ at constant T and P
B. $\Delta_{\text {mix }} V \neq 0$ at constant T and P
C. $\Delta_{\text {mix }} H=0$ at constant T and P
D. $\Delta_{\text {mix }} G=0$ at constant T and P

Answer: C

- Watch Video Solution

27. The mixture that forms maximum boiling azeotrope is:
A. Water + Nitric acid
B. Ethanol + Water
C. Acetone + Carbon disulphide
D. Heptane + Octane

Answer: A

D Watch Video Solution

28. At $80^{\circ} C$ the vapour pressure of pure liquid ' A ' is 520 mm Hg and that of pure liquid ' B ' is 1000 mm Hg . If a mixture solution of ' A ' and ' B ' boils at
$80^{\circ} C$ and 1 atm pressure, the amount of ' A ' in the mixture is 1 atm $=760 \mathrm{mmHg})$
A. 50 mol precent
B. 53 mol percent
C. 34 mol percent
D. 48 mo percent

Answer: A

- Watch Video Solution

29. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mm Hg . If 18 g of gulucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g of water at $20^{\circ} \mathrm{C}$, the vapour pressure of the resulting solution will be:
A. 17.325 mmHg
B. 17.675 mmHg
C. 15.750 mmHg
D. 16.500 mmHg

Answer: A

- Watch Video Solution

30. Two liquids X and Y form an ideal solution. The mixture has a vapour pressure of 400 mm at 300 K when mixed in the molar ratio 1:1. when mixed in the molar ratio of $1: 2$ at the same temperatre the vapour pressure of the mixture is 350 mm . The vapour pressure of the two pure liquids X and Y respectively are
A. $250 \mathrm{~mm}, 550 \mathrm{~mm}$
B. $350 \mathrm{~mm}, 450 \mathrm{~mm}$
C. $350 \mathrm{~mm}, 700 \mathrm{~mm}$
D. $550 \mathrm{~mm}, 250 \mathrm{~mm}$
$31.6 \%(\mathrm{~W} / \mathrm{V})$ solution of urea will be isotonic with:
A. 0.05 M solution of glucose
B. 6% solution of glucose
C. 25% solution of glucose
D. 1 M solution of glucose

Answer: D

- Watch Video Solution

32. The difference between the boiling point and freezing point of an aqueous solution containing sucrose (molecular mass $=342 \mathrm{gmol}^{-1}$) in 100 g of water is 105.04 . If K_{f} and K_{b} of water are 1.86 and $0.51 \mathrm{Kgmol}^{-1}$ respectively, the weight of sucrose in the solution is about
A. 34.2 g
B. 342 g
C. 7.2 g
D. 72 g

Answer: D

- Watch Video Solution

33. Two liquids X and Y form an ideal solution. At 300 K , vapour pressure of the solution containing 1 mol of X and 3 mol of Y is 550 mm Hg . At the same temperature, if 1 mol of Y is further added to this solution, vapour pressure of the solution increases by 10 mm Hg. Vapour pressure (in mmHg) of X and Y in their pure states will be, respectively
A. 200 and 300
B. 300 and 400
C. 400 and 600
D. 500 and 300

Answer: C

D Watch Video Solution

34. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water $\left(\Delta T_{f}\right)$ when 0.01 mole of sodium sulphate is dissociated in 1 kg of water is: $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
A. 0.0744 K
B. 0.0186 K
C. 0.0372 K
D. 0.0558 K

Answer: D

35. On mixing, heptane and octane form an ideal solution. At 373 K the vapour pressure of the two liquid components (heptane and octane) are $105 k P a$ and $k P a$ respectively. Vapour pressure of the solution obtained by mixing 25.0 of heptane and $35 g$ of octane will be (molar mass of heptane $=100 \mathrm{gmol}^{-1}$ and of octane $\left.=114 \mathrm{gmol}^{-1}\right)$:-
A. 96.2 Pka
B. 144.5 k Pa
C. 72.0 kPa
D. 36.1 kPa

Answer: C

- Watch Video Solution

36. A solution containing 1.8 g of a compound (empirical formula $\mathrm{CH}_{2} \mathrm{O}$) in 40 g of water is observed to freeze at $-0.465^{\circ} \mathrm{C}$. The molecules formulea of the compound is (K_{f} of water $=1.86 \mathrm{~kg} \mathrm{Kmol}^{-1}$):
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B. $C_{3} H_{6} O_{3}$
C. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
D. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$

Watch Video Solution

37. A 3.5 molal aqueous solution of methyl alchol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is supplied.

What is the mole fraction of methyle alcohol in the solution ?
A. 0.086
B. 0.050
C. 0.100
D. 0.190

Answer: A

38. Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to 4 kg of water to prevent it from freezing at $-6^{\circ} C$ will be $\left(K_{f}\right.$ for water $=1.86 \mathrm{Kkgmol}^{-1}$, and molar mass of ethylene glycol $=62 \mathrm{gmol}^{-1}$)
A. 400.00 g
B. 304.60 g
C. 804.32 g
D. 204.30 g

Answer: C

- Watch Video Solution

39. The degree of dissociation (α) of a weak electrolyte, $A_{x} B_{y}$ is related to van't Hoff's factor (i) by the expression:
A. $\alpha=\frac{x+y-1}{i-1}$
в. $\alpha=\frac{x+y+1}{i-1}$
C. $\alpha=\frac{i-1}{(x+y-1)}$
D. $\alpha=\frac{i-1}{x+y+1}$

Answer: C

- Watch Video Solution

40. The molality of a urea solution in which 0.0100 g of urea, [$\left.\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$ is added to $0.3000 \mathrm{dm}^{3}$ of water at STP is
A. $5.55 \times 10^{-4} m$
B. $33.3 m$
C. $3.33 \times 10^{-2} m$
D. 0.555 m
41. A5 \% solution of cane sugar (molar mass $=342$)is isotonic with 1% of a solution of an known solute.The molar mass of unknown solute in $\mathrm{g} / \mathrm{mol}$ is
A. 171.2
B. 68.4
C. 34.2
D. 136.2

Answer: B

- Watch Video Solution

42. 58.5 g of NaCl and 180 g of glucose were separately dissolved in 1000 mL of water. Identify the correct statement regarding the elevation of boiling point (bp) of the resulting solutions.
A. NaCl solution will show higher elevation of b.pt.
B. Glucose solution will show higher elevation of b.pt.
C. Both the solutions will show equal elevation of b.pt.
D. The b.pt. of elevation will be shown by neither of the solutions.

Answer: A

- Watch Video Solution

43. Freezing point of an aqueous solution is $-0.186^{\circ} \mathrm{C}$. Elevation of boiling point of the same solution isif $K_{b}=0.512 \mathrm{Kmolality}^{-1}$ and $K_{f}=1.86 K_{\text {molality }^{-1}}{ }^{\text {: }}$
A. 0.52
B. 1.04
C. 1.34
D. 0.134
44. The mass of a non-volatile solute of molar mass $40 \mathrm{~g} \mathrm{~mol}^{-1}$ that should be dissolved in 114 g of octane to lower its vapour pressure by 20% is
A. 8 g
B. 11.4 g
C. 9.8 g
D. 12.8 g

Answer: A

- Watch Video Solution

45. Two liquids A and B have P_{A}° and P_{B}° in the ratio of $1: 3$ and the ratio of number of moles of A and B in liquid phese are 1:3 then mole
fraction of 'A' in vapour phase in equilibrium with the solution is equal to
A. 0.33
B. 0.2
C. 0.25
D. 0.52

Answer: B

- Watch Video Solution

46. K_{f} for water is $1.86 \mathrm{Kkgmol}^{-1}$. IF your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must you add to get the freezing point of the solution lowered to $-2.8^{\circ} \mathrm{C}$?
A. 93 g
B. 39 g
C. 27 g
D. 72 g

Answer: A

- Watch Video Solution

47. The measured freezing point depression for a 0.1 m aqueous $\mathrm{CH}_{3} \mathrm{COOH}$ solution is $0.19^{\circ} \mathrm{C}$. The dissociation aconstant $\left(K_{b}\right)$ for the acid at this concentration will be $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
A. 4.76×10^{-5}
B. 4×10^{-5}
C. 8×10^{-5}
D. 2×10^{-5}

Answer: B

- Watch Video Solution

48. A solution of $1.25 o f^{\prime} P^{\prime}$ in 50 g of water lawers freezing point by $0.3^{\circ} \mathrm{C}$. Molar mass of ' P ' is $94 . K_{f(\text { water })}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The degree of association of ' P ' in water is
A. 0.8
B. 0.6
C. 0.65
D. 0.75

Answer: A

- Watch Video Solution

49. Consider
separate solution
of $0.500 \mathrm{MC}_{2} \mathrm{H}_{5} \mathrm{OH}(a q), 0.100 \mathrm{MMg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(a q), 0.250 \mathrm{MKBr}(a q) \quad$ and $0.125 \mathrm{MNa}_{3} \mathrm{PO}_{4}(a q)$ at $25^{\circ} \mathrm{C}$. Which statement is true about these solutions, assuming all salts to be strong electrolytes?
A. $0.500 \mathrm{M}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})}$, has the highest osmotic pressure.
B. They all have the same osmotic pressure.
C. $0.100 \mathrm{M} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{aq})}$ has the highest osmotic pressure.
D. $0.125 \mathrm{M} \mathrm{Na} \mathrm{Pa}_{3} \mathrm{PO}_{4 \text { (aq) }}$ has the highest osmotic pressure.

Answer: B

- Watch Video Solution

50. The vapor pressure of acetone at $20^{\circ} \mathrm{C}$ is 185 torr. When 1.2 g of a non-volatile solute was dissolved in 100 g of acetone at $20^{\circ} \mathrm{C}$, it vapour pressure was 183 torr. The molar mass $\left(\mathrm{gmol}^{-1}\right)$ of solute is:
A. 128
B. 488
C. 32
D. 64

Answer: D

51. If p° and p_{a} are the vapour pressures of the solvent and solution respectively and n_{1} and n_{2} are the mole fractions of solvent and solute respectively. Then,
A. $P^{\circ}=P\left[\frac{n_{1}}{n_{1}+n_{2}}\right]$
B. $p^{\circ}=P\left[\frac{n_{1}}{n_{1}+n_{2}}\right]$
C. $P=P^{\circ}\left[\frac{n_{2}}{n_{1}+n_{2}}\right]$
D. $P=P^{\circ}\left[\frac{n_{1}}{n_{1}+n_{2}}\right]$

Answer: C

- Watch Video Solution

52. 45 g of ethylene glycol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ is mixed with 600 g of water. Calculate
(a) the freezing point depression and (b) the freezing point of solution.

Given $K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.
A. 272
B. 271
C. 270
D. 274

Answer: B

- Watch Video Solution

53. $18 g$ glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to $178.2 g$ water. The vapour pressure of water (in torr) for this aqueous solution is:
A. 7.6
B. 76
C. 752.4
D. 759

Answer: C

54. The freezing point of benzene decreases by $0.45^{\circ} \mathrm{C}$ when $0.2 g$ of acetic acid is added to $20 g$ of benzene. IF acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be $\left(K_{f}\right.$ for benzene $\left.=5.12 \mathrm{Kkgmol}^{-1}\right)$
A. 0.646
B. 0.804
C. 0.746
D. 0.946

Answer: D

- Watch Video Solution

55. For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point ?
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] 3 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

56. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in 1 kg of water in a saucepan.

At what temperature will the water boil (at 1 atm) ? K_{b} for water is $0.52 \mathrm{Kkgmol}^{-1}$.
A. 373.15 K
B. 373.67 K
C. 374.19 K
D. 373.10 K

Answer: C

D Watch Video Solution

57. The Henry's law constant for O_{2}, dissolved in water is $4.34 \times 10^{4} \mathrm{~atm}$ at certain temperature. If the partial pressure of O_{2}, in a gas mixture that is in equilibrium with water is 0.434 atm , what is the mole fraction of O_{2}, in the solution?
A. 1×10^{-5}
B. 1×10^{-4}
C. 2×10^{-5}
D. 1×10^{-6}

Answer: A

58. Acetic acid dissolved in benzene shows a molecular mass of:
A. 1.62 and 98.3
B. 0.81 and 98.3
C. 0.5 and 86
D. 1 and 98.3

Answer: A

- Watch Video Solution

59. Relative lowering of vapour pressure of a dilute solution of glucose dissolved in 1 kg of water is 0.002 . The molality of the solution is .
A. 0.004
B. 0.222
C. 0.111
D. 0.021

Answer: C

D View Text Solution

60. Two liquids A and B on mixing produce a warm solution. Which type of deviation from Raoult's law does it show?
A. positive and positive
B. positive and negative
C. negative and negative
D. negative and positive

Answer: D

- Watch Video Solution

61. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous is reaction of Y if molecular weight of X is A then

molecular weight of Y is :

A. 2 A
B. 3A
C. A
D. 4A

Answer: B

- Watch Video Solution

62. The osmotic pressure of a dilute solution of a compound XY in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl} l_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of XY (in $\mathrm{mol} L^{-1}$) in solution is:
A. 6×10^{-2}
B. 4×10^{-2}
C. 16×10^{-4}
D. 4×10^{-2}

Answer: D

- Watch Video Solution

63. A solution is prepared by dissolving 0.6 g of urea (molar mass $=60 \mathrm{gmol}^{-1}$) and 1.8 g of glucose (molar mass $=180 \mathrm{gmol}^{-1}$) in 100 mL of water at $27^{\circ} \mathrm{C}$. The osmotic pressure of the solution is:
$\left(R=0.8206 L \operatorname{atm} K^{-1} \mathrm{~mol}^{-1}\right)$
A. 4.92 atm
B. 1.64 atm
C. 2.46 atm
D. 8.2 atm

Answer: A

64. 1 g of a non-volatile non-electrolyte solute is dissolved in 100 g of two different solvents A and B whose ebullioscopic constants are in the ratio of $1: 5$. The ratio of the elevation in their boiling points, $\frac{\Delta T_{b}(A)}{\Delta T_{b}(B)}$ is
A. 5: 1
B. $10: 1$
C. $1: 5$
D. 1:0.2

Answer: C

- Watch Video Solution

65. Elevation in the boiling point for 1 molal solution of glucose is $2 K$. The depression in the freezing point for 2 molal solution of glucose in the same solvent is 2 K . The relation between K_{b} and K_{f} is
A. $K_{b}=0.5 K_{f}$
B. $K_{b}=2 K_{f}$
C. $K_{b}=1.5 K_{f}$
D. $K_{b}=K_{f}$

Answer: B

- Watch Video Solution

66. Which one of the following statements regarding Henry's law is not correct?
A. The value of K_{H} increases with the nature of the gas
B. Higher the value of K_{H} at a given pressure, higher is the solubility of the gas in the liquids.
C. The partial pressure of the gas in vapour phase is proportional to the mole fraction of the gas in the solution.
D. Different gases have different K. (Henry's lawconstant) values at the same temperature.

Answer: B

- Watch Video Solution

67. Molecules of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dimerise in benzene. ' w ' g of the acid dissolved in 30 g of benzene shows a depression in freezing point equal to 2 K . If the percentage association of the acid to form dimer in the solution is 80 , then w is : (Given that $K_{f}=5 \mathrm{KKgmol}^{-1}$ Molar mass of benzoic acid $=122 \mathrm{gmol}^{-1}$)
A. 1.8 g
B. 2.4g
C. 1.0g
D. 1.5 g
68. A solution containing 62 g ethylene glycol in 250 g water is cooled to $-10^{\circ} \mathrm{C}$. If K_{f} for water is $1.86 \mathrm{~K} \mathrm{~mol}^{-1}$, the amount of water (in g) separated as ice is :
A. 32
B. 48
C. 16
D. 64

Answer: D

- Watch Video Solution

69. Liquids A and B form an ideal solution in the entire composition range. At 350 K , the vapor pressure of pure A and pure B are $7 \times 10^{3} \mathrm{~Pa}$
and $12 \times 10^{3} \mathrm{~Pa}$, respectively. The composition of the vapor in equilibrium with a solution containing 40 mole percent of A at this temperature is :
A. $x_{A}=0.37, x_{B}=0.63$
B. $x_{A}=0.28, x_{B}=0.72$
C. $x_{A}=0.76, x_{B}=0.6$
D. $x_{A}=0.4, x_{B}=0.6$

Answer: B

- Watch Video Solution

70. The vapour pressures of pure liquids A and B are 400 and 600 mm Hg respectively at 298 K . On mixing the two liquids, the sum of their initial volumes is equal to the volume of the final mixture. The mole fraction of liquid B is 0.5 in the mixture. The vapour pressure of the final solution, the mole fractions of components A and B in vapour phase, respectively are:
A. $450 \mathrm{mmHg}, 0.4,0.6$
B. $500 \mathrm{mmHg}, 0.5,0.5$
C. $450 \mathrm{mmHg}, 0.5,0.5$
D. $500 \mathrm{mmHg}, 0.4,0.6$

Answer: D

- Watch Video Solution

71. $\mathrm{K}_{2} \mathrm{HgI}_{4}$ is 40% ionised in aqueous solution. The value of its van't Hoff factor (i) is :
A. 1.8
B. 2.2
C. 2
D. 1.6
72. Molal depression constant for a solvent is $4.0 \mathrm{Kkgmol}^{-1}$ The depression in the freezing point of the solvent for $0.03 \mathrm{molkg}^{-1}$ solution of $K_{2} S O_{4}$ is: (Assume complete dissociation of the electrolyte)
A. 0.12 K
B. 0.36 K
C. 0.18 K
D. 0.24 K

Answer: B

Watch Video Solution

73. The Henry's law constant for the solubility of N_{2} gas in water at 298 K is $1.0 \times 10^{5} \mathrm{~atm}$. The mole fraction of N_{2} in air is 0.8 . The number of
moles of N_{2} from air dissolved in 10 moles of water at 298 K and 5 atm . Pressure is:
A. 4.0×10^{-4}
B. 4.0×10^{-5}
C. 5.0×10^{-4}
D. 4.0×10^{-6}

Answer: A

- Watch Video Solution

74. Dissolving 120 g of urea ($\mathrm{mol} \mathrm{wt}=60$) in 1000 g of water gave a solution of density $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is
A. 1.78 M
B. 2.00 M
C. 2.05 M

Answer: C

- Watch Video Solution

75. The freezing point (in ${ }^{\circ} \mathrm{C}$) of solution containing 0.1 g of $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (mol.wt. 329) in 100 g of water $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ is
A. -2.3×10^{-2}
B. -5.7×10^{-2}
C. 5.7×10^{-3}
D. -1.2×10^{-2}

Answer: A

- Watch Video Solution

76. For a dilute solution containing $2.5 g$ of a non-volatile non-electrolyte solution in $100 g$ of water, the elevation in boiling point at 1 atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution is:
(take $k_{b}=0.76 \mathrm{Kkgmol}^{-1}$)
A. 724
B. 740
C. 736
D. 718

Answer: A

- Watch Video Solution

77. Pure water freezes at 273 K and 1 bar . The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the
freezing point depression constant of water as $2 \mathrm{~K} \mathrm{kgmol}^{-1}$. The figures shown below represent plots of vapour pressure (V.P.) versus temperature (T). [molecular weight of ethanol is $46 \mathrm{gmol}^{-1}$ Among the following, the option representing change in the freezing point is
A.
B. - 4
C.
D.

Answer: B

- Watch Video Solution

COMPEIITION FILE (C. MULTIPLE CHOICE QUESTIONS(MCQ))

1. Colligative properties of a solution depends upon
A. independent of the nature of solute.
B. inversely proportional to molecular mass of solute
C. proportional to the amount of solvent
D. independent of the amount of solvent

Answer: A::B::C

D Watch Video Solution

2. Under what condition do non-ideal solutions show negative deviations?
A. acetone + ethyl alcohol
B. acetic acid + pyridine
C. chloroform + benzene
D. carbon tetrachloride + toluene

Answer: B::C

3. Which of the following forms is an ideal solution?
A. chlorobenzne + Bromobenzen
B. Hexane + Heptane
C. Ethanol + Cyclohenxane
D. Acetic acid + Pyridine

Answer: A: B

- Watch Video Solution

4. In the depression of freezing point experiment, it is found that the:
A. the vapour pressure of the solution is less than that of pure solvent
B. the vapour pressure of the solution is more than that of pure solvent.
C. only solute molecules solidify at the freezing point
D. only solvent molecules solidify at the freezing physical.

Answer: A::D

- Watch Video Solution

5. An aqueous solution freezes at 272.4 K while pure water freezes at 273 K. Given $K_{f}=1.86 \mathrm{Kkgmol}^{-1}, K_{b}=0.512 \mathrm{Kkgmol}^{-1}$ and vapour pressure of water at $298 \mathrm{~K}=23.756 \mathrm{~mm} \mathrm{Hg}$. Determine the following.

Molality of the solution is
A. freezing point of solution $=-3.72^{\circ} \mathrm{C}$
B. boiling point of soution $=100.512^{\circ} \mathrm{C}$
C. osmotic pressure $=3.76 \mathrm{~atm}$
D. observed molecular mass $=37.25$ (approx.assuming degree of dissociation $=1$).

- Watch Video Solution

6. Which of the following statements is / are wrong ?
A. The value of colligative property decreases when solute undergoes dissociation.
B. For $A l C l_{3}$, the Van't Hoff factor is 3.
C. Solvent rises from soil to the the top of a tall tree due to osmosis.
D. Aqueous solution of NaCl freezes at lower temperature than water.

Answer: A::B

- Watch Video Solution

7. Benzene and naphthalene form an ideal solution at room temperature.

For this process, the true statement(s) is (are)
A. ΔG is positive
B. $\Delta S_{\text {system }}$ is positive
C. $\Delta S_{\text {surrounding }}=0$
D. $\Delta H=0$

Answer: B::C::D

D Watch Video Solution

8. 0.5 m solution of urea is isotonic with
A. $18 \%(\mathrm{~m} / \mathrm{v})$ solution of glucose
B. 0.5 M solution of BaCl_{2}
C. 1 M solution of surcose
D. 1 M solution of acetic acid

Answer: A::C

9. Mixture (s) showing positive deviation from Raoult's law at $35^{\circ} \mathrm{C}$ is (are)
A. carbon tetrachloride + methanol
B. carbon disulphide + acetone
C. benzene + toluene
D. phenol + aniline

- Watch Video Solution

10. For a solution formed by mixing liquids L and M, the vapour pressure of L plotted against the mole fraction of M is solution is shown in the following figure. Here x_{L} and x_{M} represent mole fractions of L and M , respectively , in the solution. The correct statement (s) applicable to this system is (are).
A. attractive intermolecular interactions between $L-L$ in pure liquid L and $M-M$ in pure liquid M are stronger that those between $L-M$ when mixed in solution.
B. the point Z represents vapour pressure fo pure liquid M and Raoult's law is obeyed when $x_{L} \rightarrow 0$.
C. the point Z represents vapour pressure of pure liquid M and Raoult's law is obeyed when $x_{L}=0$ to $x_{L}=1$
D. the point Z represent vapour pressue of pure liquid L and Raoult' s law is obeyed when $x_{L} \rightarrow 1$

Answer: A::D

- View Text Solution

COMPETITION FILE (D. MULTIPLE CHOICE QUESTIONS(MCQ))

1. The vapour pressure of a pure liquid A is 40 mmHg at 310 K . The vapour pressure of this liquid in a solution with liquid B is 32 mmHg . The mole fraction of A in the solution, if it obeys Raoult's law, is:
A. 0.6
B. 0.5
C. 0.2
D. 0.8

Answer: D

- Watch Video Solution

2. Vapour pressure of a liquid depends upon its
A. For solution showing - ve deviations, $\Delta V_{\text {mixing }}$ and $\Delta H_{\text {mixing }}$ are +ve .
B. For solutions showing negative deviaitons, the interactions between the components are greater than the pure components
C. For solutions showing + ve deviaitons , $\Delta V_{\text {mixing }}=+v e$ but
$\Delta H_{\text {mixing }}=+v e$
D. For solution showing -ve deviations, $\Delta V_{\text {mixing }}=-v e$ but $\Delta H_{\text {mixing }}=+\mathrm{ve}$.

Answer: B

- Watch Video Solution

3. Vapour pressure of a liquid depends upon its
A. 100 mm Hg
B. 35 mm Hg
C. 30 mm Hg
D. 1.86 mm Hg

Answer: B

D Watch Video Solution

4. Vapour pressure of a liquid depends upon its
A. $\Delta G_{\operatorname{mix}}=0$
B. $\Delta H_{\text {mixing }}=0$
C. $\Delta G_{\text {mix }}=0, \Delta S_{\text {mix }}=0$
D. $\Delta S_{\text {mixing }}=0$

Answer: B

- Watch Video Solution

5. A solution of sucrose (molar mass $=342 \mathrm{gmol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$
A. -0.744°
B. $-0.372^{\circ} \mathrm{C}$
C. $-0.186^{\circ} \mathrm{C}$
D. $-0.093^{\circ} C$

Answer: A

- Watch Video Solution

6. A solution of sucrose (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be :
(K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
A. 0.0220 atm
B. 0.238 atm
C. 0.0238 atm
D. 0.220 atm

Answer: C

- Watch Video Solution

7. A solution of sucrose (molar mass $=342 \mathrm{gmol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$
A. 11.79 g
B. 1.179 g
C. 2.34 g
D. 23.4 g

Answer: B

- Watch Video Solution

8. A solution of sucrose (molar mass $=342 \mathrm{gmol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$
A. 0.72
B. 0.8
C. 0.92
D. 0.88

Answer: D

- Watch Video Solution

9. An electrolyte A gives 3 ions and B is a non-electrolyte. If 0.1 M solution of B produces an osmotic pressure P, then 0.05 M solution of A will produce an osmotic pressure, assuming that the electrolyte is completely ionised :
A. $0.02 p$
B. $0.8 p$
C. $0.4 p$
D. $0.6 p$

Answer: B

- Watch Video Solution

10. A 0.2 molal aqueous solution of weak acid $(H X)$ is 20% ionised. The freezing point of this solution is (Given, $K_{f}=1.86^{\circ} \mathrm{Cm}^{-1}$ for water)
A. $101.04^{\circ} \mathrm{C}$
B. $100.104^{\circ} C$
C. $100.1248^{\circ} \mathrm{C}$
D. $100.52^{\circ} \mathrm{C}$

Answer: C

11. Which of the following expressions is not acceptable?
(i) $\Delta P=P_{f}-P_{i}$
(ii) $\Delta_{w}=w_{f}-w_{i}$
(iii) $\Delta q=q_{f}-q_{i}$
(iv) $\Delta U=U_{f}-U_{i}$
A. $0.5 \mathrm{M}_{3} \mathrm{PO}_{3}$
B. $0.5 \mathrm{M} \mathrm{Na} \mathrm{NaO}_{4}$
C. 0.5 MNaCl
D. 0.5 M Aniline

Answer: B

12. An aqueous solution freezes at
$-0.186^{\circ} C\left(K_{f}=1.86^{\circ}{ }^{\prime} K_{b}=0.512^{\circ}\right.$. What is the elevation in boiling point?
A. 1:1:2:3
B. 3:2:1:1
C. 1:2:3:4
D. 2:2:3:4

Answer: A

- Watch Video Solution

13. If K_{f} value of $\mathrm{H}_{2} \mathrm{O}$ is 1.86 . The value of ΔT_{f} for 0.1 m solution of nonvolatile solute is
A. $7.8 \mathrm{molL}^{-1}$
B. $1.5 \mathrm{~mol}^{-1}$
C. $0.075 \mathrm{~mol}^{-1}$
D. $0.15 \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

COMPETITION FILE (MARTIX MATCH TYPE QUESTIONS)

1. Match the behaviour of solution in Column I with the example listed in

Column II.

- View Text Solution

2. Match the type of solution in Column I with the characteristic property metioned in Column II.

COMPEIITION FILE (INTEGER TYPE OR NUMERICAL VALUE TYPE QUESTIONS)

1. The liquid pair of acetone-chloroform shows a positive deviation form Raoult's law.

- Watch Video Solution

2. The depressions in freezing point for 1 M urea, 1 M glucose and 1 M NaCl are in the ration :

- Watch Video Solution

3. $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ may be distinguished chemically :

- Watch Video Solution

4. An electrolyte $A_{2} B_{3}$ ionizes in water upto 75%. The van't Hoff factor for it is .

- Watch Video Solution

5. The depression in freezing expected for $0.6 \mathrm{~m} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution will be ' n ' times compared with $0.2 \mathrm{~m} \mathrm{Na} \mathrm{SO}_{4}$ solution. The value of n is.

- View Text Solution

6. $29.2 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}$ stock solution has a density of $1.25 \mathrm{~g} \mathrm{~m} L^{-1}$. The molecular weight of HCl is $36.5 \mathrm{~g} \mathrm{~mol}^{-1}$. The volume (mL) of stock solution required to prepare a 200 mL solution of 0.4 M HCl is :

- Watch Video Solution

7. $M X_{2}$ dissociates into M^{2+} and X^{-}ions in an aqeous solution, with a degree dissociation (α) of 0.5 . The ratio of the observed depression of
freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is

- Watch Video Solution

8. If the freezing point of a 0.01 molal aqueous solution of a cobalt (III) chloride-ammonia complex (which behaves as a strong electrolyte) is $-0.0558^{\circ} \mathrm{C}$, the number of chloride (s) in the coordination sphere of the complex if $\left[K_{f}\right.$ of water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right]$

- Watch Video Solution

9. The mole fraction of a solute in a solutions is 0.1 . At 298 K molarity of this solution is the same as its molality. Density of this solution at 298 K is
$2.0 \mathrm{gcm}^{-3}$. The ratio of the molecular weights of the solute and solvent, $\frac{M W_{\text {solute }}}{M W_{\text {solvent }}}$ is

- Watch Video Solution

10. Liquids A and B form ideal solution over the entire range of composition. At temperature T , equimolar binary solution of liquids A and B has vapour pressure 45 torr. At the same temperature, a new solution of A and B having mole fractions x_{A} and x_{B}, respectively, has vapours pressure of 22 . torr. The value of x_{A} / x_{B} in the new solution is \qquad .
(Given that the vapour pressure of pure liquid A is 20 torr at temperature T).

- Watch Video Solution

11. The plot given below shows P - T curves (where P is the pressure and T is the temperature) for the solvents X and Y and isomolal solutions of NaCl in these solvents. NaCl completely dissociates in both the solvents.

On addition of equal number of moles of a non - volatile solute S in equal amount (in kg) of these solvents, the elevation of boiling point of solvent X is the three times that of solvent Y. Solute S is known to undergo
dimerization in these solvents. If the degree of dimerization is 0.7 in solvent Y , the degree of dimerization solvent X is \qquad

- View Text Solution

12. On dissolving 0.5 g of non-volatile, non-ionic solute to 39 g of benzene, its vapour pressure decreases from 650 mm of Hg to 640 mm of Hg . The depression of freezing point of benzene (in K) upon addition of the solute is \qquad .
(Given data: Molar mass \& molar freezing point depression is 78 g $\mathrm{mol}^{-1} \& 5.12 \mathrm{Kkgmol}^{-1}$]

- Watch Video Solution

13. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05 . If the density of the solution is $1.2 \mathrm{gcm}^{-3}$, the molarity of urea solution is \qquad
Given data: Molar masses of urea and water are $60 \mathrm{gmol}^{-1}$ and $18 \mathrm{gmol}^{-1}$

UNIT PRACTICE TEST

1. The vapor pressure of acetone at $20^{\circ} \mathrm{C}$ is 185 torr. When $1.2 g$ of a nonvolatile solute was dissolved in 100 g of acetone at $20^{\circ} \mathrm{C}$, it vapour pressure was 183 torr. The molar mass $\left(\mathrm{gmol}^{-1}\right)$ of solute is:
A. 128.8
B. 64.4
C. 32.2
D. 257.6

- Watch Video Solution

2. Which one of the following is incorrect for ideal solution?
A. $\Delta H_{\text {mix }}=0$
B. $\Delta V_{\text {mix }}=0$
C. $\Delta p_{\text {obs }} \quad-p_{\text {calculated form Raoult's law }}=0$
D. $\Delta G_{\text {mix }}=0$

D Watch Video Solution

3. The Van't Hoff factor of benzoic acid solution in benzene is 0.5 . In this solution. Benzoic acid

- Watch Video Solution

4. Assertion : Addition of a nonvolatile solute to a volatile solvent increases the boiling point.

Reason : Addition of nonvolatile solute results in lowering of vapour pressure.
5. State the condition resulting in reverse osmosis.

- Watch Video Solution

6. A compound X undergoes tetramerisation in a given organic solvent.

The van't Hoff factor is

- Watch Video Solution

7. Why does a solution of ethanol and cyclohexane show positive deviation from Raoult's law?

- Watch Video Solution

8. How many grams of potassium chloride should be added to 1.5 kg of water to lower its freezing point to $-7.5^{\circ} C$?

(D) Watch Video Solution

9. A solution cantains 0.8960 g of $K_{2} \mathrm{SO}_{4}$ in 500 mL . Its osmotic pressure is found to be 0.69 atm at $27^{\circ} \mathrm{C}$. Calculate the value of Van't Hoff factor.

- Watch Video Solution

10. The freezing point depression of 0.1 molal solution of benzoic acid in benzene is 0.526 K . For benzene K_{f} is $5.12 \mathrm{Kkgmol}^{-1}$. Calculate the value of van't Hoff factor for benzoic acid in benzene. What conclusion can you draw about the molecular state of benzoic acid in benzene?

- Watch Video Solution

11. Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and naphthalene at 300 K are 50.71 mmHg and 32.06 mmHg , respectively. Calculate the mole
fraction of benzene in vapour phase if $80 g$ of benzene is mixed with $100 g$ of naphthalene.

- Watch Video Solution

12. The relative lowering in vapour pressure is:

- Watch Video Solution

13. Calculate the normal boiling point of a sample of sea water found to contain 3.5% of NaCl and 0.13% of MgCl_{2} by mass. The normal boiling of point of water is $100^{\circ} \mathrm{C}$ and $K_{b}($ water $)=0.51 \mathrm{Kkgmol}^{-1}$. Assume that both the salts are completely ionised.

- Watch Video Solution

14. Calculate the volume of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight (density $=1.8 \mathrm{~g} / \mathrm{ml}$) required to prepare 1L of 0.2 M solution.
