© 'doubtnut

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

APPLICATIONS OF THE INTEGRALS

Frequently Asked Questons Faqs Example

1. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$.

D Watch Video Solution

2. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.
3. Find the area of the region bouonded by $y^{2}=4 x, x=1, x=4$ and x-axis in the first quadrant.

- Watch Video Solution

4. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.

- Watch Video Solution

5. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

6. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $\quad x=\quad$ ae \quad and $\quad x=0, \quad$ where
$b^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.

- Watch Video Solution

7. Find the area bounded by the region given by:
$A=\left\{(x, y):(x, y): \frac{x^{2}}{25}+\frac{y^{2}}{9} \leq 1<\frac{x}{5}+\frac{y}{3}\right\}$.

- Watch Video Solution

8. Find the area of the region in the first quadrant enclosed by the x -axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

9. Using integration, find the area of the triangle $A B C$ whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$.

- Watch Video Solution

10. Using the method of integration, find the area of the triangular region whose vertices are $(2,-2),(4,3)$ and $(1,2)$.

- Watch Video Solution

11. Using the method of integration, find the area of the region bounded
$3 x-2 y+1=0,2 x+3 y-21=0$ and $x-5 y+9=0$.

- Watch Video Solution

12. Find the smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$.

D Watch Video Solution

13. Find the area of the region enclosed between the two circles:
$x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

- Watch Video Solution

14. Using integration find the area of the region bounded by the parabola $y^{2}=4 x$ and the circle $4 x^{2}+4 y^{2}=9$

- Watch Video Solution

 circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

16. Find the area of the region included between the parabolas
$y^{2}=4 a x a n d x^{2}=4 a y$, wherea >0.

- Watch Video Solution

17. Draw a rough sketch of the curves $y^{2}=x+1$ and $y^{2}=-x+1$ and find the area enclosed between them,

- Watch Video Solution

18. Find the area of the region bounded by the curces:
$y=6 x-x^{2}$ and $y=x^{2}-2 x$.

D View Text Solution

19. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line
$2 y=3 x+12$.

- Watch Video Solution

20. Find the area bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x-axis.

- Watch Video Solution

21. Find the area of the region bounded by the curves $y=x^{2}+2$
$, y=x, x=0$ and $x=3$.

- Watch Video Solution

22. Sketch the region bounded by the curves $y=\sqrt{5-x^{2}}$ and
$y=|x-1|$ and find its area.

- Watch Video Solution

23. The area of the triangle formed by the positive x-axis with the normal and the tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is

- Watch Video Solution

24. Sketch the graph of:
$f(x)=\left\{\begin{array}{c}|x-2|+2, x \leq 2 \\ x^{2}-2, x>2\end{array}\right.$.
Evaluate $\int_{0}^{4} f(x) d x$. What does the value of this integral represent on the graph ?

D Watch Video Solution

Exercise 8 A

1. Using integration,
(i) find the area of the first quadrant of the circle :
$x^{2}+y^{2}=4$
(ii) find the area of the circle :

$$
x^{2}+y^{2}=4
$$

2. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution

3. Using integration, find the area bounded between the parabola $x^{2}=4 y$ and the line $y=4$.

- Watch Video Solution

4. Examples: Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.

- Watch Video Solution

5. (i) Find the area bounded by $y=3 x+2$, the x-axis and the ordinates $x=-2$ and $x=1$.
(ii) Find the area bounded by $y=x$, the x-axis and the line $x=-1$ and $x=2$.

D View Text Solution

6. (i) $y=x^{4}, x=1, x=5$ and x-axis
(ii) $y=x^{2}, x=0, x=2$ and x -axis
(iii) $y=x^{2}-4, x=0, x=3$ and x-axis
(iv) $y=x^{2}, x=2, x=4$ and x-axis.

D View Text Solution

7. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

8. Find the area bounded by the curve $y=4 x^{2}, x=0, x=1$ and $y=4$ in first quadrant.

- Watch Video Solution

9. Find the area under the curve $y=\left(x^{2}+2\right)^{2}+2 x$ between the ordinates $x=0$ and $x=2^{`}$

- Watch Video Solution

10. Find the area of the region in the first quadrant enclosed by x axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
11. Prove that area of the smaller part of the cirlce $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$ is $\frac{a^{2}}{4}(\pi-2)$ sq. units.

- Watch Video Solution

12. Determine the area under the curve $y=\sqrt{a^{2}-x^{2}}$ included between the lines $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$.

- Watch Video Solution

13. Determine the area enclosed between the curve $y=\cos 2 x, 0 \leq x \leq \frac{\pi}{4}$ and the co-ordinate axes.
14. Calculate the area bounded by the curve:
$f(x)=\sin ^{2} \frac{x}{2}$, axis of x and the ordinates: $x=0, x=\frac{\pi}{2}$.

D Watch Video Solution

15. Draw a rough sketch of the curve $y=\cos ^{2} x$ in $[0,1]$ and find the area enclosed by the curve,the lines $x=0, x=\pi$ and the x axis.

D Watch Video Solution

16. (i) Make a rough sketch of the graph of the function $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$ and determine the area enclosed between the curve, the x-axis and the line $x=\frac{\pi}{2}$.
(ii) Find the area bounded by the curve:
$(I) y=\sin x \quad(I I) y=\cos x$ bewtween $x=0$ and $x=2 \pi$.

D Watch Video Solution

17. Make a rough sketch of the graph of the function $y=2 \sin x, 0 \leq x \leq \frac{\pi}{2}$ and determine the area enclosed between the curve, the x-axis and the line $x=\frac{\pi}{2}$.

- Watch Video Solution

18. (i) Draw a rough sketch of $y=\sin 2 x$ and determine the area enclosed by the curve, x -axis and the lines $x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$.
(ii) Draw the graph of $y=\cos 3 x, 0<x \leq \frac{\pi}{6}$ and find the area between the curve and the axes.
19. Make a rough sketch of the graph of $y=\cos ^{2} x, 0 \leq x \leq \frac{\pi}{2}$ and find the area enclosed between the curve and the axes.

- Watch Video Solution

20. Find the area bounded by the cirxle $x^{2}+y^{2}=16$ and the line $y=x$ in the first quadrant .

- Watch Video Solution

21. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

22. Find the area under the given curves and given lines:(i) $y=x^{2}, x=1, x=2$ and x -axis(ii) $y=x^{4}, x=1, x=5$ and x axis

- Watch Video Solution

23. Draw the rough sketch of $y^{2}+1=x, x \leq 2$. Find the area enclosed by the curve and the line $x=2$.

- Watch Video Solution

24. Find the area of the region bounded by the ellipse :
(a) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(b) $(i) 16 x^{2}+9 y^{2}=144$
(ii) $4 x^{2}+25 y^{2}=1$.
25. Find the area between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the x axis between $x=0$ and $x=a$. Draw rough sketch of the curve also.

- Watch Video Solution

26. Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

D Watch Video Solution

27. Sketch the region $\left\{(x, y): 4 x^{2}+9 y^{2}=36\right\}$ and find its area, using integration.
28. Find the area bounded by the circle $\times 2+y 2=16$ and the line $3 y=x$ in the first quadrant, using integration.

- Watch Video Solution

Exercise 8 B

1. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed between them and the x-axis
2. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.

- Watch Video Solution

3. Using integration, find the area of the region bounded by :
(i) $(1,0),(4,5)$ and $(6,3)$
(ii) $(1,0),(2,2)$ and $(3,1)$
(iii)($-1,2),(1,5)$ and $(3,4)$
(iv) $(2,3),(3,5)$ and $(3,4)$
(v) $(-1,0),(1,3)$ and $(3,2)$
(vi) $(1,3),(2,5)$ and $(3,4)$
(vii) $(4,1),(6,6)$ and $(8,4)$
(viii) $(2,5),(4,7)$ and $(6,2)$
(ix) $(-2,1),(0,4)$ and $(2,3)$
(x) $(2,1),(3,4)$ and $(5,2)$.
4. Using the method of integration, find the area of the region bounded by the following
lines $3 x-y-3=0,2 x+y-12=0, x-2 y-1=0$.

- Watch Video Solution

5. Find the area of the region bounded by the line $y=3 x+2$, the x-axis and the ordinates $x=-1$ and $x=1$

- Watch Video Solution

6. Find the area of the region:
(i) $\left\{(x, y): x^{2} \leq y \leq x\right\}$
(ii) $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

- View Text Solution

7. Consider the fractions:
$f(x)=|x|-1$ and $g(x)=1-|x|$.
(a) Find their graphs and shade the closed region between them
(b) Find the area of their shaded region.

D Watch Video Solution

8. Using integration, find the area of the region bounded between :
(i) the line $x=2$ and the parabola $y^{2}=8 x$
(ii) the line $x=3$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

9. Find the ara of the region bounded by :
(i) the parabola $y=x^{2}$ and the line $y=x$
(ii) the parabola $y^{2}=x$ and line $x+y=2$
(iii) the curve $x^{2}=4 y$ and the straight line $x=4 y-2$
(iv) the parabola $y^{2}=4 a x$ and the chord $y=m x$
(v) the parabola $y^{2}=4 a x$ and its latus-rectum
(vi) the parabola $(I) y^{2}=8 x(I I) y^{2}=6 x$ and the latus rectum.

- View Text Solution

10. Find the area of the region bounded by the parabola $x^{2}=y$, the line $y=x+2$ and the x-axis.
11. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

D Watch Video Solution

12. Draw a rough sketch of the region enclosed between the curve $y^{2}=4 x$ and the line $y=2 x$. Also, determine the area of the region.

D Watch Video Solution

13. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.
14. Find the area enclosed between the straight line $y=x+2$ and the curve $x^{2}=y$.

- Watch Video Solution

15. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

D Watch Video Solution

16. Draw the rough sketch and find the area of the region:

$$
\left\{(x, y): 4 x^{2}+y^{2} \leq 4,2 x+y \geq 2\right\}
$$

- View Text Solution

17. (a) Draw the rough sketch and find the area of the region included between the parabolas:
(i) $y^{2}=4 x$ and $x^{2}=4 y$
(ii) $y^{2}=9 x$ and $x^{2}-9 y$
(iii) $y^{2}=16 x$ and $x^{2}=16 y$.
(b) Find the ratio in which the area bounded by the curves
$y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

18. Using integration calculate the area of the region bounded by
the two parabolas $y=x^{2}$ and $x=y^{2}$

- Watch Video Solution

19. Using integration, find the area of the region enclosed between the circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$

- Watch Video Solution

20. Show that the areas under the curves
$f(x)=\cos ^{2} x$ and $f(x)=\sin ^{2} x$ between $x=0$ and $x=\pi$ are $1: 1$.

- Watch Video Solution

21. Find the area of that part of the circle $x^{2}+\backslash y^{2}=16$ which is exterior to the parabola $\mathrm{y}^{2}=6 \mathrm{x}$.
22. Calculate the area enclosed in the region
(i) $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$
(ii) $\left\{(x, y): x^{2}+y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
(iii) $\left\{(x, y): x^{2}+y^{2} \leq 16, x^{2} \leq 6 y\right\}$
(iv) $\left\{(x, y): y^{2} \leq 6 a x, x^{2}+y^{2} \leq 16 a^{2}\right\}$
(v) $\left\{(x, y): x^{2}+y^{2} \leq 8, x^{2} \leq 2 y\right\}$.

D View Text Solution

23. Find \quad the \quad area \quad of
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$

- Watch Video Solution

24. Find the area of the region given by :
$\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.
(ii) Find the area bounded by thte curves:
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$.
(iii) Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

D View Text Solution

25. Using integration, find the area of the region bounded by the following curves, after making a rough sketch:
(i) $y=1+|x+1|, x=-3, x=3, y=0$
(ii) $y=1+|x+1|, x=-2, x=3, y=0$.

- Watch Video Solution

Objective Type Questions

1. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is:
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

2. Area of the region bounded by the curve $y^{2}=4 x, y$-axis
and the line $y=3$ is (A) 2 (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

- Watch Video Solution

3. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2 \mathrm{is}(\mathrm{A}) 2(\pi-2)$ (B) $\pi-2$ (C) $2 \pi-1$ (D) $2(\pi+2)$
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

- Watch Video Solution

4. Area lying between the curves $y^{2}=4 x$ and $y=2$ is:
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

D View Text Solution
5. Area bounded by the curve $y=x^{2}$, the x-axis and the ordinates $x=-2$ and $x=1$ is:
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

- Watch Video Solution

6. The area bounded by the curve $y=x \quad x \quad \mid$, x -axis and the ordinates $x=1$ and $x \quad=\quad 1$ is given by (A)
0 (B) $\frac{1}{3}$ (C)
(C) $\frac{2}{3}$
(D) $\frac{4}{3}$ [Hint : $y=x^{2}$ if x
$>\quad 0$ and $y=-x^{2}$
if $x<0]$.
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

D Watch Video Solution

7. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is(A) $\frac{4}{3}(4 \pi-\sqrt{3})$ (B) $\frac{4}{3}(4 \pi+\sqrt{3})$ (C) $\frac{4}{3}(8 \pi-\sqrt{3})$ $\frac{4}{3}(8 \pi+\sqrt{3})$
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(8 \pi+\sqrt{3})$

Answer: C

- Watch Video Solution

8. Find the area enclosed by the circle $x^{2}+y^{2}=25$
A. 4π sq. units
B. $2 \sqrt{2} \pi$ sq. units
C. $4 \pi^{2}$ sq. units
D. 2π sq. units

Answer: D

- Watch Video Solution

9. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
A. $\pi^{2} a b$
B. $\pi a b$
C. $\pi a^{2} b$
D. $\pi a b^{2}$

Answer: B

- Watch Video Solution

10. The area of the region bounded by the curve $y=x^{2}$ and the line $y=16$ is :
A. $\frac{32}{3}$
B. $\frac{256}{3}$
C. $\frac{64}{3}$
D. $\frac{128}{3}$

Answer: B

- Watch Video Solution

11. The area of the region bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$ is:
A. $\sqrt{2}$ sq. units
B. $(\sqrt{2}+1)$ sq. units
C. $\sqrt{2}(\sqrt{2}-1)$ sq. units
D. $(2 \sqrt{2}-1)$ sq. units

Answer: C

12. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
A. $\frac{3}{8}$ sq. units
B. $\frac{5}{8}$ sq. units
C. $\frac{7}{8}$ sq. units
D. $\frac{9}{9}$ sq. units

Answer: D

- Watch Video Solution

13. Area bounded by the curve $y=f(x)$ and the lines $x=a,=b$ and the x axis is :
A. $\int_{a}^{b} x d y$
B. $\int_{a}^{b} x^{2} d x$
C. $\int_{a}^{b} x d x$
D. $\int_{a}^{b} y d x$

Answer: D

- Watch Video Solution

14. The area enclosed by the :
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
A. $\frac{\pi a b}{4}$
B. $4 \pi a b$
C. $\pi a b$
D. None of these

Answer: C

- Watch Video Solution

15. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$.
A. $\frac{\pi a^{2}}{4}$
B. πa^{2}
C. $4 \pi a^{2}$
D. None of these

Answer: B

- Watch Video Solution

16. Find the area of the region bounded by the curve $y^{2}=x$ and

 the lines $x=1, x=4$ and the x -axis.A. $\frac{15}{2}$
B. $\frac{14}{3}$
C. 7
D. None of these

Answer: B

- Watch Video Solution

17. The area of the circle $x^{2}+y^{2}=a^{2}$ is:
A. πa^{2}
B. $2 \pi a$
C. $2 \pi a^{2}$
D. None of these

Answer: A

- Watch Video Solution

18. The area between the curve $y=x^{2}, x$-axis and the lines
$x=0$ and $x=2$ is :
A. $\frac{2}{3}$ sq. units
B. 4 sq. units
C. $\frac{8}{3}$ sq. units
D. $\frac{4}{3}$ sq. units

Answer: C

19. The area of the region bounded by the parabola $y^{2}=9 x$ and the line $y=3 x$ is :
A. $\frac{1}{2}$ sq. units
B. $\frac{1}{3}$ sq. units
C. $\frac{1}{4}$ sq. units
D. $\frac{2}{3}$ sq. units

Answer: A

- Watch Video Solution

20. The area bounded by the curve $y=4 \sin x$, x-axis from $x=0$
to $x=\pi$ is equal to :
A. 1 sq. units
B. 2 sq. units
C. 4 sq. units
D. 8 sq units

Answer: D

- Watch Video Solution

Objective Type Questions Fill In The Blanks

1. The area of the quadrant of the circle $x^{2}+y^{2}=4$ is
\qquad .

-
 Watch Video Solution

2. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$.

D Watch Video Solution

3. The area of the parabola $y^{2}=4 a x$ bounded by the latusrectum is \qquad .

- Watch Video Solution

4. The area bounded by $y=x^{2}, x=0, x=2$ and x-axis is

- Watch Video Solution

5. Calculate the area under the curve $y=2 \sqrt{x}$ included between the lines $x=0$ and $x=1$.

- Watch Video Solution

Objective Type Questions True False

1. The area of the region bounded by $y=x^{4}, x=1, x=5$ and x-axis is 625 sq. units.

- Watch Video Solution

2. Find the area under the curve $y=\left(x^{2}+2\right)^{2}+2 x$ between the ordinates $x=0$ and $x=2^{`}$
3. The area enclosed by the curvey $y=\cos 2 x, 0 \leq x \leq \frac{\pi}{4}$ and co-ordinate axes is $\frac{1}{4}$ sq. unit.

- Watch Video Solution

4. Area bouinded by $|x|+|y|=1$ is 2 sq. units.

- Watch Video Solution

5. Area bounded by $y=x^{2}$ and line $y=x$ is $\frac{1}{4}$ sq unit.

- Watch Video Solution

1. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.

D Watch Video Solution

2. Find the area bounded by the parabola $y^{2}=4 a x$, latusrectum and x-axis.

D Watch Video Solution

3. Area (in square units) of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$, is

D Watch Video Solution

4. The area (in square units) bounded by the curve $y=x^{3}$, the x axis and the ordinates at $x=-2$ and $x=1$ is

D Watch Video Solution

5. Find the area under the curve $y=2 \sqrt{x}$ between the ordinates
$y=0$ and $x=1$.

- Watch Video Solution

6. The area in square units of the region bounded by the curve $x^{2}=4 y$, the line $\mathrm{x}=2$ and the x -axis, is

- Watch Video Solution

7. Find the area bounded by the parabola $x=4-y^{2}$ and y axis.

D Watch Video Solution

8. Find the area bounded by the parabola $x=4-y^{2}$ and y axis.

- Watch Video Solution

9. The area bounded by the parabola $y^{2}=8 x$, the x-axis and the latusrectum, is
10. Find the area enclosed between the curve $y=\cos x, 0 \leq x \leq \frac{\pi}{4}$ and the co-ordinate axes.

D Watch Video Solution

11. Find the area enclosed between the curve $y=\cos ^{2} x, 0 \leq x \leq \frac{\pi}{2}$ and the co-ordinate axes.

- Watch Video Solution

12. Area between the x-axis and the curve $y=\cos x$, when

$$
0 \leq x \leq 2 \pi \text { is (A) } 0 \text { (B) } 2 \text { (C) } 3 \text { (D) } 4
$$

- Watch Video Solution

13. The ratio of the areas between the curves $y=\cos x$ and $y=\cos 2 x$ and x -axis from $x=0$ to $x=\frac{\pi}{3}$ is

D Watch Video Solution

14. Find the area of the region bounded by the points
$(3,0),(4,5)$ and $(5,1)$.

- Watch Video Solution

15. The area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$, is

- Watch Video Solution

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x -axis.

D Watch Video Solution

2. Find the area of the region bounded by $y^{2}=8 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

3. The area of the region bounded by $x^{2}=y-2, y=4, y=6$ and the Y-axis in the first quadrant is
4. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

- Watch Video Solution

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

6. Find the area of the region in the first quadrant enclosed by x axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.

- Watch Video Solution

7. Find the ara of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

- Watch Video Solution

8. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

D Watch Video Solution

10. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

- Watch Video Solution

11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$.

Answer: A

- Watch Video Solution

13. Area of the region bounded by the curve $y^{2}=4 x, y$-axis
and the line $y=3$ is (A) 2 (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

- Watch Video Solution

Questions From Ncert Book Exercise 82

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
2. Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

3. Find the area of the region bounded by the curves $y=x^{2}+2$,
$y=x, x=0$ and $x=3$.

- Watch Video Solution

4. Using integration find the area of region bounded by the triangle whose vertices are $(1,0),(1,3) \operatorname{and}(3,2)$.

- Watch Video Solution

5. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$.

D Watch Video Solution

6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and line $\mathrm{x}+\mathrm{y}=2$
is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$.

Answer: B
7. Find area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

- Watch Video Solution

Miscellaneous Exercise On Chapter

1. Find the area under the given curves and given lines:(i)
$y=x^{2}, x=1, x=2$ and x-axis(ii) $y=x^{4}, x=1, x=5$ and x -

- Watch Video Solution

2. Find the area between the curve $y=x$ and $y=x^{2}$

- Watch Video Solution

3. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y=1$ and $y=4$.

- Watch Video Solution

4. Sketch the graph of $y=|x+3|$ and evaluate $\int-60|x+3| d x$.
5. Find the area bounded by the curve $y=s \in x$ between $x \quad=\quad 0$ and $x=2 \pi$.

- Watch Video Solution

6. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.

- Watch Video Solution

7. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line
$2 y=3 x+12$.

- Watch Video Solution

8. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

- Watch Video Solution

9. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

D Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^{2}=y$ and the line $\mathrm{y}=\mathrm{x}+2$.
11. Using the method of integration find the area bounded by the curve $|x|+|y|=1$. [Hint: The required region is bounded by lines
$x+y=1, x y=1, \quad x+y=$ and $x \quad y=1]$.

- Watch Video Solution

12. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$.

- Watch Video Solution

13. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.
14. Using the method of integration find the area of the region bounded by lines: $2 x+y=4,3 x 2 y=6$ and $x 3 y+5=0$

- Watch Video Solution

15. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

D Watch Video Solution

16. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=2$ and $x=1 \mathrm{is}(\mathrm{A})-9$ (B) $\frac{-15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$
A. -9
B. $\frac{-15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

- Watch Video Solution

17. The area bounded by the curve $y=x \quad|\quad x \quad|$, x -axis
and the ordinates $x=1$ and $x=1$ is given by (A)
0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ [Hint : $y=x^{2}$ if $x \quad>\quad 0$ and $y=-x^{2}$
if $x<0]$.
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

- Watch Video Solution

18. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x \mathrm{is}(\mathrm{A}) \frac{4}{3}(4 \pi-\sqrt{3})$ (B) $\frac{4}{3}(4 \pi+\sqrt{3})$ (C) $\frac{4}{3}(8 \pi-\sqrt{3})$
$\frac{4}{3}(8 \pi+\sqrt{3})$
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(8 \pi+\sqrt{3})$

Answer: C
19. Find the area bounded by the y-axis,
$y=\cos x, a n d y=\sin x w h e n 0 \leq x \leq \frac{\pi}{2}$.
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

Questions From Ncert Examplar

1. The area of the region bounded by the curve $a y^{2}=x^{3}$, the Y axis and the lines $y=a$ and $y=2 a$, is
2. Find the area of the region bounded by the parabola $y^{2}=2 x$ and straight line $x-y=4$.

- Watch Video Solution

Exercise

1. Calculate the area of the region bounded by the parabolas
$y^{2}=6 x a n d x^{2}=6 y$.

- Watch Video Solution

2. Find the area of the region bounded by the curve $x=a t^{2}$ and $y=2 a t$ between the ordinates corresponding to $\mathrm{t}=1$ and $\mathrm{t}=2$.

D Watch Video Solution

3. Find the area enslosed by the curve:
$x=3 \cos t, y=2 \sin t$.

- Watch Video Solution

Revision Exercise

1. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line
$2 y=3 x+12$.
2. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution

3. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, x=4, y=4 a n d y=0$ into three equal parts.

- Watch Video Solution

4. Draw the diagram to show the area enclosed by the curves :
$y^{2}=16 x$ and $x^{2}=16 y$.
The straight line $x=4$ divides the area into two parts. Find the area of the larger portion by integration.
5. In Figure, AOBA is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $O A=2 a n d O B=6$. Find the area between the $\operatorname{arc} A B$ and the chord $A B$.

- Watch Video Solution

6. Sketch the region enclosed between the circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$, which lies in the first quadrant. Also, find the area of the region.

- Watch Video Solution

7. Draw a rough sketch of the following region and find the area enclosed by the region, using method of integration :

$$
\left\{(x, y): y^{2} \leq 5 x, 5 x^{2}+5 y^{2} \leq 36\right\}
$$

- Watch Video Solution

8. Find the area bounded by $y=1+2 \sin ^{2} x$, X -axis, $X=0$ and $x=\pi$.

- Watch Video Solution

Check Your Understanding

1. Is the parabola $y^{2}=4 x$ symmetrical about x -axis ?

- Watch Video Solution

2. Is the circle $x^{2}+y^{2}=r^{2}$ symmetrical about the line $y=x$?

- Watch Video Solution

3. Find the area enclosed by the circle $x^{2}+y^{2}=9$.

- Watch Video Solution

4. Find the area of the semi-portion of the circle $x^{2}+y^{2}=4$.

- Watch Video Solution

5. Find the area of the region bounded by $y=x^{4}, x=1, x=5$ and x -axis.

- Watch Video Solution

Competition File

1. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

2. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 6
B. 9
C. 12
D. 3

Answer: C

D Watch Video Solution

3. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
A. $4 \sqrt{2}-2$
B. $4 \sqrt{2}+2$
C. $4 \sqrt{2}-1$
D. $4 \sqrt{2}+1$.

- Watch Video Solution

4. The area of the region enclosed by the curves
$y=x, x=e, y=\frac{1}{x}$ and the positive x -axis is
A. $\frac{1}{2}$ square units
B. 1 square units
C. $\frac{3}{2}$ square units
D. $\frac{5}{2}$ square units

Answer: C

5. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$
A. $\frac{32}{3}$
B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. 0

Answer: B

- Watch Video Solution

6. The area bounded between the parabolas
$x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $\mathrm{y}=2$ is
A. $20 \sqrt{2}$
B. $\frac{10 \sqrt{2}}{3}$
C. $20 \frac{\sqrt{2}}{3}$
D. $10 \sqrt{2}$

Answer: C

- Watch Video Solution

7. The area (in square units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0$, x-axis, and lying in the first quadrant is
A. 36
B. 18
C. $\frac{27}{4}$
D. 9

Answer: D

- Watch Video Solution

8. The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is:
A. $\frac{\pi}{2}-\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{4}{3}$

Answer: D

9. The area (in sq. units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \geq 4 x-1\right\}$ is-
A. $\frac{4}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

- Watch Video Solution

10. The area (in sq. units) of the region
$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \leq 0\right\}$, is
A. $\pi-\frac{8}{3}$
B. $\pi-\frac{4 \sqrt{2}}{3}$
C. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
D. $\pi-\frac{4}{3}$

Answer: A

- Watch Video Solution

11. The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$ is :
A. $\frac{7}{3}$
B. $\frac{5}{2}$
C. $\frac{59}{12}$
D. $\frac{3}{2}$

- Watch Video Solution

12. Let $g(x)=x^{2}, f(x)=\sqrt{x}$, and $\alpha, \beta(\alpha<\beta)$ be the roots of the quadratic equation $18 x^{2}-9 \pi x+\pi^{2}=0$. Then the area (is sq. units) bounded by curve $y=(g \circ f)(x)$ and the lines $x=\alpha, x=\beta$ and $y=0$ is:
A. $\frac{\pi^{2}}{24}$
B. $\frac{\pi^{2}}{9}$
C. $\frac{\pi^{2}}{36}$
D. $\frac{\pi^{2}}{72}$

Answer: A
13. The area of the region bounded by the parabola $y=x^{2}+2$ and the lines $\mathrm{y}=\mathrm{x}, \mathrm{x}=0$ and $\mathrm{x}=3$ is
A. $\frac{15}{2}$
B. $\frac{21}{2}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: A

- Watch Video Solution

14. Find the area bounded by the curves $x^{2} \leq y \leq x+2$:
A. $\frac{11}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. $\frac{5}{2}$

Answer: C

- Watch Video Solution

Chapter Test

1. Find area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

- Watch Video Solution

2. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
A. $\frac{3}{8}$ sq. units
B. $\frac{5}{8}$ sq. units
C. $\frac{7}{8}$ sq. units
D. $\frac{9}{8}$ sq. units

Answer: D

3. The area bounded by the line $y=x, X$-axis and the lines $x=-1, x=$ 2 is

- Watch Video Solution

4. Using integration, find the area of the quadant of the circle $x^{2}+y^{2}=4$.

D View Text Solution

5. Calculate the area under the curve $y=2 \sqrt{x}$ included between the lines $x=0$ and $x=1$.

- Watch Video Solution

6. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

D Watch Video Solution

7. Find the area of the region bounded by the curve $y^{2}=9 x, x=2, x=4$ and the x -axis in the first quadrant.

- Watch Video Solution

8. Using integration, find the area of the triangle $A B C$ whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$.

- Watch Video Solution

9. Find the area, lying above the $x=a x i s$ and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

D Watch Video Solution

10. Find the area of the region enclosed between the two circles
$x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$

- Watch Video Solution

11. Find the area of the region in the first quadrant enclosed by the x -axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

12. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut
off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

