©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

RELATIONS AND FUNCTIONS

Illustrative Examples

1. Let R be the relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$. Show that the relation R transitive ? Write the equivalence class [0].

- Watch Video Solution

2. Check whether the relationR in the set R of real numbers defined by : $R=\{(a, b): 1+a b>0\}$ is reflexive, symmetric or transitive.
3. Let N be the set of all natural numbers and let R be relation in N . Defined by
$R=\{(a, b): \mathrm{a}$ is a multiple of b$\}$.
show that R is reflexive transitive but not symmetric .

- Watch Video Solution

4. Let A be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b)$: a is sister of $b\}$ is the empty relation and $R^{\prime}=$ $\{(a, b)$: the difference between heights of a and b is less than 3 meters $\}$ is the un

- Watch Video Solution

5. Show that the relation S on the set : $A=\{x \in Z: 0 \leq x \leq 12\}$ given by:
$\mathrm{S}=\{(a, b): a, b \in Z,|a-b|$ is divisible by 3$\}$ is an equivalence relation.

(D) Watch Video Solution

6. Let L be the set of all lines in a plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}(\text { isperpendiculartoL })_{2}\right\}$. Show that R is symmetric but neither reflexive nor transitive.

- Watch Video Solution

7. Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$. Show that R is an equivalence relation.

- Watch Video Solution

8. Let $A=\{1,2,3,, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for all $(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class

(D) Watch Video Solution

9. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if $\mathrm{ad}(\mathrm{b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d})$ then R is

- Watch Video Solution

10. Let R be the relation defined on the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b):$ both a and b are either odd or even $\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1$, $3,5,7\}$ are related to each other and all the elements of the subset $\{2,4$, $6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

- Watch Video Solution

11. Let
$A=\{x \in Z: 0 \leq x \leq 12\}$.
Show
that
$R=\{(a, b): a, b \in A,|a-b| i s \div i s i b \leq b y 4\} \quad$ is \quad an \quad equivalence
relation. Find the set of all elements related to 1 . Also write the equivalence class [2]

- Watch Video Solution

12. Let $f: A \rightarrow B$ be a function defined as $f(x)=\frac{2 x+3}{x-3}$, where $\mathrm{A}=\mathrm{R}-\{3\}$ and $B=R-\{2\}$. Is the function f one-one and onto ? Is f invertible ? If yes, then find its inverse.

- Watch Video Solution

13. Prove that the function $\mathrm{f}:[0, \infty) \rightarrow R$, given by $f(x)=9 x^{2}+6 x-5$ is not invertible.

Modify the co-domain of the function f to make it invertible, and hence, find f^{-1}.
14. Consider $f: \overrightarrow{R-5, \infty}$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$.

- Watch Video Solution

15. Let $A=R-\{3\}$ and $B=R-[1]$. Consider the function $f: A \vec{B}$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1}

- Watch Video Solution

16. Let $A=R-\{2\}$ and $B=R-\{1\}$ if $f: A \rightarrow B$ is a function defined by $f(x)=\frac{x-1}{x-2}$ show that f is one-one and onto. Hence find f^{-1}.

- Watch Video Solution

17. Prove that function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is oneone but not onto. Find inverse of $f: N \rightarrow S$, where S is range of f .

- Watch Video Solution

18. Let $Y=\left\{n^{2}: n \in N\right\} \in N$. Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

19. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where, S is the range of f , is invertible. Find the inverse of f.

- Watch Video Solution

20. Let $f: N \rightarrow N$ be defined by: $f(n)=\{n+1, \quad$ if n is oddn-1, if n is even Show that f is a bijection.

- Watch Video Solution

21. If $a \cdot b$, denoted the larger of 'a' and ' b ' and if $a o b=a \cdot b+3$, then write the value of (5)o(10), where * and o are binary operations.

- Watch Video Solution

22. Let * be a binary operation, on the set of all-zero real numbers, given by a $a \cdot b=\frac{a b}{5}$ for all $a, b R-\{0\}$. Find the value of x given that $2 \cdot(x \cdot 5)=10$.

- Watch Video Solution

23. Examine whether the operation ' $*$ ' defined on R by $a * b=a b+1$ is :
(i) a binary or not
(ii) if a binary operation, is it associative or not?

- Watch Video Solution

24. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

- Watch Video Solution

25. Show that subtraction and division are not binary operations on N .

- Watch Video Solution

26. Show that the $\vee: R \rightarrow R$ given by $(a, b) \rightarrow \max \{a, b\}$ and the $\wedge: R \rightarrow R \rightarrow$ given by $(a, b) \rightarrow m \in\{a, b)$ are binary operations.

Watch Video Solution

27. Show that $* . R \times R \rightarrow R$ given by $a * b \rightarrow a+2 b$ is not associative.

- Watch Video Solution

28. Determine whether the binary operation ' * 'on the set N of natural numbers defined by $a * b=2^{a b}$ is associative or not.

- Watch Video Solution

29. Let ' * ' be a binary operation on Q defined by :
$a * b=\frac{2 a b}{3}$.
Show that ' * ' is commutative as well as associative.
30. Examine which of the following is a binary operation :
(i) $a * b=\frac{a+b}{2}, a, b \in N$ For binary operation, check the commutative and associative property.

- Watch Video Solution

31. Discuss the commutativity and associativity of binary operation * defined on Q by the rule $a \cdot b=a-b+a b$ for all $a, b \in Q$

- Watch Video Solution

32. Let X be a non-empty set, and $P(X)$ be its power set. If * is an operation defined on the elements of $P(X)$ by $A \cdot B=A \cap B \forall A, B \in P(x)$, then prove that is a binary operation in $P(x)$ which is commutative as well as associative. Find its identity
element. If ' O ' is another binary operation defined an $P(X)$ on $A o B=A \cup B$, then verify that ' 0 ' distributes itself over.

- Watch Video Solution

33. Let $A=R R$ and * be the binary operation on A defined by (a, b) * $(c, d)=$ ($a+c, b+d$). Show that * is commutative and associative. Find the identity element for *on A .

- Watch Video Solution

34. Let $A=Z \times Z$ and ' ${ }^{\text {' }}$ be a binary operation on A defined by :
$(a, b) *(c, d)=(a d+b c, b d)$.
Find the identity element for ' $*$ ' in A.

- Watch Video Solution

35. Consider the binary operation* on the set $\{1,2,3,4,5\}$ defined by a * $\mathrm{b}=\mathrm{min} .\{\mathrm{a}, \mathrm{b}\}$. Write the operation table of the operation *.

- Watch Video Solution

Frequently Asked Questions

1. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

- Watch Video Solution

2. Let A be the set of all 50 students of class $X I I$ in a central school. Let $f: A \rightarrow N$ be a function defined by $f(x)=$ Roll $\nu m b e r o f s t u d e n t x$ Show that f is one-one but not onto.

- Watch Video Solution

3. Prove that the function $f: R \rightarrow R$ given by:
$f(x)=5 x$ is one-one and onto.

Watch Video Solution

4. Show that the function $f: N \rightarrow N$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x \geq 2$, is onto but not one-one.

- Watch Video Solution

5. Show that the function $f: R \rightarrow R$ defined by $f(x)=x^{2}$ is neither oneone nor onto.

- Watch Video Solution

6. Show that $f: N \rightarrow N$ given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is both one-one and onto.

- Watch Video Solution

7. If $f: R \rightarrow R$ is defined by $f(x)=5 x+2$, find $f(f(x))$.

- Watch Video Solution

8. If $f: R \div R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find $f o f(x)$

(D) Watch Video Solution

9. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by by $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ and $g(x)=3 x^{2}$, then shown that gof $\neq f o g$.

- Watch Video Solution

10. Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as
$f(2)=3, f(3)=4, f(4)=f(5)=5, g(3)=g(4)=7, \quad$ and $g(5)=g(9)$

- Watch Video Solution

11. $f(x)=\frac{4 x+3}{6 x-4} ; x \neq \frac{2}{3}$ Show that $f o f(x)=x$ for all x except $x=\frac{2}{3}$

- Watch Video Solution

12. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1}, \forall x \in R$ is neither one-one nor onto. Also, if $g: R \rightarrow R$ is defined as $g(x)=2 x-1$, find fog (x).

- Watch Video Solution

13. If the function $f: R \rightarrow R$ be given by $f(x)=x^{2}+2$ and $g: R \rightarrow R$ be given by $g(x)=\frac{x}{x-1}, x \neq 1$, find fog and gof and hence find fog (2) and gof (-3).

- Watch Video Solution

14. Let $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be one-one and onto function given by $f(1)=a, f(2)=b$ and $f(3)=c$. Show that there exists a function $g:\{a, b, c\} \rightarrow\{1,2,3\}$ such that $g \circ f=I_{x}$ and 'fog=

- Watch Video Solution

15. If $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ and $g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\}$ be defined as $g(x)=\frac{7 x+4}{5 x-3}$. Show that gof $=I_{A}$ and $f \circ g=I_{B}$, where $B=R-\left\{\frac{3}{5}\right\}$ and $A=R-\left\{\frac{7}{5}\right\}$.

- Watch Video Solution

1. For the set $A=\{1,2,3\}$, define a relation R on the set A as follows: $R=\{(1,1),(2,2),(3,3),(1,3)\}$ Write the ordered pairs to be added to R to make the smallest equivalence relation.

- Watch Video Solution

2. Let R be the relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$. Show that the relation R transitive ? Write the equivalence class [0].

- Watch Video Solution

3. $A=\{1,2,3\}$ पर निम्नलिखित सम्बन्धो में से कौन-सा सम्बन्ध एक फलन है?
$f=\{(1,3),(2,3),(3,2)\}, g=\{(1,2),(1,3),(3,1)\}$

- Watch Video Solution

4. On the set N of all natural numbers, a relation R is defined as follows: $n R m$ Each of the natural numbers n and m leaves the same remainder less than 5 when divided by 5 . Show that R is an equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

- Watch Video Solution

5. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1} \forall x \in R$ is neither one-one nor onto. Also if $g: R \rightarrow R$ is defined by $g(x)=2 x-1$ find fog (x)

- Watch Video Solution

Exercise 1 A Short Answer Type Questions

1. Let N be the set of all natural niumbers and let R be a relation in N , defined by
$R=\{(a, b): a$ is a factor of b$\}$.
then, show that R is reflexive and transitive but not symmetric .

- Watch Video Solution

2. Determine whether Relation R on the set $A=\{1,2,3,, 13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$

- Watch Video Solution

3. Determine whether Relation R on the set N of all natural numbers defined as $R=\{(x, y): y=x+5$ and $x<4\}$

- Watch Video Solution

4. Determine whether Relation R on the set Z of all integer defined as
$R=\{(x, y): y$ is divisible by $x\}$
5. Determine whether each of the following relations are reflexive, symmetric and transitive:(i) Relation R in the set $A=\{1,2,3, \ldots, 13,14\}$ defined as $R=\{(x, y): 3 x y=0\}$ (ii) Relation R in the set N o

- Watch Video Solution

6. Show that the relation R in R (set of real numbers) is defined as $R=$ $\{(a, b), a \leq b\}$ is reflexive and transitive but not symmetric.

- Watch Video Solution

7. Let R be a relation defined by $R=\{(a, b): a \geq b, a, b \in \mathbb{R}\}$. The relation R is (a) reflexive, symmetric and transitive (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric
8. Show that the relation R in the set of real numbers, defined as $\left.R=\{a, b): a \leq b^{2}\right\}$ is neither reflexive, nor symmetric, nor transitive.

- Watch Video Solution

9. Relation R defines on the set of natural numbers N such that $R=\{(a, b): a$ is divisible by $b\}$, then show that R is reflexive and transitive but not symmetric.

- Watch Video Solution

10. Check whether the relation R in real numbers defined by $R=\left\{(a, b): a<b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

11. Is the relation R in the set $A=\{1,2,3,4,5\}$ defined as $R=\{(a, b): b=a+1\}$ reflexive ?

Watch Video Solution

12. Prove that on the set of integers, Z, the relation R defined as $a R b \Leftrightarrow a= \pm b$ is an equivalence relation.

- Watch Video Solution

13. Show that the relation R in the set $\{1,2,3\}$ defined as:
(a) $R=\{(1,2),(2,1)\}$
is symmetric, but neither reflexive nor transitive
(b) $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$
is reflexive, but neither symmetric nor transitive

$$
\text { (c) } R=\{(1,3),(3,2),(1,2)\}
$$

is transitive, but neither reflexive nor symmetric.

Exercise 1 A Long Answer Type Questions I

1. If ' R ' is relation 'less than' from :

Set $A=\{(1,2,3,4,5\}$ to Set $B=\{1,4,6\}$,
write down the Cartesian Product corresponding to 'R'.
Also, find the inverse relation to ' R '.

Watch Video Solution

2. Prove that the relation R in the set of integers Z defined by $R=\{(x, y): x$
-y . is an integer) is an equivalence relation.

- Watch Video Solution

3. Prove that the relation R on Z defined by $(a, b) \in R \Leftrightarrow a-b$ is divisible by 5 is an equivalence relation on Z.
4. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a b|$ iseven $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the e

- Watch Video Solution

5. Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b) ; a, b \in Z$, and $(a-b)$ is divisible by 5$\}$. Prove that R is an equivalence relation.

- Watch Video Solution

6. Show that the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ given by $R=\{a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

- Watch Video Solution

7. Let R be a relation on the set of all lines in a plane defined by $\left(l_{1}, l_{2}\right) \in R$ line l_{1} is parallel to line l_{2}. Show that R is an equivalence relation.

- Watch Video Solution

Exercise 1 A Long Answer Type Questions li

1. The relation ' R ' in $N \times N$ such that
$(a, b) R(c, d) \Leftrightarrow a+d=b+c$ is reflexive but not symmetric reflexive and transitive but not symmetric an equivalence relation (d) none of these

- Watch Video Solution

2. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that R is an equivalence relation.

(D) Watch Video Solution

3. Show that the relation R defined on the set A of all triangles in a plane as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right)$ is an equivalence relation. Consider three right angle triangle T_{1} with sides $3,4,5 ; T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related?

- Watch Video Solution

4. Let L be the set of all lines in $X Y$-plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

5. Let L be the set of all lines in the plane and R be the relation in L, defined as:
$\mathrm{R}=\left\{\left(l_{i}, l_{j}\right)=l_{i}\right.$ is parallel to $\left.l_{j}, \forall i, j\right\}$.
Show that R is an equivalence relation. Find the set of all lines related to the line $y=7 x+5$.

- Watch Video Solution

6. Show that the relation R in the set $A=\{x \in z, 0 \leq x \leq 12\}$ given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

- Watch Video Solution

Exercise 1 B Long Answer Type Questions I

1. Show that the function $f: R \rightarrow R$ given by:
$f(x)=a x+b$, where $a, b \in R, a \neq 0$ one one and onto.
2. A function $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=5 \mathrm{x}+6$, prove that f is one-one and onto.

- Watch Video Solution

3. State whether the following function is one-one onto or bijective:
$f: R \rightarrow R$ defined by $f(x)=1+x^{2}$.

- Watch Video Solution

4. Show that $f: R \rightarrow R$ given by $f(x)=x^{3}$ is bijective.

- Watch Video Solution

5. A function $f: R \rightarrow R$ is defined by $f(x)=4 x^{3}+5, x \in R$.

Examine if f is one-one and onto.
6. Show that the function $f: R \rightarrow R$ defined by:
(i) $f(x)=\frac{4 x-3}{5}, x \in R$
(ii) $f(x)=\frac{3 x-1}{2}, x \in R$ is one-one.

- Watch Video Solution

7. Consider the function $f(x)=\frac{x-3}{x+1}$ defined from $R-\{-1\}$ to $R-\{1\}$.

Prove that f is one-one .

- Watch Video Solution

8. Show that function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function
9. Check the injectivity and surjectivity of the following functions:(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$ (ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$ (iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$ (iv) $f: N \rightarrow N$ given by $f(x)=x^{3}(\mathrm{v})$ ' $\mathrm{f}: \mathrm{Z}$ $>$

(D) Watch Video Solution

10. Check the injectivity and surjectivity of the following functions:(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$ (ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$ (iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$ (iv) $f: N \rightarrow N$ given by $f(x)=x^{3}(\mathrm{v})$ ' $\mathrm{f}: \mathrm{Z}$ -

- Watch Video Solution

11. Check the injectivity and surjectivity of the following functions:
$f: R \rightarrow R$, given by $f(x)=x^{2}$
12. Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a bijection.

- Watch Video Solution

13. Show that the Modulus Function $f: R \rightarrow R$, given by $f(x)=|x|$, is neither one-one nor onto, where $|x|$ is x , if x is positive or O and $|x|$ is x, if x is negative.

- Watch Video Solution

14. Show that the signup function $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{lll}1 & \text { if } & x>0 \\ 0 & \text { if } & x=0 \\ -1 & \text { if } & x<0\end{array}\right.$ is neither one-one nor onto.
15. Let $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$, when a_{l} ' s and b_{l} ' s are school going students. Define a relation from a set A to set B by x R iff y is a true friend of x .

If $R=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(a_{4}, b_{2}\right),\left(a_{5}, b_{2}\right)\right\}$
Is R a bijective function?

- Watch Video Solution

Exercise 1 C Short Answer Type Questions

1. If $f: R \rightarrow R$ defined by $f(x)=x^{2}-2 x+3$, then find $f(f(x))$.

- Watch Video Solution

2. If $f(x)=\frac{x}{x-1}, x \neq 1$, then show that fof $(\mathrm{x})=\mathrm{x}$.

- Watch Video Solution

3. If $f(x)=\log \left(\frac{1-x}{1+x}\right),-1<x<1$, then show that : $f(-x)=-f(x)$.

- Watch Video Solution

4. If $f(x)=\frac{3 x-1}{x+1}, x \neq-1$, then find fof (x).

- Watch Video Solution

5. If $f(x)=\frac{2 x+3}{3 x-2}, x \neq \frac{2}{3}$, then find fof (x).

- Watch Video Solution

6. Consider a function $f(x)=\frac{3 x+4}{x-2}, x \neq 2$. Find a function $\mathrm{g}(\mathrm{x})$ on a suitable domain such that:
(gof) $(x)=x=(f o g)(x)$.
7. Let f, g and h be functions from R to R. Show that $(f+g) o h=f o h+g o h(f \dot{g}) o h=(f o h) g o h$

- Watch Video Solution

Exercise 1 C Long Answer Type Questions I

1. Find fog and gof, if :
$f(x)=x^{2}, g(x)=x+1$

- Watch Video Solution

2. Find fog and gof, if :
$f(x)=4 x-1, g(x)=x^{2}+2$

- Watch Video Solution

3. Find fog and gof, if :
$f(x)=|x+1|, g(x)=2 x-1$

Watch Video Solution

4. Describes fog and gof, where :
$f(x)=\sqrt{1-x^{2}}, g(x)=\log x$

- Watch Video Solution

5. Let $f(x)=2 x^{2}$ and $g(x)=3 x-4, x \in R$. Find the following :
(i) $\operatorname{fof}(\mathrm{x})$ (ii) $\operatorname{gog}(\mathrm{x})$

- Watch Video Solution

6. If $f(x)=\frac{x-1}{x+1}, x \neq-1$, then show that $f(f(x))=-\frac{1}{x}$, prove that $x \neq 0$.
7. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be two functions defined by $f(x)=|x|$ and $g(x)=[x]$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x. Find (fog) (5.75) and (gof) $-(-\sqrt{5})$.

Watch Video Solution

8. Let $f: R \rightarrow R$ be the Signum Function defined as $f(x)=\{1, x>00, x=0-1, x<1$ and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[\mathrm{x}]$ is greatest integer less than or equal to x . Then does fo

- Watch Video Solution

9. Find gof and fog, if $f: R \rightarrow$ Rand $g: R \rightarrow$ Rare given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that gof $\neq f o g$.
10. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\sin z, \forall x, y$ and z in N . Show that $h o(g o f)=(h o g) o f$.

- Watch Video Solution

Exercise 1 D Short Answer Type Questions

1. Let $S=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find f^{-1}, if it exists.(a) $f=\{(1,1),(2,2),(3,3)\}$
(b) $f=\{(1,2),(2,1),(3,1)\}(c)^{\prime} \mathrm{f}=$

- Watch Video Solution

2. Let $S=\{a, b, c\} a n d T=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T , if it exists.(i $) F=\{(a, 3),(b, 2),(c, 1)\}(\mathrm{ii})$
$F=\{(a, 2),(b, 1),(c, 1)\}$

- Watch Video Solution

3. Are the following functions invertible in their respective domains? If so, find the inverse in each case :
(i) $f(x)=x+1$
(ii) $f(x)=\frac{x-1}{x+1}, x \neq-1$.

- Watch Video Solution

4. Let $f: N \vec{Y}$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is (1) $g(y)=\frac{3 y+4}{3}$ (2) $g(y)=4+\frac{y+3}{4}$ (3) $g(y)=\frac{y+3}{4}$ (4) $g(y)=\frac{y-3}{4}$

- Watch Video Solution

5. Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible.

Find the inverse of f.

Watch Video Solution

6. Consider $f: R \rightarrow R$ given by the following. Show that ' f 'is invertible.

Find the inverse of ' f '.
$f(x)=5 x+2$

- Watch Video Solution

7. (a) If $f: R \rightarrow R$ defined by $f(x)=\frac{3 x+5}{2}$ is an invertible function, find f^{-1}.
Show that $f: R \rightarrow R$ defined by $f(x)=\frac{4 x-3}{5}, x \in R$ is invertible function and find f^{-1}.

- Watch Video Solution

8. If $f: R \rightarrow R$:
$f(x)=\frac{3 x+6}{8}$
is an invertible function and find f^{-1}.

- Watch Video Solution

Exercise 1 D Long Answer Type Questions I

1. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$.

What is the inverse of f ?

- Watch Video Solution

2. Show that the function f in $A=\left\lvert\, R-\left\{\frac{2}{3}\right\}\right.$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one and onto. Hence find f^{-1}.

- Watch Video Solution

3. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one- one. Find the inverse of the function $f:[-1,1]$

- Watch Video Solution

4. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.

- Watch Video Solution

5. Consider as $f(1)=a, f(2)=b, f(3)=c$,
$g:[a, b, c] \rightarrow$ \{apple, ball, cat $\}$
Defined as $f(1)=a, f(2)=b, f(3)=c$,
$g(a)=$ apple, $g(b)=$ ball, $g(c)=$ cat
Show that f, g and gof are invertible.
Find f^{-1}, g^{-1} and $(g o f)^{-1}$ and show that :
$(g o f)^{-1}=f^{-1} o g^{-1}$.
6. Prove that function $f: R \rightarrow R, f(x)=\frac{3-2 x}{7}$ is one-one onto. Also, find f^{-1}.

- Watch Video Solution

7. Let $f: N^{\rightarrow}$ be a function defined as $f(x)=9 x^{2}+6 x-5$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Find the inverse of f and hence $f^{-1}(43)$ and $f^{-1}(163)$.

- Watch Video Solution

8. Consider f $R \rightarrow\left\{-\frac{4}{3}\right\} \rightarrow R-\left\{\frac{4}{2}\right\}$ given by $f(x)=\frac{4 x+3}{3 x+4}$ Show that f is bijective. Find the inverse of f and hence find $f^{\wedge}-1(0)$ and x such that $\mathrm{f}-1(\mathrm{x})=2$.
9. If the function $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=4 x-3$ and $g: R \rightarrow R$ by $g(x)=x^{3}+5$, then find fog.

- Watch Video Solution

Exercise 1 E Short Answer Type Questions

1. If the binary operation $*$ on the set Z of integers is defined by $a * b=a+b-5$, then write the identity element for the operation ' *' in Z .

Watch Video Solution

2. Check $*: R \times R \rightarrow R$ given by :
$a * b \rightarrow a+3 b^{2}$ is commutative.

- Watch Video Solution

3. Let 'x' be an operation defined as $x: R \times R \rightarrow R$ Such that $a * b=2 a+b, a, b \in R$ Check if ' * ' is a binary operation If yes, find if it is associative too.

Watch Video Solution

4. Let $*: N \times N \rightarrow N$ be an operation defined as $a * b=a+a b, \forall a, b \in N$

Check if ' * ' is a binary operation.
If yes, find if it is associative too.

- Watch Video Solution

5. Let P be the set of all subsets of a given set X. Show that
$\cup: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cup B$ and $\cap: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cap B$ are binary operations on the set P .
6. Determine whether or not each of the definition of ' * ' given below gives a binary operation. In the event that ' *' is not a binary operation, given justification for this:
(i) On Z^{+}, define ' * ' by $a * b=a-b$
(ii) On Z^{+}, define ' * ' by $a * b=a b$
(iii) On R, define ' $*$ ' by $a * b=a b^{2}$
(iv) On Z^{+}, define ' *' by $a * b=|a-b|$
(v) On $\mathrm{Z}^{\wedge}(+)$, define ' ${ }^{\prime}$ ' by $a * b=a$.

- Watch Video Solution

7. Show that the binary operation ' ${ }^{\prime}$ ' defined from $N \times N \rightarrow N$ and given by $a * b=2 a+3 b$ is not commutative.
8. For each binary operation * defined below, determine whether * is commutative or associative.(i) $\quad O n Z, d e f \in e a \cdot b=a-b(i i)$
$O n Q, d e f \in e a \cdot b=a b+1$ (iii) $O n Q, d e f \in e a \cdot b=\frac{a b}{2}$ (iv) ${ }^{\circ}$ ○

- Watch Video Solution

9. For each binary operation ' * ' defined below, determine whether ' * ' is commutative and whether ' $*$ ' is associative :
(ii) On Q, define ' * ' by $a * b=a b-1$

- Watch Video Solution

10. For each binary operation ' $*$ ' defined below, determine whether ' * ' is commutative and whether ' * ' is associative :
(iii) On Q, define ' *' by $a * b=\frac{a b}{4}$

- Watch Video Solution

11. For each binary operation ' $*$ ' defined below, determine whether ' * ' is commutative and whether ' * ' is associative :
(iv) On Q, define ' *' by $a * b=\frac{a b}{3}$

- Watch Video Solution

12. For each binary operation ' $*$ ' defined below, determine whether ' * ' is commutative and whether ' * ' is associative :
(v) On Z^{+}, define ' * ' by $a * b=2^{a b}$

- Watch Video Solution

13. For each binary operation ' *' defined below, determine whether ' * ' is commutative and whether ' * ' is associative :
(vi) On Z^{+}, define ' * ' by $a * b=a^{b}$

- Watch Video Solution

14. For each binary operation ' *' defined below, determine whether
' * ' is commutative and whether ' * ' is associative :
(vii) On $R-\{-1\}$, define ' *' by $a * b=\frac{a}{b+1}$

- Watch Video Solution

15. Is \cdot defined on the set $\{1,2,3,4,5\} b y a \cdot b=L C M$ of a and b a binary operation? Justify your answer.

- Watch Video Solution

16. Let • be the binary operation on N given by $a \cdot b=L \dot{C} \dot{M}$.of a and b .

Find (i) $5 \cdot 7,20 \cdot 16($ ii) Is • commutative? (iii) Is • associative? (iv) Find the identity of • in $\mathrm{N}(\mathrm{v})$ Which elements of N are invert

- Watch Video Solution

17. Let * be a binary operation on N defined by $a * b=H C F$ of a and b . Show that * is both commutative and associative.

- Watch Video Solution

18. If $n(A)=p$ and $n(B)=q$, then the number of relations from set A to set $\mathrm{B}=$ \qquad .

- Watch Video Solution

19. (a) Let ' *' be a binary operation defined on Q, the set of rational numbers, as follows :
(i) $a * b=a-b$, for $a, b \in Q$
(ii) $a * b=a^{2}+b^{2}$, for $a, b \in Q$
(iii) $a * b=a+a b$, for $a, b \in Q$
(iv) $a * b=(a-b)^{2}$, for $a, b \in Q$
(v) $a * b=\frac{a b}{4}$, for $a, b \in Q$
(vi) $a * b=a b^{2}$, for $a, b \in Q$.

Find which of the binary operations are commutative and which are associative.

- View Text Solution

20. If $A=\{1,2,3\}$, then the relation $R=\{(1,2),(2,3),(1,3)\} \in A$ is
A. transitive only
B. reflexive only
C. symmetric only
D. symmetric and transitive only

Answer:

- Watch Video Solution

21. In the binary operation $*: Q \times Q \rightarrow Q$ is defined as:
(i) $a * b=a+b-a b, a, b \in Q$

Watch Video Solution

22. The binary operation $*$ defined on \mathbb{N} by $a * b=a+b+a b$ for all $a, b \in \mathbb{N}$ is-

- Watch Video Solution

23. Discuss the commutativity and associativity of the binary operation * on R defined by $a \cdot b=\frac{a b}{4} f$ or alla, $b \in R$.

- Watch Video Solution

24. Find the domain and range of the real function $f(x)=\frac{x}{1-x^{2}}$
25. Show that the operation ' * ' on

Q-\{1\} defined by $a * b=a+b-a b$
for all $a, b \in Q-\{1\}$, satisfies the commutative law.

- Watch Video Solution

Exercise 1 E Long Answer Type Questions I

1. Consider the infimum binary operation \wedge on the set $S=\{1,2,3,4,5\}$ defined by $a \wedge b=$ Minimum of a and b. Write the composition table of the operation \wedge.

- Watch Video Solution

2. State whether the following statements are true or false. Justify. (i) For
$N, a \quad . \quad a=a \forall a \in N$. (ii) If . is a commutative binary operation on N, then `a" "*" "(b" "*" "c)"

- Watch Video Solution

3. Let ${ }^{\prime}{ }^{*}$ ' be a binary operation defined on $N \times N$ by :
$(a, b) *(c, d)=(a+c, b+d)$.
Find $(1,2) *(2,3)$.

D Watch Video Solution

4. Let ' * ' be a binary operation defined on $N \times N$ by :
$(a, b) *(c, d)=(a+c, b+d)$.
Prove that ' * ' is commutative and associative.

- Watch Video Solution

5. Let ' * ' be a binary operation defined on $N \times N$ by:
$(a * b)=\frac{a b}{2}$.
Find the identity element for ' $*$ ', if it exists.

- Watch Video Solution

6. Let $A=Q \times Q$ and let * be a binary operation on A defined by $(a, b) \cdot(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in A$. Then, with respect to * on A. Find the invertible elements of A.

- Watch Video Solution

7. Let $A=Q \times Q$, where Q is the set of all rational numbers and ' * ' be the operation on A defined by :
$(a, b) *(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in A$.
Then, find : (i) The identity element of ' * ' in A
(ii) Invertible elements of A and hence write the inverse of elements $(5,3)$ and $\left(\frac{1}{2}, 4\right)$.

(D) Watch Video Solution

8. A binary operation * is defined on the set R of real numbers by $a * b=\{a, \quad$ if $b=0,|a|+b, \quad$ if $b \neq 0$ If atleast one of a and b is 0, then prove that $a * b=b * a$. Check whether $*$ is commutative. Find the identity element for $*$, if it exists

- Watch Video Solution

Objective Type Questions A Multiple Choice Questions

1. Let R be the relation on the set $A=\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then, R is reflexive and symmetric but not transitive (b) R is reflexive and transitive but not symmetric (c) R is symmetric and transitive but not reflexive (d) R is an equivalence relation
A. R is reflexive and symmetric but not transitive
B. R is reflexive and transitive but not symmetric
C. R is symmetric and transitive but not reflexive
D. R is an equivalence relation

Answer: B

D Watch Video Solution

2. Let R be a relation on the set N given by $R=\{(a, b): a=b-2, b>6\}$. Then,
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer: C

3. Let $A=\{1,2,3\}$ Then number of relations containing $(1,2) \operatorname{and}(1,3)$ which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D)

4
A. 1
B. 2
C. 3
D. 4

Answer: A

4. Let $A=\{1,2,3\}$. Then number of equivalence relations containing (1, 2) is (A) 1 (B) 2 (C) 3 (D) 4
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

5. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: D

6. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Then :
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: A

- Watch Video Solution

7. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then $f \circ f(\mathrm{x})$ is :
A. $x^{1 / 3}$
B. x^{3}
C. x
D. $3-x^{3}$

Answer: C

- Watch Video Solution

8. Let $f: R-\left\{\frac{5}{4}\right\} \rightarrow R$ be a function defines $f(x)=\frac{5 x}{4 x+5}$. The inverse of f is the map g : Range $f \rightarrow R-\left\{\frac{5}{4}\right\}$ given by
A. $g(y)=\frac{3 y}{3-4 y}$
B. $g(y)=\frac{4 y}{4-3 y}$
C. $g(y)=\frac{5 y}{5-4 y}$
D. $g(y)=\frac{3 y}{4-3 y}$

Answer: C

- Watch Video Solution

9. Consider a binary operation ' ${ }^{\prime}$ ' on N defined as : $a * b=a^{3}+b^{3}$. Then :
A. is ' * ' both associative and commutative?
B. is ' * ' commutative but not associative?
C. is ' * ' associative but not commutative?
D. Is ' * ' neither commutative nor associative?

Answer: B

- Watch Video Solution

10. Number of binary operations on the set $\{a, b\}$ are (A) 10 (B) 16 (C) 20
(D) 8
A. 10
B. 16
C. 20

D. 8

Answer: B

- Watch Video Solution

11. Let R be a relation on the set N of natural numbers defined by $n R$ iff n divides m. Then, R is (a) Reflexive and symmetric (b) Transitive and symmetric (c) Equivalence (d) Reflexive, transitive but not symmetric
A. Reflexive and symmetric
B. Transitive and symmetric
C. Equivalence
D. Reflexive, transitive but not symmetric

Answer: D

- Watch Video Solution

12. Set A has 3 elements and the set B has 4 elements. Then, the number of injective mappings that can be defined from A to B is :
A. 144
B. 12
C. 24
D. 64

Answer: C

(D) Watch Video Solution

13. Let $f: R \rightarrow R$ be defined by $f(x)=\sin x$ and $g: R \rightarrow R$ be defined by $g(x)=x^{2}$, then fog is:
A. $x^{2} \sin x$
B. $(\sin x)^{2}$
C. $\sin x^{2}$
D. $\frac{\sin x}{x^{2}}$

Answer: C

- Watch Video Solution

14. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$. Then pre-images of 17 and - 3 respectively, are:
A. $\phi,\{4,-4\}$
B. $\{3,-3\}, \phi$
C. $\{4,-4\}, \phi$
D. $\{4,-4\},\{2,-2\}$

Answer: C

15. Let $f: R \rightarrow R$ be defined by:
$f(x)= \begin{cases}2 x & x>3 \\ x^{2} & 1<x<3 \\ 3 x & x \leq 1\end{cases}$
Then, $f(-1)+f(2)+f(4)$ is :
A. 9
B. 14
C. 5
D. None of these

Answer: A

- Watch Video Solution

16. If $f(x)=\log x$ and $g(x)=e^{x}$, then (fog) (x) is:
A. e^{x}
B. x
C. $\log x$
D. 1

Answer: B

- Watch Video Solution

17. If $f(x)=|x|$ and $g(x)=x-2$, then gof is equal to:

- Watch Video Solution

18. Consider the set Q with binary operation ' * ' as:
$a * b=\frac{a b}{4}$. Then, the identity element is:
A. $\frac{1}{4}$
B. 1
C. 4
D. 16

Answer: C

- Watch Video Solution

19. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then $f^{-1}(x)$ equals:
A. x^{3}
B. $x^{1 / 3}$
C. $3-x^{3}$
D. $\left(3-x^{3}\right)^{1 / 3}$

Answer: D

Watch Video Solution

20. The number of one-one functions from a set containing 2 elements to
a set containing 3 elements is:
A. 2
B. 3
C. 6
D. 4

Answer: C

- Watch Video Solution

21. Let R be a relation on the set N given by $R=\{(a, b): a=b-2, b>6\}$.Then, $(2,4) \in R$ (b) $(3,8) \in R$ (c) $(6,8) \in R(\mathrm{~d})(8,7) \in R$
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer: C

D Watch Video Solution

22. Let $f: R \rightarrow R$ be defined as $f(x)=2 x$.
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: A

- Watch Video Solution

23. If $f(x)=\log (1+x)$ and $g(x)=e^{x}$, then the value of (gof) (x) is :
A. e^{1+x}
B. $1+x$
C. $\log x$
D. None of these

Answer: B

- Watch Video Solution

24. Let $A=\{(a, b)\} \forall a, b \in N$. Then the relation R is :
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

Answer: D

25. The domain of the function $f(x)=\frac{x}{|x|}$ is:
A. $R-\{0\}$
B. R
C. Z
D. W

Answer: A

Watch Video Solution
26. If a binary operation is defined by $a * b=a^{b}$, then $3 * 2$ is equal to :
A. 4
B. 2
C. 9
D. 8

Answer: C

D Watch Video Solution

27. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Then :
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: D

- Watch Video Solution

28. Consider the set $A=\{1,2,3,4\}$. Which of the following relations R form a reflexive relation?
A. $R=\{(1,1),(1,2),(2,2),(3,4)\}$
B. $R=\{(1,1),(2,2),(2,3),(3,3),(3,4)\}$
C. $R=\{(1,1),(2,2),(2,3),(3,3),(3,4),(4,4)\}$
D. $R=\{(1,1),(2,1),(2,3),(3,3),(3,4),(4,4)\}$

Answer: C

- Watch Video Solution

29.

$A=\{1,2,3\}$ and $\operatorname{Let} R=\{(1,1),(2,2),(3,3),(1,3),(3,2),(1,2)\}$ then R is
A. Reflexive and symmetric but not transitive
B. Reflexive and transitive but not symmetric
C. Symmetric and transitive but not reflexive
D. An equivalence relation.

D Watch Video Solution

30. Let R be a relation defined on $A=\{1,2,3\}$ by:
$R=\{(1,3),(3,1),(2,2)\} . \mathrm{R}$ is :
A. Reflexive
B. Symmetric
C. Transitive
D. Reflexive but not Transitive

Answer: B

- Watch Video Solution

Objective Type Questions B Fill In The Blanks

1. If f be greatest integer function defined $\operatorname{asf}(x)=[x]$ and g be the mdoulus function defined as $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$, then the value of g of $\left(-\frac{5}{4}\right)$ is \qquad

- Watch Video Solution

2. If $A=\{0,1,3\}$, then the number of relations on A is \qquad .

- Watch Video Solution

3. If $f: R-R$ is defined by $f(x)=3 x+4$, then $f(f(x))$ is \qquad .

- Watch Video Solution

4. If $f(x)=e^{x}$ and $g(x)=\log x$, then gof is \qquad .

- Watch Video Solution

5. If $f(x)=\frac{3 x-1}{x+1}, x \neq$ \qquad , then $f \circ f(x)$ is \qquad

- Watch Video Solution

Objective Type Questions C True False Questions

1. Given $A=\{1,2,3\}$, then the relation $R=\{(1,1),(2,2),(3,3)\}$ is reflexive.

- Watch Video Solution

2. Given a set $A=\{a, b, c, d\}$, then the relation:
$R=\{(a, a),(b, b),(c, c),(d, d)\}$ is reflexive?.

- Watch Video Solution

3. A bijection function is both one-one and onto?.
4. $f: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ is one-one function.

- Watch Video Solution

5. If $f(x)=\log \left(\frac{1-x}{1+x}\right),-1<x<1$, then $f(-x)=f(x)$.

- Watch Video Solution

Objective Type Questions D Very Short Answer Types Questions

1. Let $A=\{1,2,3,4\}$. Let R be the equivalence relation on $A \times A$ defined by $(a, b) R(c, d)$ iff $a+d=b+c$. Find $\{(1,3)\}$.

- Watch Video Solution

2. If $R=\{(1,-1),(2,-2),(3,-1)\}$ is a relation, then find the range of R.

- Watch Video Solution

3. If $R=\{(x, y): x+2 y=10\}$ is a relation in N , write the range of R .

- Watch Video Solution

4. Give an example of a relation which is reflexive and symmetric but not transitive.

- Watch Video Solution

5. Give an example of a relation which is transitive but neither reflexive nor symmetric.

Watch Video Solution

6. Let R be the relation "greater than" from $A=\{1,4,5\}$ to $B=\{1,2,4,5,6,7\}$. Write down the elements corresponding to R .

- Watch Video Solution

7. Which one of the following graphs represents the function of x ? why?

(a)

(b)

- Watch Video Solution

8. Show that $f(x)=3 x+5$ for all $\xi n Q$, is one-one.
9. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.

Watch Video Solution

10. If f is a function from $R \rightarrow R$ such that $f(x)=x^{2} \forall x \in R$, then show that ' f ' is not one-one.

- Watch Video Solution

11. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.

- Watch Video Solution

12. The function P is defined as:
"To each person on the earth is assigned a date of birth". Is this function

- Watch Video Solution

13. Write the function whose graph is shown below:

- Watch Video Solution

14. Consider functions f and g such that composite gof is defined and is one-one. Are f and g both necessarily one-one.
15. Are f and g both necessarily onto, if $g o f$ is onto?

- Watch Video Solution

16. Give examples of two functions $f: \quad N \rightarrow Z \quad$ and $g: \quad Z \rightarrow Z$ such that $o f$ is injective but is not injective. (Hint: Consider $f(x)=x \operatorname{andg}(x)=|x|)$

- Watch Video Solution

17. Give examples of function:
$f: N \rightarrow N$ and $g: N \rightarrow N$
such that gof is onto but f is not onto.

- Watch Video Solution

18. Find fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by:
$f(x)=\cos x$ and $g(x)=x^{2}$.

Watch Video Solution

19. If $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}, \mathrm{g}(\mathrm{x})=x^{2}$, if $x \in R$, then find $[(\mathrm{fog})(\mathrm{x})]$.

- Watch Video Solution

20. If $f: R \rightarrow R$ is defined by $f(x)=3 x+1$, find $f(f(x))$.

- Watch Video Solution

21. Let ' * ' be a binary operation on N given by: $a * b=\operatorname{LCM}(a, b)$ for all $a, b \in N$.

Find $6 * 7$
22. Let ' * ' be a binary operation on N given by:
$a * b=\operatorname{LCM}(a, b)$ for all $a, b \in N$.
Find $20 * 16$

- Watch Video Solution

23. The binary operation $*: R \times R \rightarrow R$ is defined as:
$a * b=2 a+b$.
Find $(2 * 3) * 5$.

- Watch Video Solution

24. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but $: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$ are not commutative.
25. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but $: R \times R \rightarrow R$ and $\div: R \times R . \rightarrow R$.are not commutative.

- Watch Video Solution

26. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R. Division is not associative on R^{*}.

- Watch Video Solution

27. Show that subtraction and division are not binary operations on N .

- Watch Video Solution

28. Show that $\quad a$ is not the inverse of $a \in N$ for the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation \times on N , for $a \neq 1$.

- Watch Video Solution

29. Show that $\quad a$ is not the inverse of $a \in N$ for the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation \times on N , for $a \neq 1$.

- Watch Video Solution

Ncert File Question From Ncert Book Exercise 11

1. Determine whether each of the following relations are reflexive, symmetric and transitive:(i) Relation R in the set $A=\{1,2,3, \ldots, 13,14\}$ defined as $R=\{(x, y): 3 x y=0\}(i i)$ Relation R in the set N o
2. Show that the relation R in the set R of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

3. Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

4. Show that the relation R in R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

- Watch Video Solution

5. Check whether the relation R in R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

6. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

7. Show that the relation R in the set A of all the books in a library of a college, given by $R=\{(x, y)$: x and y have same number of pages $\}$ is an equivalence relation.

- Watch Video Solution

8. Show that the relation R on the set $A=\{1,2,3,4,5\}$, given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But, no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

- Watch Video Solution

9. Show that the relation R on the set $A=\{x \in Z ; 0 \leq x \leq 12\}$, given by $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 .

- Watch Video Solution

10. Give an example of a relation. Which is (i) Symmetric but neither reflexive nor transitive. (ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive. (iv) Reflexive and transitive but not symmetric. (v) Symm

(D) Watch Video Solution

11. Show that the relation R on the set A of points in a plane, given by $R=\{(P, Q):$ Distance of the point P from the origin is same as the distance of the point Q from the origin\}, is an equivalence relation. Further show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.

- Watch Video Solution

12. Show that the relation R defined on the set A of all triangles in a plane as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right)$ is an equivalence relation. Consider three right angle triangle T_{1} with sides $3,4,5 ; T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related?

- Watch Video Solution

13. Show that the relation R defined on the set A of a polygons as $R=$ $\left\{P_{1}, P_{2}: P_{1}\right.$ and P_{2} have same number of sides $\}$ is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- Watch Video Solution

14. Let L be the set of all lines in $X Y$-plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

15. Let R be the relation on the set $A=\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then, R is reflexive and symmetric but not transitive (b) R is reflexive and transitive but not symmetric (c) R is symmetric and transitive but not reflexive (d) R is an equivalence relation
A. R is reflexive and symmetric but not transitive
B. R is reflexive and transitive but not symmetric
C. R is symmetric and transitive but not reflexive
D. R is an equivalence relation

Answer: B

- Watch Video Solution

16. Let R be the relation in the set N given by $R=\{(a, b): a=b 2, b>6\}$
. Choose the correct answer.(A) $(2,4) \in R$ (B) $(3,8) \in R$ (C) $(6,8) \in R$
(D) $(8,7) R$
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer: C

- Watch Video Solution

Ncert File Question From Ncert Book Exercise 12

1. Show that the function $f: R_{0} \rightarrow R_{0}$, defined as $f(x)=\frac{1}{x}$, is one-one onto, where R_{0} is the set of all non-zero real numbers. Is the result true, if the domain R_{0} is replaced by N with co-domain being same as R_{0} ?

- Watch Video Solution

2. Check the injectivity and surjectivity of the following functions:(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$ (ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$ (iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$ (iv) $f: N \rightarrow N$ given by $f(x)=x^{3}(\mathrm{v})$ ' $\mathrm{f}: \mathrm{Z}$ $>$
3. Prove that the Greatest Integer Function $f: R \rightarrow R$, given by $f(x)=[x]$, is neither one-one nor onto, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .

- Watch Video Solution

4. Show that the Modulus Function $f: R \rightarrow R$, given by $f(x)=|x|$, is neither one-one nor onto, where $|x|$ is x , if x is positive or O and $|x|$ is x, if x is negative.

- Watch Video Solution

5. Show that the Signum Function $f: R \rightarrow R$, given by $f(x)=\{1$, if $x>00$, if $x=0-1$, if $x<0$ is neither one-one nor onto.

- Watch Video Solution

6. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.

- Watch Video Solution

7. Show that the function $f: R \rightarrow R: f(x)=3-4 x$ is one-one onto and hence bijective.

- Watch Video Solution

8. Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a bijection.

- Watch Video Solution

9. Let $\quad f: N \rightarrow N \quad$ be defined by
$f(n)=\left\{\frac{n+1}{2}\right.$,
if $n i \operatorname{sodd} \frac{n}{2}$, if niseven for all $n \in N$. State
whether the function f is bijective. Justify your answer.

(D) Watch Video Solution

10. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $(x)=\left(\frac{x-2}{x-3}\right)$. Is fone-one and onto? Justify your answer.

- Watch Video Solution

11. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: D

12. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer.(A) f is one-one onto (B) f is many-one onto(C) f is one-one but not onto (D) f is neither one-one nor onto.
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto

Answer: A

- Watch Video Solution

1. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

- Watch Video Solution

2. Let f, g and h be functions from R to R. Show that $(f+g) o h=f o h+g o h$

- Watch Video Solution

3. Find $g o f$ and $f o g$, if $f(x)=|x|$ and $g(x)=|5 x-2|$

- Watch Video Solution

4. Find gof and fog, if:
$f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$.
5. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

- Watch Video Solution

6. State with reason whether following functions have inverse (i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$ (ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ withg $=\{(5,4),(6,3),(7,4),(8,2)\}$ (iii) 'h : $\{2,3,4,5\}->\{7,9$

- Watch Video Solution

7. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one- one. Find the inverse of the function $f:[-1,1]$
8. Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

9. Consider $f: R_{+} \overrightarrow{4, \infty}$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse $\left(f^{-1}\right)$ of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.

- Watch Video Solution

10. Consider $f: \mathbb{R}_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$.

Show that f is invertible with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$

- Watch Video Solution

11. Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse. (Hint: suppose $g_{1}(\text { and } g)_{2}$ are two inverses of f . Then for all $y \in Y, f o g_{1}(y)=I_{Y}(y)=f o g_{2}(y)$ Use one oneness of f$)$.

- Watch Video Solution

12. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.

- Watch Video Solution

13. Let f be an invertible function. Show that the inverse of f^{-1} is f

- Watch Video Solution

14. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then $f o f(x)$ is(a) $\frac{1}{x^{3}}$
$x^{3}(\mathrm{c}) \times(\mathrm{d})\left(3-x^{3}\right)$
A. $x^{1 / 3}$
B. x^{3}
C. x
D. $\left(3-x^{3}\right)$

Answer: C

- Watch Video Solution

15. Let $f: R-\left\{\frac{5}{4}\right\} \rightarrow R$ be a function defines $f(x)=\frac{5 x}{4 x+5}$. The inverse of f is the map g : Range $f \rightarrow R-\left\{\frac{5}{4}\right\}$ given by
A. $g(y)=\frac{3 y}{3-4 y}$
B. $g(y)=\frac{4 y}{4-3 y}$
C. $g(y)=\frac{4 y}{3-4 y}$
D. $g(y)=\frac{3 y}{4-3 y}$

(D) Watch Video Solution

Ncert File Question From Ncert Book Exercise 14

1. Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this. (i) $O n Z^{+}, d e f \in e \cdot b y a \cdot b=a-b(i i) ~ ' O n Z^{\wedge}+$,

- Watch Video Solution

2. For each binary operation * defined below, determine whether * is commutative or associative.(i) $\quad O n Z, d e f \in e a \cdot b=a-b(i i)$ $O n Q, d e f \in e a \cdot b=a b+1$ (iii) $O n Q, d e f \in e a \cdot b=\frac{a b}{2}(\mathrm{iv}){ }^{\circ} \circ$

- Watch Video Solution

3. Consider the binary operation* on the set $\{1,2,3,4,5\}$ defined by a * $\mathrm{b}=\mathrm{min} .\{\mathrm{a}, \mathrm{b}\}$. Write the operation table of the operation *.

- Watch Video Solution

4. Consider a binary operation * on the set $\{1,2,3,4,5\}$ given by the following multiplication table (FIGURE) Compute (2*3) *4 and $2^{*}\left(3^{*} 4\right)$ Is * commutative? (iii) Compute ($\left.2^{*} 3\right)^{*}\left(4^{*} 5\right)$

- Watch Video Solution

5. Let . 'be the binary operation on the set $\{1,2,3,4,5\}$ defined by $a \cdot{ }^{\prime} b=H C F$.of a and b . Is the operation . 'same as the operation . defined in Exercise 4 above? Justify your answer.

- Watch Video Solution

6. Let * be the binary operation on N given by $a \cdot b=L C M o f a$ and $b, a \forall a, b N$. Find $5 * 7$.

Watch Video Solution

7. Is \cdot defined on the set $\{1,2,3,4,5\} b y a \cdot b=L \dot{C} \dot{M}$.of a and b a binary operation? Justify your answer.

- Watch Video Solution

8. Let * be a binary operation on N defined by $a * b=H C F$ of a and b .

Show that * is both commutative and associative.

- Watch Video Solution

9. Let • be a binary operation on the set Q of rational numbers as follows: (i) $a \cdot b=a \quad b$ (ii) $a \cdot b=a^{2}+b^{2}$
$a \cdot b=a+a b$ (iv) $a \cdot b=(a-b)^{2}$ $a \cdot b=\frac{a b}{4}$ (vi) $a \quad \cdot \quad b \quad=a b^{2}$. Find wh

- Watch Video Solution

10. Let $f(x)=x^{2}$ and $g(x)=2 x+1$ be two real functions. Find $(f+g)(x),(f-g)(x),(f g)(x),\left(\frac{f}{g}\right)(x)$

- Watch Video Solution

11. Let $A=R R$ and * be the binary operation on A defined by (a, b) * $(c, d)=$ $(a+c, b+d)$. Show that * is commutative and associative. Find the identity element for * on A .

- Watch Video Solution

12. State whether the following statements are true or false. Justify. (i) For an arbitrary binary operation . on a set
$N, a \quad . a=a \forall a \in N$. (ii) If . is a commutative binary operation on N, then `a" "*" "(b" "*" "c)"

- Watch Video Solution

13. Consider a binary operation . on N defined as $a \cdot b=a^{3}+b^{3}$. Choose the correct answer. (A) Is . both associative and commutative? (B) Is • commutative but not associative? (C) Is • associative but not commutative? (D) Is
A. Is $*$ both associative and commutative ?
B. Is * commutative but not associative ?
C. Is * associative but not commutative ?
D. Is * neither commutative nor associative?

Answer: B

- Watch Video Solution

1. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=1_{R}$

- Watch Video Solution

2. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

- Watch Video Solution

3. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- Watch Video Solution

4. Show that function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function

- Watch Video Solution

5. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is infective.

- Watch Video Solution

6. Give examples of two functions $f: \quad N \rightarrow Z \quad$ and $g: \quad Z \rightarrow Z$ such that of is injective but is not injective. (Hint: Consider
$f(x)=x \operatorname{andg}(x)=|x|)$

- Watch Video Solution

7. Given examples of two functions $f: N \rightarrow N$ andy: $N \rightarrow N$ such that of is onto but f is not onto. (Hint: Consider
$f(x)=x \quad \operatorname{andg}(x)=|x|)$.

- Watch Video Solution

8. Given a non-empty set X, consider $P(X)$ which is the set of all subjects of X. Define a relation in $P(X)$ as follows: For subjects A, B in $P(X), \quad A R B$ if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.

- Watch Video Solution

9. Given a non-empty set X, consider the binary operation $\cdot: P(X) \times P(X) \rightarrow P(X)$ given by $A \cdot B=A \cap B \forall A, B \in P(X)$ is the power set of X . Show that X is the identity element for this operation and X is the only invertible element i
10. Find the number of all onto functions from the set $A=\{1,2,3, \quad n\}$ to itself.

- Watch Video Solution

11. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T , if it exists.(i $) F=\{(a, 3),(b, 2),(c, 1)\}$ (ii) $F=\{(a, 2),(b, 1),(c, 1)\}$

- Watch Video Solution

12. Consider the binary operations $\cdot: R \times R \rightarrow R$ and $o: R \quad \times \quad R \rightarrow R \quad$ defined \quad as $\quad a \cdot b|a-b| \quad$ and $a o b=a, \forall a, \quad b \in R$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that 'AAa

- Watch Video Solution

13. Given a non -empty set X , let $\cdot: \quad P(X) \quad \times \quad P(X) \rightarrow P(X)$ be defined as $A * B=\left(\begin{array}{ll}A & B\end{array}\right) \cup\left(\begin{array}{ll}B & A\end{array}\right), \forall A, B \in P(X)$ $A \cdot B=(A-B) \cup(B-A), \forall A, \quad B \in P(X)$. Show that the empty set φ is the identity for the

- Watch Video Solution

14. Define a binary operation *on the set $\{0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5\}$ as $a \cdot b=\{a+b$ if $a+b<6 a+b-6$, if $a+b \geq 6$ Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 a being t

- Watch Video Solution

15.

Let
$A=\{-1, \quad 0, \quad 1, \quad 2\}$
$B=\{-4, \quad-2, \quad 0, \quad 2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A \quad$ and
$g(x)=2\left|x-\left(\frac{1}{2}\right)\right|-1, x \in A$. Are f and g equal? Justify your answer.
(Hint: One may note that two functio

- Watch Video Solution

16. Let $A=\{1,2,3\}$. Then the number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
A. 1
B. 2
C. 3
D. 4

Answer: A

17. Let $A=\{1,2,3\}$. Then number of equivalence relations containing (1,
2) is (A) 1 (B) 2 (C) 3 (D) 4
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

18. Let $f: R \rightarrow R$ be the Signum Function defined as $f(x)=\{1, x>00, x=0-1, x<1$ and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[\mathrm{x}]$ is greatest integer less than or equal to x . Then does fo
19. समुच्चय $\{a, b\}$ में द्विआधारी संक्रियाओं की संख्या है :
A. 10
B. 16
C. 20
D. 8

Answer: B

- Watch Video Solution

Exercise

1. Let $A=\{(0,1,2,3\}$ and define a relation R on A as follows:
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}, \quad$ is $\quad R$ reflexive? Symmetive? Transitive?
2. Let $A=\{1,2,3, ; 9\}$ and R be the relation in $A x A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $A x A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].

- Watch Video Solution

3. If $f=\{(5,2),(6,3)\}, g=\{(2,5),(3,6)\}$, write $f \circ g$.

- Watch Video Solution

4. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$.

Find the pre-image of (i) 17 (ii) - 3 .

- Watch Video Solution

5. Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \forall x \in R$. Show that f is neither one-one nor onto.
6. Let $A=R-\{3\}, B=R-\{1\}$, and let $f: A \vec{B}$ be defined by $f(x)=\frac{x-2}{x-3}$ is f invertible? Explain.

- Watch Video Solution

7. If the mappings f and g are given by :
$f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, write fog.

- Watch Video Solution

8. Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
(i) $a * b=a-b, \forall a, b \in Q$
(ii) $a * b=a^{2}+b^{2}, \forall a, b \in Q$
(iii) $a * b=a+a b, \forall a, b \in Q$
(iv) $a * b=(a-b)^{2}, \forall a, b \in Q$
9. Let * be a binary operation on R defined by $a \cdot b=a b+1$. Then, * is commutative but not associative associative but not commutative neither commutative nor associative (d) both commutative and associative

- Watch Video Solution

10. An operation $*$ on \mathbb{Z}, the set of integers, is defined as, $a * b=a-b+a b$ for all $a, b \in \mathbb{Z}$. Prove that $*$ is a binary operation on \mathbb{Z} which is neither commutative nor associative.

- Watch Video Solution

Revision Exercise

1. Let $f: X \rightarrow Y$ be a function. Define a relation R in X given by $R=\{(a, b): f(a)=f(b)\}$. Examine if R is an equivalence relation.
2. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

- Watch Video Solution

3. Let $X=\{1,2,3,4,5,6,7,8,9\}$, Let R_{1} be a relation on X given by $R_{1}=\{(x, y): x-y$ is divisible by 3$\}$ and R_{2} be another relation on X given by $R_{2}=\{(x, y):\{x, y\} \subset\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\}\}$. Show that $R_{1}=R_{2}$.

- Watch Video Solution

4. Show that the number of equivalence relations on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

- Watch Video Solution

5. Let $A=\{1,2,3\}$. Then, show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

- Watch Video Solution

6. Find the number of all one-one functions from set $A=\{1,2,3\}$ to itself.

- Watch Video Solution

7. Find the number of all onto functions from the set $A=\{1,2,3,, n\}$ to itself.

- Watch Video Solution

8. Give examples of two one-one functions f_{1} and f_{2} from R to R such that $f_{1}+f_{2}: R r a r R$ defined by:
$\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
is not one-one.

- Watch Video Solution

9. Show that if f_{1} and f_{2} are one-one maps from R to R, then the product $f_{1} \times f_{2}: R \rightarrow R$ defined by $\left(f_{1} \times f_{2}\right)(x)=f_{1}(x) f_{2}(x)$ need not be one-one.

- Watch Video Solution

10. Let $f: A \rightarrow A$ be a function such that $f o f=f$. Show that f is onto if and only if f is one-one. Describe f in this case.

- Watch Video Solution

11. Consider the identity function $I_{N}: N \rightarrow N$ defined as :
$I_{N}(x)=x \forall x \in N$.
Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as:
$\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto.

Watch Video Solution

12. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one, but $f+g$ is not one-one.

- Watch Video Solution

13. Find $f o f^{-1}$ and f^{-1} of for the function:
$f(x)=\frac{1}{x}, x \neq 0$. Also prove that $f o f^{-1}=f^{-1} o f$.

- Watch Video Solution

14. Show that the number of binary operations on $\{1,2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- Watch Video Solution

15. Determine whether the following binary operation on the set N is associative and commutative : $a * b=1 \forall a, b \in N$.

- Watch Video Solution

16. Determine which of the following binary operations on the set N are associative and which are commutative.(a) (b) (c) $a \cdot b=1 \forall a, b \in N(d)$
(e) (b) $(f)(g) a \cdot b=(h)\left((i) \frac{a+b}{j} 2(k)(l) \forall a, b \in N(m)(\mathrm{n})\right.$

- Watch Video Solution

17. Consider the binary operations . : $R \times R \rightarrow R$ and $o: R \quad \times \quad R \rightarrow R \quad$ defined \quad as $\quad a \cdot b|a-b| \quad$ and $a o b=a, \forall a, \quad b \in R$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that `AAa

- Watch Video Solution

18. Define a binary operation * on the set $A=\{0,1,2,3,4,5\}$ given by $a \cdot b=a b(\bmod 6)$. Show that 1 is the identity for *. 1 and 5 are the only invertible elements with $1^{-1}=1$ and $5^{-1}=5$

- Watch Video Solution

Check Your Understanding

1. If $A=(1,2,3)$, then the relation $R=\{(1,1)(2,2),(3,1),(1,3)\}$ is
2. Give an example of a relation which is symmetric but neither reflexive nor transitive.

- Watch Video Solution

3. Which of the following functions is (are) even, odd or neither:
$f(x)=\sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}}$

- Watch Video Solution

4. What is the domain of the function $f(x)=\frac{1}{x-2}$?

- Watch Video Solution

5. If $f(x)= \begin{cases}x-2 & x<2 \\ 3 & x=2 \text {, then find } \mathrm{f}(8) \text {. } \\ x+2 & x>3\end{cases}$
6. If $a * b=3 a+4 b$, then the value of $3 * 4$ is \qquad

- Watch Video Solution

7. If $a * b=\frac{a}{2}+\frac{b}{3}$, then the value of $2 * 3$ is

- Watch Video Solution

8. Let $\mathrm{A}=\{1,2,3\}$. For $x, y \in A$, let xRy if and only if $x>y$. Write down R as subset of $A \times A$.

- Watch Video Solution

9. Show that $\quad a$ is not the inverse of $a \in N$ for the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation \times on N , for $a \neq 1$.
10. Show that $\quad a$ is not the inverse of $a \in N$ for the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation \times on N , for $a \neq 1$.

- Watch Video Solution

Competition File Questions From Jee Main

1. Consider the following relations: $R=\{(x, y) \mid x, y$ are real numbers and $x=$ wy for some rational number w; $S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right) \mathrm{m}, \mathrm{n}\right.$, pandqar ei nt egerssucht hatn $\mathrm{q} \neq 0$ andq m
. Then (1) neither R nor S is an equivalence relation (2) S is an equivalence relation but R is not an equivalence relation (3) R and S both are equivalence relations (4) R is an equivalence relation but S is not an equivalence relation
A. R is an equivalence relation but S is not an equivalence relation
B. neither R nor S is an equivalence relation
C. S is an equivalence relation but R is not an equivalence relation
D. R and S both are equivalence relations.

Answer: C

- Watch Video Solution

2. The domain of the function
$f(x)=\frac{1}{\sqrt{|x|-x}}$, is
A. $(-\infty, \infty)$
B. $(0, \infty)$
C. $(-\infty, 0)$
D. $(-\infty, \infty)-\{0\}$

Answer: C

(D) Watch Video Solution

3. Let $f(x)=x^{2}$ and $g(X)=\sin x$ for all $x \varepsilon R$. Then the set of all x satisfying $($ fogogof $)(x)=(g \circ g \circ f)(x)$, where $(f \circ g)(x)=f(g(x))$ is
A. $\pm \sqrt{n \pi}, n \in\{0,1,2, \ldots \ldots .$.
B. $\pm \sqrt{n \pi}, n \in\{1,2, \ldots \ldots \ldots\}$
C. $\frac{\pi}{2}+2 n \pi, n \in\{\ldots \ldots-2,-1,0,1,2, \ldots \ldots\}$
D. $2 n \pi, n \in\{\ldots \ldots-2,-1,0,1,2, \ldots \ldots \ldots)$

Answer: A

- Watch Video Solution

4. The function $f:[0,3] \overrightarrow{1,29}$, defined by $f(x)=2 x^{3}-15 x^{2}+36 x+1$, is one-one and onto onto but not one-one one-one but not onto neither one-one nor onto
A. one-one and onto
B. onto but not one-one
C. one-one but not onto
D. neither one-one nor onto.

Answer: B

- Watch Video Solution

5. If $a \in R$ and the equation $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$ (where $[\mathrm{x}]$ denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval: (1) (-2,-1) (2) $(\infty,-2) \cup(2, \infty)(3)(-1,0) \cup(0,1)(4)(1,2)$
A. $(1,2)$
B. $(-2,-1)$
C. $(-\infty,-2) \cup(2, \infty)$
D. $(-1,0) \cup(0,1)$

Answer: D

D Watch Video Solution

6. The function $f: R \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x)=\frac{x}{1+x^{2}}$ is
A. Surjective but not injective
B. Neither injective nor surjective
C. Invertible
D. Injective but not surjective

Answer: A

- Watch Video Solution

7. Let the function $f(x)$ defined on $f: R-(-1,1) \rightarrow A$ and $f(x)$ $\left(x^{\wedge}(2)\right) /\left(1-x^{\wedge}(2)\right) F \in d A s u c h t^{\wedge} f(x)^{\prime}$ is subjective.
A. $R-[-1,0)$
B. $R-[-1,1)$
C. $R-[-1,2)$
D. $R-[0,1)$

Answer: A

- Watch Video Solution

Chapter Test 1

1. R is a relation is defined on the set $\{1,2,3,4\}$ as follow $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$

Then choose the coR Rect option of the following
A. R is reflexive and symmetric but not transitive
B. R is reflexive and transitive but not symmetric
C. R is symmetric and transitive but not reflexive
D. R is an equivalence relation

Answer: B

- Watch Video Solution

2. If f be greatest integer function defined $\operatorname{asf}(x)=[x]$ and g be the mdoulus function defined as $g(x)=|x|$, then the value of g of $\left(-\frac{5}{4}\right)$ is \qquad

- Watch Video Solution

3. Give an example of a relation which is symmetric but neither reflexive nor transitive.

D Watch Video Solution

4. Are f and g both necessarily onto, if gofis onto?
5. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but $: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$ are not commutative.

- Watch Video Solution

6. Prove that the relation R on the set $N \times N$ defined by $(a, b) R(c, d) a+d=b+c$ for all $(a, b),(c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes $[(2,3)]$ and $[(1,3)]$.

- Watch Video Solution

7. Show that the Signum Function $f: R \rightarrow R$, given by :
$f(x)=\left\{\begin{array}{l}1, \text { if } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0\end{array}\right.$ is neither one-one nor onto.
8. If $f(x)=\frac{x-1}{x+1}, x \neq-1$, then show that $f(f(x))=-\frac{1}{x}$, prove that $x \neq 0$.

- Watch Video Solution

9. Let $Y=\left\{n^{2}: n \in N\right\} \in N$. Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

10. Is \cdot defined on the set $\{1,2,3,4,5\} b y a \cdot b=L \dot{C} M$ of a and b a binary operation? Justify your answer.

- Watch Video Solution

11. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.
12. Consider the binary operations $\cdot: \quad R \times R \rightarrow R$ and $o: R \quad \times \quad R \rightarrow R \quad$ defined \quad as $\quad a \cdot b|a-b| \quad$ and $a o b=a, \forall a, \quad b \in R$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that 'AAa
