©゙"doubtnut

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

THREE DIMENSIONAL GEOMETRY

Frequently Asked Questions

1. Find the acute angle which the line with direction -cosines $<\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}, n>$ makes with positive direction of z -axis.

- Watch Video Solution

2. Find the direction-cosines of the line joining the points $(-2,4,-5)$ and (1,2,3).

- Watch Video Solution

3. If α, β, γ are direction-angles of a line, prove that
(i) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=0$.
(ii) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$.

- Watch Video Solution

4. The x-coordinates of a point on t line joining the points $Q(2,2,1) \operatorname{and} R(5,1,-2) i s 4$. Find its z-coordinate.

- Watch Video Solution

5.

Show
that
the
points
$A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

6. Find the acute angle between the lines whose direction-ratios are :
$<1,1,2>$ and $<-3,-4,1>$.

(Watch Video Solution

7. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0,6 m m-2 n l+5 l=0$

- Watch Video Solution

8. Find the length of the projection of the line segment joining the points $P(3,-1,2)$ and $Q(2,4,-1)$ on the line with direction rations $<-1,2,-2>$.

Watch Video Solution

9. Find the area of the traingle $A B C$ whose vertices are :
$A(1,2,4) ; B(-2,1,2)$ and $C(2,4,-3)$.

- Watch Video Solution

10. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

11. Find the shortest distance between the lines:

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}-3 \hat{k}+\lambda(3 \hat{i}-4 \hat{j}-\hat{k}) \\
& \text { and } \vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(\hat{i}+\hat{j}+5 \hat{k}) .
\end{aligned}
$$

12. Find the distance between the lines L_{1} and L_{2} given by :
$\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
and $\vec{r}=2 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 13. } \begin{array}{c}
\text { Show } \\
\frac{x-1}{2} \\
\frac{\text { that }}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { and } \frac{x-4}{5}=\frac{y-1}{2}=z
\end{array} \text { intersect. }
\end{aligned}
$$

Find also the point of intersection of these lines.

- Watch Video Solution

14.	Show
$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$	lines
and	

are coplanar. Also, find the equation of the plane containing these lines.

- Watch Video Solution

15. Find whether the lines:
$\vec{r}=(\hat{i}-\hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j})$
$\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{j}-\hat{k})$
intersect or not. If intersecting, Find their point of intersection.

- Watch Video Solution

16. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by:

$$
\begin{aligned}
\vec{r} & =(3 \hat{i}+8 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+\hat{k}) \text { and } \\
\vec{r} & =(-3 \hat{i}-7 \hat{j}+6 \hat{k})+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})
\end{aligned}
$$

17. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z-axis respectively.

- Watch Video Solution

18. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

- Watch Video Solution

19. Find the vector equation of a plane passing through the point having position vector $2 \hat{i}+\hat{j}+\hat{k}$ and perpendicular to vector
$4 \hat{i}-2 \hat{j}+3 \hat{k}$.
20. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.

- Watch Video Solution

21. Find the direction cosines of the unit vector perpendicular to the plane $\rightarrow r 6 \hat{i}-3 \hat{j}-2 \hat{k}+1=0$ passing through the origin.

- Watch Video Solution

22. Find the angle between the planes
$2 x+y-2 z=5$ and $3 x-6 y-2 z=7$. Using vector method.
23. Find the equation of the plane passing through the points $A(1,-1,2)$ and $B(2,-2,2)$ and perpendicular to the plane $6 x-2 y+2 z=9$.

- Watch Video Solution

24. Find the equationfo the plane through points ($2,1,0$),($3,-2,-2$), and (3,1,7).

- Watch Video Solution

25. Find the equation of the plane determined by the points $A(3,1$,
2), $B(5,2,4)$ and $C(1,1,6)$ and hence find the distance between the plane and the point $P(6,5,9)$.
26. Find the equation of the plane passing through the line of intersection of the planes $\rightarrow r \hat{i}+\hat{j}+\hat{k}=1$ and $\rightarrow r 2 \hat{i}+3 \hat{j}-\hat{k}+4=0$ and parallel to x-axis.

- Watch Video Solution

27. Find the equation of the plane through the line of intersection of :
$\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=1$ and $\vec{r} \cdot(\hat{i}-\hat{j})+4=0$
and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+8=0$.
hence, find whether the plane thus obtained contains the line:
$x-1=2 y-4=3 z-12$.

(Watch Video Solution

28. Find the equation of the plane which contains the line of intersection of the planes:
$\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})-4=0$ and
$\vec{r} \cdot(-2 \hat{i}+\hat{j}+\hat{k})+5=0$ and whose intercept on x-axis is equal to that of y-axis.

- Watch Video Solution

29. Find the vector equation of the plane that contains the line $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and the point (-1, 3,-4). Also, find the length of the perpendicular from the point $(2,1,4)$ to the plane, thus botained.

- Watch Video Solution

30. Find the vector and cartesian equations of the plane passing through the points $(2,2,-1),(3,4,2)$ and $(7,06)$ also find the vector equation of a plane passing through $(4,3,1)$ and parallel to the plane obtained above.

- Watch Video Solution

31. From the point $P(1,2,4)$ a perpendicular is drawn on the plane $2 x+y-2 z+3=0$. Find the equation the length and the coordinates of the foot of perpendicular.

- Watch Video Solution

32. Find the co-ordinates of the point P, where the line through A
$(3,-4,-5)$ and $B(2,-3,1)$ crosses the plane passing through three
points $L(2,2,1), M(3,0,1)$ and $N(4,-1,0)$. Also , find the ratio in which P divides the line segment $A B$.

- Watch Video Solution

33. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=$ 5, measured parallel to the line :
$\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$.

- Watch Video Solution

34. Find the co-ordinates of the foot of the perpendicular and the perpendicular distance of the point $(1,3,4)$ from the plane $2 x-y+z$ $+3=0$. Find also, the image of the point in the plane.

- Watch Video Solution

35. Find the equation of a plane which meets the axes in $A, B a n d C$, given that the centroid of the triangle $A B C$ is the point (α, β, γ)

(Watch Video Solution

36. Find the vector equation of the point determined by the points

A ($3,-1,2$), B ($5,2,4$) and C $(-1,-1,6)$ Hence, find the distance of the plane, thus obtained, from the origin.

- Watch Video Solution

37. Show that the plane whose vector equation is
$\vec{r} \hat{i}+2 \hat{j}=\hat{k}=3$ contains the line whose vector equation is $\vec{r} \hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.
38. Find the angle between the line:

$$
\begin{aligned}
& \vec{r}=(\hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}-\hat{j}+3 \hat{k}) \quad \text { and } \quad \text { the plane } \\
& \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=4
\end{aligned}
$$

Also, find the whether the line is parallel to the plane or not.

- Watch Video Solution

39. Find the point of intersection of the line :
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k}) \quad$ and the plane
$\vec{r} \cdot(2 \hat{i}-6 \hat{j}+3 \hat{k})+5=0$.

- Watch Video Solution

40. Show that the lines whose vector equation is $\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ is parallel to the plane whose
vector equation is $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$, and find the distance between them. Also, state whether the line lies in the plane.

- Watch Video Solution

41. Find the distance from the point $(3,4,5)$ to the point, where the line:

$$
\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}
$$

meets the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=2$.

- Watch Video Solution

42. Find the angle between the plane $2 x+3 y-5 z=10$ and the line passing through the points (2,3,-1) and (1,2,1).

- Watch Video Solution

43. State when the line $\vec{r} \dot{\vec{a}}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \vec{n}=$.. Show that the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ is parallel to the plane $\vec{r}-2 \hat{i}+\hat{k}=5$. Also, find the distance between the line and the plane.

D Watch Video Solution

44. Find the equation to the plane through the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and parallel to the line $\frac{x}{l^{\prime}}=\frac{y}{m^{\prime}}=\frac{z}{n^{\prime}}$.

- Watch Video Solution

45. If lines : $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} \quad$ and
$\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of ' k ' and hence find the equation of the plane containing these lines.
46. Find the equation of the plane parallel to the line $\frac{x-2}{1}=\frac{y-1}{3}=\frac{z-3}{2}$, which contains the point (5, 2, -1) and passes through the origin.

- Watch Video Solution

47. Find the equation of the plane containing the line.:

$$
\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{4}
$$

and perpendicular to the plane $\mathrm{x}+2 \mathrm{y}+\mathrm{z}-2=0$.

- Watch Video Solution

48. Find the vector equation of a line passing through the point
$(2,3,2)$ and parallel to the line :

$$
\vec{r}=(-2 \hat{i}+3 \hat{j})+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k}) .
$$

Also, find the distnace between these two lines.

- Watch Video Solution

49. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

- Watch Video Solution

50. Find the equation of the plane through the line:

$$
\frac{x-1}{3}=\frac{y-4}{2}=\frac{z-4}{-2}
$$

and parallel to the line :
$\frac{x+1}{2}=\frac{y-1}{4}=\frac{z+2}{1}$.
Hence, find the shortest distance between the lines.
51. Show that the lines of intersection of the planes:
$x+2 y+3 z=8$ and $2 x+4 y+4 z=11$
is coplanar with the line $\frac{x+1}{1}+\frac{y+1}{2}=\frac{z+1}{3}$
Also, find the equation of the plane containing them.

D Watch Video Solution

Example

1. Find the vector equation of the line which passes through the point $(3,4,5)$ and is parallel the vector $2 \hat{i}+2 \hat{j}-3 \hat{k}$.
A. $\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}-2 \hat{j}-3 \hat{k})$
B. $\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}-3 \hat{k})$
C. $\vec{r}=(3 \hat{i}-4 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}-3 \hat{k})$
D. $\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(5 \hat{i}+2 \hat{j}-3 \hat{k})$

Answer: B

(D) Watch Video Solution

2. Find the direction-cosines of the line:
$\frac{x-1}{2}=-y=\frac{z+1}{2}$.

- Watch Video Solution

3. Find the vector of the line joining ($1,2,3$) and ($-3,4,3$) and show that it is perpendicular to the z-axis.

- Watch Video Solution

4. Find the vector equation of the line through $(4,3,-1)$ and parallel to the line :

$$
\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+4 \hat{k}) .
$$

A. $\vec{r}=(4 \hat{i}+3 \hat{j}+\hat{k})+\lambda(3 \hat{i}-\hat{j}+4 \hat{k})$
B. $\vec{r}=(4 \hat{i}+3 \hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}+4 \hat{k})$
C. $\vec{r}=(4 \hat{i}-3 \hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}+4 \hat{k})$
D. $\vec{r}=(4 \hat{i}+3 \hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}-4 \hat{k})$

Answer: B

- Watch Video Solution

5. Find the angle between the following pair of lines:

$$
\begin{aligned}
\vec{r} & =\hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
\vec{r} & =2 \hat{i}-\hat{j}+\mu(3 \hat{i}+\hat{j}-2 \hat{k})
\end{aligned}
$$

A. $\pi+\cos ^{-1}\left(\frac{2}{7}\right)$
B. $\cos ^{-1}\left(\frac{3}{7}\right)$
C. $\cos ^{-1}\left(\frac{2}{7}\right)$
D. $\pi-\cos ^{-1}\left(\frac{2}{7}\right)$

Answer: D

- Watch Video Solution

6. Find the angle between the following pair of lines

$$
\frac{x-2}{2}=\frac{y-1}{7}=\frac{z+3}{-3} \text { and } \frac{x-2}{-1}=\frac{2 y-8}{4}=\frac{z+5}{4}
$$

and check whether the lines are parallel or perpendicular .

- Watch Video Solution

7. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $P(1,3,3$,$) .$
8. Find the equations of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines

$$
\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad \text { and } \quad \frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}
$$

- Watch Video Solution

9. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ respectively are the position vectors of points A, B, C and D, then find the angle between the straight lines $A B$ and $C D$. Find whether $\overline{A B}$ and $\overline{C D}$ are collinear or not.

- Watch Video Solution

10. Find the value of ' λ ' so the lines:

$$
\frac{1-x}{3}=\frac{7 y-14}{\lambda}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}
$$

are at right angles. Also, find whether the lines are ntersecting or not.

- Watch Video Solution

11. Find the length of the perpendicular from point $(3,4,5)$ on the
line $\frac{x-2}{2}=\frac{y-3}{5}=\frac{z-1}{3}$.
A. $\frac{\sqrt{34}}{4}$
B. $\frac{\sqrt{34}}{2}$
C. $\frac{\sqrt{32}}{2}$
D. $\frac{\sqrt{37}}{2}$

Answer: B

12. Find the coordinates of the foot of perpendicular drawn from the point $A(1,8,4)$ to the line joining the points $B(0,-1,3)$ and $C(2-3,-1)$.
A. $\left(\frac{5}{3}, \frac{-2}{3}, \frac{19}{3}\right)$
B. $\left(\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right)$
C. $\left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right)$
D. $\left(\frac{-5}{3}, \frac{2}{3}, \frac{17}{3}\right)$

Answer: C

- Watch Video Solution

13. Find the vector equation of the line parallel to the line :
$\frac{x-1}{5}=\frac{3-y}{2}=\frac{z+1}{4}$
14. Find the equations of the perpendicular drawn from the point
$P(2,4,-1)$ to the line:
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.
Also, write down the co-ordinates of the foot of the perpendicular from P to the line.

- Watch Video Solution

15. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$. Also, write the equation of the line joining the given point and its image and find length of the segment joining the given point and its image.

- Watch Video Solution

16. Find the co-ordinates of the foot of perpendicular and the length of the perpendicular drawn from the point $P(5,4,2)$ to the line :

$$
\vec{r}=\hat{i}+3 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})
$$

Also, find the image of P in this line.

- Watch Video Solution

17. Find the vector and cartesan equation of the plane passing through the poin ($1,2,-4$) and parallel to the lines.

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \text { and } \vec{r}=\hat{i}-3 \hat{j}+5 \hat{k}+\mu(\hat{i}+\hat{j}-\hat{k}) .
\end{aligned}
$$

- Watch Video Solution

18. Find the vector and cartesian forms of the equation of the plane containing two lines :

$$
\begin{aligned}
& \vec{r}=(i)+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \text { and } \vec{r}=3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+3 \hat{j}+8 \hat{k}) .
\end{aligned}
$$

- Watch Video Solution

Exercise 11 A Short Answer Type Questions

1. (A) If a line makes angle $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x, y and z respectively, find its direction-cosines.
(b) If a line has direction-ratio $<2,-1,-2,>$, determine its direction-cosines.
2. (A) find the direction-cosines of the lines joining the points :
(-1, -1, -1) and (2,3,4)
(b) Find the direction ratios and direction cosines of the vector joining the points (4,7,2) and (5,11,-4).
(c) Find the direction cosines of a line segment joining the points $A(2,5,7)$ and $B(3,2,9)$.

- Watch Video Solution

3. Find the length of the projection of the line segment joining
$(3,4,5)$ and $(4,6,3)$ on the straight line $)$:
$\frac{x-4}{2}=\frac{y-5}{3}=\frac{z-6}{6}$

- Watch Video Solution

4. Show that the following points are collinear :
$(1,2,7):(2,6,3):(3,10,-1)$.

- Watch Video Solution

5. Find the acute angle between the lines whose direction-ratios are :
$<2,3,6>$ and $<1,2,-2,>$.

(D) Watch Video Solution

6. Find the obtuse angle between two lines whose direction-ratios are :

$$
<3,-6,2>\text { and }<1,-2,-2>
$$

7. Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

Exercise 11 A Long Answer Type Questions I

1. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,1)$ and $(-5,-5,-2)$.

D Watch Video Solution

2. Check if lines with direction-cosines:

$$
<\frac{12}{13},-\frac{3}{13},-\frac{4}{13}>,<\frac{4}{13}, \frac{12}{13}, \frac{3}{13}>,<\frac{3}{13}, \frac{4}{13}, \frac{12}{13}>
$$

are mutually perpendicular .
3. Find the angle between the lines whose direction-cosines are given by :
(i) $I+\mathrm{m}+\mathrm{n}=0, l^{2}+m^{2}-n^{2}=0$
(ii) $2 l-m+2 n=0, m n+n l+I m=0$,

- Watch Video Solution

4. Find the ate area of the triangle whose vertices are :

A (1,2,3) , B (2,-1,4) and C (4,5,-1).

- Watch Video Solution

5. Show that the line thorugh the points $(4,7,8)$ and $(2,3,4)$
isparal $\leq l \rightarrow$ thel \in ethroughthep $\oint s(-1,-2,1)$ and $(1,2,5)$

Watch Video Solution

6. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

- Watch Video Solution

7. Determine the value of k so that the line joining points $A(k, 1,-1)$ and $B(2,0,2 k)$ is perpendicular to the line joining the points $C(4,2 k, 1)$ and $D(2,3,2)$.

- Watch Video Solution

8. Show that the angle between any two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$.

- Watch Video Solution

Exercise 11 A Long Answer Type Questions li

1. Find the the projection of the line segment joining the points :
(I) $(2,-3,0)(0,4,5)$ on the line with direction cosines $<\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}>$
(ii) $(1,2,3),(4,3,1)$ on the line with direction-ratios $\langle 3,-6,2\rangle$.

- Watch Video Solution

2. If the edges of a rectangular parallelepiped are a, b, c, prove that the angles between the four diagonals are given by $\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$.

Exercise 11 B Short Answer Type Questions

1. Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are perpendicular.

- Watch Video Solution

2. Express the following equation of the lines into vector form :
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

- Watch Video Solution

3. Find the cartesian as well as the vector equation of the line passing through :
(i) $(-2,4,-5)$ and parallel to the line :
$\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$
(ii) $(0,-1,4)$ and parallel to the straight line :
$\frac{-x-2}{1}=\frac{y+3}{7}-\frac{2 z-6}{3}$.
(iii) $(-1,2,3)$ and parallel to the line :
$\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-1}{6}$

(D) Watch Video Solution

4. (A) The cartesian equations of a line are :
(i) $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
(ii) $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equations of the lines.
(b) find the vector equation of the line passing through the point

A ($1,2,-1$) and parallel to the line :
$5 x-25=14-7 y=35 z$.
5. (A) find the equation of a line parallel to x-axis and passing through the origin.
(b) Find the direction-cosines of a line parallel to the line:
$\frac{2 x-5}{4}=\frac{y+4}{3}=\frac{6-z}{6}$.
(c) Write the direction-cosines of a line parallel to the line :
$\frac{3-x}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$.

(D) Watch Video Solution

6. (A) Find the vector and cartesian equations of the line through the point $(5,2,-4)$ and which is parallel to vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.
(b) Find the equation of a line passing through the point $\mathrm{P}(2,-1,3)$ and perpendicular to the lines:

$$
\begin{aligned}
& \vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k}) \\
& \text { and } \vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

7. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

8. Find the vector equation of the line passing thought the points $(-1,0,2)$ and $(3,4,6)$.

- Watch Video Solution

9. Find the vector and cartesian equations of the line that passes through :
(i) the origin and (5, -2, 3)
(ii) the points (1,2,3) and (2,-1,4)

- Watch Video Solution

10. (A) Find the equation of a st. line through ($-1,2,3$) and equally inclined to the axea.
(b) Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

11. Find the angle between the pairs of lines with direction-ratios:
(i) $<5,-12,13>,<-3,4,5>$
(ii) $\langle a, b, c\rangle,\langle b,-c, c-a, a-b\rangle$
12. The angle between a line with direction ratios proportional to $2,2,1$ and a line joining $(3,1,4)$ and $(7,2,12)$ is

- Watch Video Solution

13. Find the angle between the following pairs of lines:
(i) $\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$.
$\vec{r}=5 \hat{j}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$.
$\vec{r}=(2 \hat{i}-\hat{j}-56 \hat{k})+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$
(iii) $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$
and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(iv) $\frac{x-4}{3}=\frac{y+1}{4}=\frac{z-6}{5}$ and $\frac{x-5}{1}=\frac{2 y+5}{-2}=\frac{z-3}{1}$
(v) $\frac{5-x}{3}=\frac{y+3}{-4}, z=7$ and $x=\frac{1-y}{2}=\frac{z-6}{2}$
(vi) $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.

(Watch Video Solution

14. Show that the lines:
(i) $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
(ii) $\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z-2}{4}$ and $\frac{x+2}{2}=\frac{y-4}{4}=\frac{z+5}{2}$ are perpendicular to each other .

- Watch Video Solution

15. (i) Find the value of ' p ' so that the lines:
$l_{1}: \frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

Also, find the equations of the line passing through ($3,2,-4$) and parallel to line l_{1}.
(ii) Find ' k ' so that the lines:

$$
\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2 k} \text { and } \frac{x+2}{1}=\frac{4-y}{k}=\frac{z+5}{1}
$$

are perpendicular to each other.
16. Show that the line through the points:
(a) $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points
$(0,3,2)$ and (3, 5,6)
(b) $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1)$ and (1,2,5) .

D Watch Video Solution

Exercise 11 B Long Answer Type Questions I

1. The Cartesian equations of a line are $3 x+1=6 y-2=1-z$,
finding the fixed point through which it passes, its direction ratios and also its vector equation.
2. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of the sides $A B$ and $B C$ and also find the coordinates of point D.

- Watch Video Solution

3. Write the equation of a line, parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=(z+3)$ and passing through the point $(1,2,3)$.

(Watch Video Solution

4. Find the equation of the line perpendicular to the lines:
$\vec{r}=(3 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(\hat{i}+2 \hat{j}-2 \hat{k})$
and $\vec{r}=(5 \hat{j}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and passing through the point (1,1,1).
5. (i) Find the equations of the straight line passing through the point $(2,3,-1)$ and is perpendicular to the lines:

$$
\frac{x-2}{2}=\frac{y+1}{1}=\frac{z-3}{-3} \text { and } \frac{x-3}{1}=\frac{y+2}{1}=\frac{z-1}{1} .
$$

(ii) Find the equation of the line which intersects the lines:
$\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
Perpendicular and passes through the point $(1,1,1)$.

(Watch Video Solution

6. Find the equation in vector and cartesian form of the line passing through the point :
$(2,-1,3)$ and perpendicular to the lines :

$$
\begin{aligned}
\vec{r} & =(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k}) \text { and } \\
\vec{r} & =(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

7. Prove that the points $A(1,2,3)$, $B(4,0,4), C(-2,4,2)$ and ($7,-2,5$) and collinear.

- Watch Video Solution

8. Show that the following points whose position vectors are given are collinear :
(i) $5 \hat{i}+5 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $-4 \hat{i}+3 \hat{j}-\hat{k}$
(ii) $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$.

- Watch Video Solution

9. Find the points on the line through the points $A(1,2,3)$ and B ($5,8,15)$ at a distance of 14 units from the mid-point of $A B$.
10. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

- Watch Video Solution

Exercise 11 B Long Answer Type Questions li

1. (i) Find the vector and cartesian equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines:

$$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-19}{8}=\frac{z-5}{-5} .
$$

(ii) Find the vector and cartesian equations of the line passing through the point $(2,1,3)$ and perpendicular to the lines:

$$
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \text { and } \frac{x}{-3}=\frac{y}{2}=\frac{z}{5} .
$$

2. (i) Find the vector equation of a line passing through a point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and parallel to the line joining the points with position vectors $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$. Also, find the cartesian equivalent of the equation.
(ii) Find the vector equation of a line passing through the point with position vector $\hat{i}-2 \hat{j}-3 \hat{k}$ and parallel to the line joining the points with position vectors $\hat{i}-\hat{j}+4 \hat{k}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$.

Also, find the cartesian form of the equation.

- Watch Video Solution

Exercise 11 C Long Answer Type Questions I

1. Find the distance of the point $(1,-2,3)$ from the line joining the points (-1,2,5) and (2,3,4).

- Watch Video Solution

2. Find the distance of the point $(1,2,3)$ from the cor-ordinate axes.

- Watch Video Solution

3. Find the distance of $(-1,2,5)$ from the plane passing through the point (3,4,5) and whose direction-ratios are $\langle 2,-3,6\rangle$.

- Watch Video Solution

4.2/ Find the perpendicular distance of the point ($1,0,0$) from the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ Also, and the coordinates of the
foot of the perpendicular and the equation of the perpendicular.

- Watch Video Solution

5. (a) Find the length of the perpendicular from the point $(1,2,3)$ to the line :

$$
\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2} .
$$

(b) Find the perpendicular distance from the point $(1,2,3)$ to the line :

$$
\vec{r}=6 \hat{i}+7 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})
$$

- Watch Video Solution

6. (a) Find the foot of the perpendicular from the point (i) $(2,-1,5)$
on the line :

$$
\frac{x-11}{10}=\frac{y+2}{-5}=\frac{z+8}{11}
$$

(ii) $(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.
(b) Also, find the length of perpendicular in part (ii).

- Watch Video Solution

7. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.

- Watch Video Solution

8. $A 91,0,4), B(0,-11,3), C(2,-3,1)$ are three points and D is the foot of perpendicular from A to $B C$. Find the coordinates of
D.

- Watch Video Solution

9. Find the perpendicular distance of an angular point of a cube from a diagona which does not pass through that angular point.

- Watch Video Solution

Exercise 11 C Long Answer Type Questions li

1. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

- Watch Video Solution

2. Let the point $P(5,9,3)$ lie on the top of Qutub Minar , Delhi. Find the image of the point on the line :

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} .
$$

3. Find the foot of the perpendicular from the point $(1,2,3)$ to the line joining the points ($6,7,7$) and $(9,9,5)$.

- Watch Video Solution

4. Find the length and the foot of the perpendicular drawn from
the point $(2,-1,5)$ to the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{x+8}{11}$

- Watch Video Solution

5. Find the equation of the perpendicular drawn from $(2,4,-1)$ to the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{3}$.
6. Find the length of the perpendicular drawn from point $(2,3,4)$
to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- Watch Video Solution

7. Find the equation of the perpendicular from point $(3,-1,11)$ to line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$. Also, find the coordinates of foot of perpendicular and the length of perpendicular.

D Watch Video Solution

8. A line passing through the point A with position vector $\vec{a}=4 \hat{i}+2 \hat{j}+2 \hat{k}$ is parallel to vector $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$.

Find the length of the perpendicular drawn on this line from a point P with position vector $\overrightarrow{r_{1}}=\hat{i}+2 \hat{j}+3 \hat{k}$.

Exercise 11 D Long Answer Type Questions I

1. Find the shortest distance between the following (1-4) lines whose vector equations are :
2. $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$
and $\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$.

- Watch Video Solution

2. Find the shortest distance between the lines:
$(i) \vec{r}=3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=-3 \hat{i}-7 \hat{j}+6 \hat{k}+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})$
(ii) $(\hat{i}-\hat{j}+2 \hat{k})+\lambda(-2 \hat{i}+\hat{j}+3 \hat{k})$
and $(2 \hat{i}+3 \hat{j}-\hat{k})+\mu(3 \hat{i}-2 \hat{j}+2 \hat{k})$.
(iii) $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$
and $\vec{r}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$.

- Watch Video Solution

3. Find the shortest distance between the lines:
(i) $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$
(ii) $\vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$
and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$
(iii) $\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
and $\vec{r}=(3 \hat{i}+3 \hat{j}+5 \hat{k})+\mu(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

- Watch Video Solution

4. Find the shortest distance between the following (1-4) lines
whose vector equations are :
(i) $\vec{r}=(\lambda-1) \hat{i}+(\lambda-1) \hat{j}-(1+\lambda) \hat{k}$
and $\vec{r}=(1-\mu) \hat{i}+(2 \mu-1) \hat{j}+(\mu+2) \hat{k}$
(ii) $\vec{r}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(1+\lambda) \hat{k}$
and $\vec{r}=2(1+\mu) \hat{i}-(1-\mu) \hat{j}+(-1+2 \mu) \hat{k}$.

(D) Watch Video Solution

5. Consider the equations of the straight lines given by :
$L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$.
If $\overrightarrow{a_{1}}=\hat{i}+2 \hat{j}+\hat{k}, \quad \overrightarrow{b_{1}}=\hat{i}-\hat{j}+\hat{k}$,
$\overrightarrow{a_{2}}=2 \hat{i}-\hat{j}-\hat{k}, \overrightarrow{b_{2}}=2 \hat{i}+\hat{j}+2 \hat{k}$, then find:
(i) $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}$
(ii) $\overrightarrow{b_{2}}-\overrightarrow{b_{1}}$
(iii) $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}$
$(i v) \overrightarrow{a_{1}} \times \overrightarrow{a_{2}}$
(v) $\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right)$
(vi) the shortest distance between L_{1} and L_{2}.
6. Find the shortest distance between the following (6-7) lines whose vector equations are :
(i) $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$
and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
(ii) $\vec{r}=(3-t) \hat{i}+(4+2 t) \hat{j}+(t-2) \hat{k}$
and $\vec{r}=(1+s) \hat{i}+(3 s-7) \hat{j}+(2 s-2) \hat{k}$.
where t and s are scalars.

- Watch Video Solution

7. Find the shortest distance between the following lines whose vector equations are :
(i) $\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k}$
and $\vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$
(ii) $\vec{r}=3 \hat{i}-15 \hat{j}+9 \hat{k}+\lambda(2 \hat{i}-7 \hat{j}+5 \hat{k})$ and $\vec{r}=(2 \mu-1) \hat{i}+(1+\mu) \hat{j}+(9-3 \mu) \hat{k}$.

- Watch Video Solution

8. Find the S.D. between the lines :
(i) $\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$ and $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+4}{2}$
(ii) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{2}$ and $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-1}{5}$
(iii) $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
(iv) $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$.

- Watch Video Solution

9. Determine whether or not the following pairs of lines intersect :
$\vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+\hat{j}-2 \hat{k})$
and $\vec{r}=(\hat{i}-\hat{j}-\hat{k})+\mu(\hat{i}+2 \hat{j}-2 \hat{k})$.
10. Determine whether or not the following pairs of lines intersect

$$
\vec{r}=(2 \lambda+1) \hat{i}-(\lambda+1) \hat{j}+(\lambda+1) \hat{k} .
$$

and $\vec{r}=(3 \mu+2) \hat{i}-(5 \mu+5) \hat{j}+(2 \mu-1) \hat{k}$.

- Watch Video Solution

11. Determine whether or not the following pairs of lines intersect :
$\frac{x-1}{2}=\frac{y+1}{3}=z, \frac{x+1}{5}=\frac{y-2}{1}=\frac{z-2}{0}$.

- Watch Video Solution

12. Prove that the lines : $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar.

Exercise 11 D Long Answer Type Questions li

1. Find the shortest distance and the equation of the shortest distance between the following two lines:
$\vec{r}=(-\hat{i}+\hat{j}+9 \hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$
and $\vec{r}=(3 \hat{i}-15 \hat{j}+9 \hat{k})+\mu(2 \hat{i}-7 \hat{j}+5 \hat{k})$.

D View Text Solution

2. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by :
(i) $\vec{r}=(-4 \hat{i}+4 \hat{j}+\hat{k})+\lambda(\hat{i}+\hat{j}-\hat{k})$
and $\vec{r}=(-3 \hat{i}-8 \hat{j}-3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+3 \hat{k})$
$($ ii) $\vec{r}=(-\hat{i}+5 \hat{j})+\lambda(-\hat{i}+\hat{j}+\hat{k})$
and $\vec{r}=(-\hat{i}-3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+\hat{k})$.

- View Text Solution

3. Write the vector equations of the following lines and hence determine the distance between them $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$ and $\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$

- Watch Video Solution

4. Show that the lines : $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and

$$
\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}
$$

intersect each other. Also, find the their point of intersection.

- Watch Video Solution

5. Show that the lines :

$$
\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})
$$

and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
(ii) $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$.
and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$
are intersecting. Hence, find their point of intersection.

- Watch Video Solution

6. Show that the lines :
(a) $\frac{x-1}{3}=\frac{y+1}{5}$ and $\frac{x-2}{4}=\frac{y-1}{3}=\frac{z+1}{-2}$
(b) $\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{k})$
and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{k}-\hat{k})$ do not intersect.

(D) Watch Video Solution

7. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.
8. Find the equation of the plane containing the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$.

- Watch Video Solution

9. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

10. Find the equations of the lines joining the following pair of vertices and then find its shortest distance between the lines:
(i) $(0,0,0),(1,0,2)$ (ii) $(1,3,0),(0,3,0)$.

Exercise 11 E Short Answer Type Questions

1. Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.
(ii) Find the vector equation of a plane, which is at a distance of 5 units from the origin and its normal vector is
$2 \hat{i}-3 \hat{j}+6 \hat{k}$.

(Watch Video Solution

2. Find the vector equation of the line through the origin, which is perpendicular to the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=3$.
3. Find the distance of the point $(2,3,4)$ from the plane :
$\vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=-11$.

- Watch Video Solution

4. (i) Find the distance from ($1,2,3$) to the plane $2 x+3 y-z+2=0$.

Find the length of perpendicular drawn from the origin to the plane $2 x-3 y+6 z+21=0$.

- Watch Video Solution

5. Find the angle between the planes:
(i) $3 x-6 y-2 z=7 \quad 2 x+y-2 z=5$
(ii) $4 \mathrm{x}+8 \mathrm{y}+\mathrm{z}=8 \quad$ and $\mathrm{y}+\mathrm{z}=4$
(iii) $2 x-y+z=6 \quad$ and $x+y+2 z=7$.
6. Angle between the planes:
(i) $\vec{r} \cdot(\hat{i}-2 \hat{j}-\hat{k})=1$ and $\vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=0$
(ii) $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

7. (i) The position vectors of two points A and B are $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$ respectively. Find the vector equation of the plane passing throug B and perpendicular to $\overrightarrow{A B}$.
(ii) Find the vector equation of the plane through the point $(2,0,-1)$ and perpendicular to the line joining the two points (1,2,3,) and (3, $-1,6)$.

- Watch Video Solution

8. Find the equation of the plane passing through the point $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2) \operatorname{and}(2,3,5)$. find also the perpendicular distance of the origin from this plane.

- Watch Video Solution

9. Find the vector and Cartesian equations of the plane which passes through the point (5,2-4) and perpendicular to the line with direction ratios 2,3,-1.

- Watch Video Solution

10. Find the vector and cartesian equation of the plane :
(i) that passes through the point $(5,2,-4)$ and perpendicular to the line with direction-ratios $<2,3,-1\rangle$
(ii) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
(iii) that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

11. Find the length of the perpendicular from the point $(2,3,7)$ to the plane $3 x-y-z=7$. Also, find the co-ordinates of the foot of the perpendicular.

- Watch Video Solution

12. In the following, find the distance of each of the given points
from the corresponding given planes :

Point

Plane

(i) $(0,0,0)$
$2 x-y+2 z+1=0$
(ii) $(3,-2,1) \quad 2 x-y+2 z+3=0$
(iii) $(-6,0,0) \quad 2 x-3 y+6 z-2=0$
(iv) $(2,3,-5) \quad x+2 y-2 z=9$.

- Watch Video Solution

13. In the following, determine the direction-cosines of the normal to the plane and the distance from the origin :
(i) $z=2$ (ii) $5 y+8=0$.

- Watch Video Solution

14. If the points $(1,1, \quad p)$ and $(3,0,1)$ be equidistant from the plane $\rightarrow r 3 \hat{i}+4 \hat{j}-12 \hat{k}+13=0$, then find the value of p.
15. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane :
(i) $2 x+3 y+4 z-12=0$
(ii) $3 y+4 z-6=0$
(iii) $x+y+z=1$
(iv) $5 y+8=0$.

D Watch Video Solution

16. Find the length and the foot of the perpendicular from the point $P(7,14,5)$ to the plane $(2 x+4 y-z=2)$. Also, find the image of the point P in the plane.

- Watch Video Solution

17. (i) Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes :
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
(ii) Find the vector equation of the straight line passing through
$(1,2,3)$ and perpendicular to the plane :
$\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.

- Watch Video Solution

18. (i) Find the equations of the plane passing through (a,b,c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.
(ii) Find the vector equation of the plane through the point $\hat{i}+\hat{j}+\hat{k}$ and parallel to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

19. Find the vector and catesian equations of the plane containing the lines:

$$
\begin{aligned}
& \vec{r}=2 \hat{i}+\hat{j}-3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+5 \hat{k}) \\
& \text { and } \vec{r}=3 \hat{i}+3 \hat{j}-7 \hat{k}+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})
\end{aligned}
$$

- Watch Video Solution

20. Find the angle between the lines
$x-2 y+z=0=x+2 y-2 z a n d x+2 y+z=0=3 x+9 y+5 z$.

- Watch Video Solution

21. Show that the line $3 x-2 y+5=0, y+3 z-15=0$ and $\frac{x-1}{5}=\frac{y+5}{-3}=\frac{z}{1}$ are perpendicular to each other .
22. Find the equations of the line passing through the point ($1,-2$,
3) and parallel to the planes:

$$
x-y+2 z=5 \text { and } 3 x+2 y-z=6 .
$$

- Watch Video Solution

23. Find the equation of the plane which bisects the line segment joining the points $(-1,2,3)$ and $(3,-5,6)$ at right angles.

- Watch Video Solution

Exercise 11 E Long Answer Type Questions I

1. (A) Find the equation of the plane through the intersection of the plane :
$3 x-y+2 z-4=0$ and $x+y+z-2=0$
and the point $(2,2,1)$.
(b) Find the vector equation of the plane through the intersection of the planes :
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ at the point. (1,1,1).

- Watch Video Solution

2. Find the vector equation of the following planes in cartesian form :

$$
\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})
$$

- Watch Video Solution

3. Find the equations of the plane that passes through three points (1,1,0),(1,2,1),(-2,2,-1).
4. Find the equations of the faces of the tetrahedron whose vertices are the points: (0,0,0) , (0,3,0) , (2,1,0) , (1,1,2).

D View Text Solution

5. (i) Find the distance of the point $P(6,5,9)$ from the plane determined by the points $A(3,-1,2) B(5,2,4)$ and $C(-1,-1,6)$.
(ii) Find the distance between the point $(7,2,4)$ and the plane determined by the points.
$A(2,5,-3) B(-2,-3,5)$ and $C(5,3,-3$,$) .$

- Watch Video Solution

6. (i) Find the equation of the plane through the points $(2,-3,1)$ and $(5,2,-1)$ and perpendicular to the plane $x-2 y+4 z=10$.
(ii) Find the vector equation of the plane through the points (2,1,-1) and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$.

- Watch Video Solution

7. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

- Watch Video Solution

8. (a) show that the following four points are coplanar:
(i) $(4,5,1),(0,-1,-1),(3,9,4)$ and $(-4,4,4)$
(ii) $(0,-1,0),(2,1,-1),(1,1,1)$ and ($3,3,0$).
(b) Show that the four points: $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4)$ are coplanar.

Also,find the equation of the plane containing them .

- Watch Video Solution

9. The foot of the perpendicular drawn from the origin to a plane is $(2,-3,-4)$. Find the equation of the plane.

- Watch Video Solution

10. (I) Find the foot and length of the perpendicular from the point
$(3,4,5)$ to the plane :
$2 x-5 y+3 z=39$.
(ii) Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.
11. find the coordinates of point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.

- Watch Video Solution

12. If x co-ordinate of a point on the line joining points $(2,2,1)$ and ($5,1,-2$) is 4 , then its z co-ordinate will be
A. 1
B. -1
C. 2
D. -2

Answer: B

13. (i) Find the equation of the plane passing through the intersection of the planes:
$2 x-7 y+4 z=3$ and $3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$.
(ii) Find the equation of plane through the intersection of planes:
$3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

(Watch Video Solution

14. (i) Find the vector equation of the plane through the intersection of the planes :

$$
\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6, \vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5
$$

and the point (1,1,1).
(ii) Find the equation of the plane which contains the line of intersection of the planes :

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \cdot \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0
$$

and which is perpendicular to the plane :
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$.
(iii) Find the equation the plane passing through the intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$.

- Watch Video Solution

15. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

- Watch Video Solution

16. Find the equation of a plane through the intersection of the planes :
$\vec{r}(2 \hat{i}+\hat{j}+3 \hat{k})=7$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+3 \hat{k})=9$ and passing through the point $(2,1,3)$.

- Watch Video Solution

17. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j})-6=0 \quad$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0$, whose perpendicular distance from the origin is unity.

- Watch Video Solution

18. Find the equation of the plane passing through the line of intersection of the planes:
$2 x+y-z=3$ and $5 x-3 y+4 z=9$
and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$.
19. Find the equation of the plane passing through the intersection of the planes
$2 x+3 y-z+1=0 a n d x+y-2 z+3=0$ and perpendicular to the plane $3 x-y-2 z-4=0$.

- Watch Video Solution

20. (i) Find the equation of the plane passing through ($1,-1,2$) and perpendicular to the planes:
$2 x+3 y-2 z=5, x+2 y-3 z=8$.
(ii) find the equation of the plane passing through the point $(1,1,-1)$ and perpendicular to each of the planes:
$x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$.
(iii) Find the equation of the plane passing through the point
($-1,-1,2$) and perpendicular to the planes :
$3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

(Watch Video Solution

Exercise 11 E Long Answer Type Questions li

1. (i) Find the distance of the point $(-2,3,-4)$ from the line:
$\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$,
measured parallel to the plane $4 x+12 y-3 z+1=0$.
(ii) Find the distance of the point $-2 \hat{i}+3 \hat{j}-4 \hat{k}$ from the line :

$$
\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}+3 \hat{j}-9 \hat{k})
$$

measured parallel to the plane $x-y+2 z-3=0$
2. Find the ratio in which the line-segment joining the points :
(i) $(2,1,5)$ and $(3,4,3)$ is divided by the plane :
$x+y-z=\frac{1}{2}$
(ii) $(1,2,3)$ and $(-3,4,-5)$ is divided by the $x y$-plane

- Watch Video Solution

3. Find the equation of the plane passing through the point $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2) \operatorname{and}(2,3,5)$. find also the perpendicular distance of the origin from this plane.

- Watch Video Solution

4. Find the image of the point :
(i) $(2,-3,2)$ in the plane $2 x+y-3 z=10$
(ii) $(1,2,3)$ in the plane $x+2 y+4 z=38$
(iii) $(2,-1,3)$ in the plane $3 x-2 y-z=9$.

- Watch Video Solution

5. (i) Find the co-ordinates of foot of perpendicular drawn from the point $(2,3,5)$ on the plane given by the equation :
$2 x-3 y+4 z+10=0$.
(ii) Find the distance between the point $(2,3,-1)$ and foot of perpendicular drawn from $(3,1,-1)$ to the plane $x-y+3 z=10$.

- Watch Video Solution

6. The foot of the perpendicular drawn from origin to a plane is (4,-2,5).
(a) How far is the plane from the origin ?
(b) Find a unit vector perpendicular to that plane.
(c) Obtain the equation of the plane in general form.

- Watch Video Solution

7. Find the co-ordinates of the foot of the perpendicular Q drawn from $P(3,2,1)$ so that plane $2 x-y+z+1=0$. Also, find the distance PQ and the image of the point P treating this plane as a mirror.

- Watch Video Solution

8. Find the length and the foot of the perpendicular from the point $P(7,14,5)$ to the plane $(2 x+4 y-z=2)$. Also, find the image of the point P in the plane.
9. Find the distance of the point $P(1,2,3)$ from its image in the plane $x+2 y+4 z=38$.

- Watch Video Solution

10. Find the coordinates of the point where the line through
$(3,-4,-5)$ and $(2-3,1)$ crosses the plane passing through the points (2,2,1),(3,0,1) and (4,-1,0).

- Watch Video Solution

11. (i) A variable plane, which remains at a constant distance ' 3 p ' from the origin cuts the co-ordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Show that the locus of the centroid of the triangle $A B C$ is :
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.
(ii) A variable is at a constant distance ' p ' from the origin and meets the axes in A, B, C respectively, then show that locus of the
centroid of th triangle $A B C$ is :
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{9}{p^{2}}$.

(D) Watch Video Solution

12. If a plane has intercepts a, b, c on axes and is at a distance of p units from the origin then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

13. A variable plane passes through a fixed point (a, b, c) and meets
the co-ordinate axes in A, B, C. Show that the locus of the point common to the planes through A, B, C parallel to the co-ordiante planes is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$.

- Watch Video Solution

14. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

- Watch Video Solution

15. Differentiate $e^{\tan x} \cos x$

- Watch Video Solution

16. Find the equations of the bisectors of the angles between the planes $\quad 2 x-y+2 z+3=0 a n d 3 x-2 y+6 z+8=0 \quad$ and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.

- Watch Video Solution

17. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them :
(i) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(ii) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(iii) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(iv) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(v) $4 x+8 y+z-8=0$ and $y+z-4=0$.

D Watch Video Solution

Exercise 11 F Long Answer Type Questions I

1. Find the angle between the lines in which the planes:
$3 x-7 y-5 z=1,5 x-13 y+3 z+2=0$
cut the plane $8 x-11 y+2 z=0$.
2. (i) show that the line:

$$
\vec{r}=2 \hat{i}-3 \hat{j}+5 \hat{k}+\lambda(\hat{i}-\hat{j}+2 \hat{k})
$$

lies in the plane $\vec{r} \cdot(3 \hat{i}+\hat{j}-\hat{k})+2=0$.
(ii) Show that the line :

$$
\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})
$$

lies in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$.

- Watch Video Solution

3. Find the value of ' m ' for which the line
$\vec{r}=(\hat{i}+2 \hat{k})+\lambda(2 \hat{i}-m \hat{j}-3 \hat{k})$ is parallel to the plane
$\vec{r} \cdot(m \hat{i}+3 \hat{j}+\hat{k})=4$.

- Watch Video Solution

4. Find the vector equationof the line passing through the point $(3,1,2)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k}=4$. Find also the point of intersection of this line and the plane.

D Watch Video Solution

5. Find the coordinates of the point where the line $\frac{\mathrm{x}+1 \backslash}{2}=\frac{\mathrm{y}+2}{3}=\frac{\mathrm{z}+3}{4}$ meets the plane $\mathrm{x}+\mathrm{y}+4 \mathrm{z}=6$.

- Watch Video Solution

6. (i) Find the angle between the line :

$$
(2 \hat{i}+3 \hat{j}+4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})
$$

and the plane : $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$.
(ii) Fiind the angle between the line joining ($3,-4,-2$) and ($12,2,0$) and the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=4$
7. (i) Find the angle between the line :
$\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 \mathrm{x}+12 \mathrm{y}-11 \mathrm{z}=3$
(ii) Find the angle between the line:
$\frac{x+1}{2}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z+4=0$.
(iii) Find the angle between the plane $2 x+4 y-z=8$ and line $\frac{x-1}{2}=\frac{2-y}{7}=\frac{3 z+6}{12}$
(iv) Find the angle between the line $\frac{x-1}{3}=\frac{3-y}{-1}=\frac{3 z+1}{6}$ and the plane $3 x-5 y+2 z=10$.

- Watch Video Solution

8. Find the distance of the points $(-1,-5,-10)$ form the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane $x-y+z=5$
9. (i) Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line
$\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.
(ii) Find the distance of the point with position vector
$-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.
(iii) Find the distance of the point $(2,12,5)$ from the point of intersection of the line.

$$
\vec{r}=2 \hat{i}-4 \hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})
$$

and the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$.

- Watch Video Solution

10. Find the distance between the point with position vector $\hat{i}-5 \hat{j}-10 \hat{k}$ and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ with the plane $x-y+z=5$.

- Watch Video Solution

11. Find the vector and cartesian equation of the line passing through the point $P(1,2,3)$ and parallel to the planes :
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \cdot \vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

(Watch Video Solution

12. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\rightarrow r \hat{i}+2 \hat{j}-5 \hat{k}+9=0$.
13. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

- Watch Video Solution

14. Find the equation of the plane through the points
$(1,0,-1),(3,2,2)$ and parallel to the line
$\frac{x-1}{1}=\frac{y-1}{-2}=\frac{z-2}{3}$.

- Watch Video Solution

15. Find the equation of the plane containing the line.:
$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-4}{-2}$
and the point $(0,6,0)$.
16. Find the equation of the plane which contains two parallel to lines $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$.

- Watch Video Solution

17. Find the vector and cartesian equations of the plane containing the lines :

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \text { and } \\
& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{j}+3 \hat{j}+8 \hat{k}) .
\end{aligned}
$$

- Watch Video Solution

18. Find the equation of the plane through the point $(1,1,1)$ and perpendicular to the plane :
$x-2 y+z=2,4 x+3 y-z+1=0$.

- Watch Video Solution

19. The line draw from points $(4,-1,2)$ to the points $(-3,2,3)$ meets and a palne at right angle at the points ($-10,5,4$), then the equation of plane is

- Watch Video Solution

20. (a) Find the length and the foot of the perpendicular from :
$P(1,1,2)$ to the plane $2 x-2 y+4 z+5=0$
(b) Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.

- Watch Video Solution

21. Find the co-ordinates of the foot of the perpendicular from the point $(2,3,7)$ to the plane $3 x-y-z=7$. Also find the length of the perpendicular.

- Watch Video Solution

Exercise 11 F Long Answer Type Questions li

1. Find the equation of the plane containing the line: $\frac{x-1}{3}=\frac{y+2}{1}=\frac{z-3}{2}$ and perpendicular to the plane $2 \mathrm{x}-\mathrm{y}$ $+2 z-3=0$.

- Watch Video Solution

2. show that the line whose vectors equation is
$\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel to the plane
whose vectors equation is $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$. Find also the distance between them.

- Watch Video Solution

3. State when the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n}=d$. Show that the line $\vec{r}=\hat{i}+\hat{j} \lambda(3 \hat{i}-\hat{j}+2 \hat{k})$ is parallel to the plane $\vec{r} \cdot(2 \hat{i}+\hat{k})=3$. Also, find the distance between the line and the plane.

- Watch Video Solution

4. Find the equations of the line through ($-1,3,2$) and perpendicular to the plane $x+2 y+2 z=3$, the length of the perpendicular and co-ordinates of its foot.
5. Find the vector equationof the line passing through the point $(3,1,2)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k}=4$. Find also the point of intersection of this line and the plane.

- Watch Video Solution

6. Find the vector equation of a line passing through the point with position vector $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-5 \hat{k})+2=0$. Also find the point of intersection of this line and the plane.

D Watch Video Solution

7. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2} \quad$ intersects the plane
$x-y+z-5=0$. Also find the angle between the line and the plane.

- Watch Video Solution

8. Find the length of the perpendicular from the point $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

- Watch Video Solution

9. Find the point, where the line joining the points $(1,3,4)$ and
$(-3,5,2)$ intersects the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})+3=0$.
Is the point equidistant from the given points?

- Watch Video Solution

10. Find the co-ordinates of the point where the line joining the points $(1,-2,3)$ and $(2,-1,5)$ cuts the plane $x-2 y+3 z=19$, Hence, find the distance of this point from the point $(5,4,1)$.

- Watch Video Solution

11. Find the equation fo the plane passing through the point $(1,1,1)$ and containing the line :

$$
\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}+5 \hat{k})
$$

Also, show that the plane contains the line :

$$
\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\lambda(\hat{i}-2 \hat{j}-5 \hat{k})
$$

- Watch Video Solution

12. Find the equation of the plane passing through the point A
$(1,2,1)$ and perpendicular to the line joining the points $P(1,4,2)$ and
$Q(2,3,5)$.
Also, Find also the perpendicular distance of the plane from te line
:
$\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-7}{-1}$.

- Watch Video Solution

13. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the coordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.

- Watch Video Solution

1. Distance between two planes:
$2 x+3 y+4 z=5$ and $4 x+6 y+8 z=12$ is :
A. 2 units
B. 4 units
C. 8 units
D. $\frac{1}{29}$ units.

Answer: D

- Watch Video Solution

2. The planes $2 x-y+4 z=3$ and $5 x-2.5 y+10 z=6$ are :
A. perpendicular
B. parallel
C. intersect along y-axis
D. passes through $\left(0,0, \frac{5}{4}\right)$.

Answer: B

- Watch Video Solution

3. The co-ordinates of the foot of the perpendicular drawn from the point $(2,5,7)$ on the x-axis are given by :
A. $(2,0,0)$
B. $(0,5,0)$
C. $(0,0,7)$
D. $(0,5,7)$

Answer: A

4. If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction-cosines of the line are :
A. $<\sin \alpha, \sin \beta, \sin \gamma>$
B. $\langle\cos \alpha, \cos \beta, \cos \gamma>$
C. $<\tan \alpha, \tan \beta, \tan \gamma>$
D. $<\cos ^{2} \alpha, \cos ^{2} \beta, \cos ^{2} \gamma>$.

Answer: B

- Watch Video Solution

5. The distance of the point $P(a, b, c)^{\prime}$ from the x-axis is
A. $\sqrt{a^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\sqrt{b^{2}+c^{2}}$
D. $b^{2}+c^{2}$

Answer: C

- Watch Video Solution

6. If the direction cosines of a line are k, k and k, then :
A. $k>0$
B. $0<k<1$
C. $k=1$
D. $k=\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$.

- Watch Video Solution

7. reflection of the point (α, β, γ) in the XY -plane is :
A. $(\alpha, \beta, 0)$
B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$.

Answer: D

8. What is the distance (in units) between the two planes $3 x+5 y+7 z=3$ and $9 x+15 y+21 z=9 ?$
A. 0
B. 3
C. $\frac{6}{\sqrt{83}}$
D. 6

Answer: A

- Watch Video Solution

9. the equation of the line in vector form passing through the point $(-1,3,5)$ and parallel to line $\frac{x-3}{2}=\frac{y-4}{3}, z=2$ is
A. $\vec{r}=(-\hat{i}+3 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+\hat{k})$

$$
\begin{aligned}
& \text { в. } \vec{r}=(-\hat{i}+3 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}) \\
& \text { С. } \vec{r}=(2 \hat{i}+3 \hat{j}-2 \hat{k})+\lambda(-\hat{i}+3 \hat{j}+5 \hat{k}) \\
& \text { д. } \vec{r}=(2 \hat{i}+3 \hat{j})+\lambda(-\hat{i}+3 \hat{j}+5 \hat{k})
\end{aligned}
$$

Answer: B

D Watch Video Solution

10. Direction-ratios of normal to plane which is parallel to the plane $3 x+y-z=11$ are,
A. $\langle 3,1,-1\rangle$
B. $\langle 0,1,1\rangle$
C. $<-3,1,-1,>$
D. $\langle 1,1,0\rangle$

(Watch Video Solution

11. The relation between direction-cosines I, m and n of a line is:
A. $l^{2}+m^{2}+n^{2}=1$
B. $l^{2}+m^{2}+n^{2}=-1$
C. $l^{2}+m^{2}+n^{2}=0$
D. $l^{2}+m^{2}=n^{2}$.

Answer: A

- Watch Video Solution

12. The direction cosines of x-axis are (A) 0,0,1 (B) 1,0,0 (C) 0,1,0 (D) 0,1,1
A. $\langle 1,0,0\rangle$
B. $\langle 0,1,0\rangle$
C. $\langle 0,0,1\rangle$
D. None of these.

Answer: A

- Watch Video Solution

13. What are the direction cosines of Z-axis?
A. $\langle 1,0,0\rangle$
B. $\langle 0,1,0\rangle$
C. $\langle 0,0,1\rangle$
D. None of these.

Answer: C

- Watch Video Solution

14. If the line $\vec{r}=(-2 \hat{i}+3 \hat{j}+4 \hat{k})+\lambda(-\hat{k} \hat{i}+2 \hat{j}+\hat{k})$ is parallel to the plane $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})+7=0$, then the value of k is :
A. 0
B. 1
C. -1
D. -2

Answer: B
15. Distance between plane $3 x+4 y-20=0$ and point $(0,0,7)$ is :
A. 4 units
B. 3 units
C. 2 units
D. 1 unit

Answer: A

(Watch Video Solution

16. If a line makes an angle of $\frac{\pi}{4}$ with each of Y and Z-axes, then the angle which it makes with X -axis is
A. $\frac{3 \pi}{2}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{2}$

Answer: C

- Watch Video Solution

17. If a line makes angles α, β, γ with the positive direction of coordinate axes, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.
A. -1
B. 2
C. 1
D. -2

Answer: B

18. If a line makes angles $\frac{\pi}{2}, \frac{3 \pi}{4}$ and $\frac{\pi}{4}$ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively, then direction cosines of this line are :
A. $\pm(1,1,1)$
B. $\pm\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $\pm\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
D. $\pm\left(0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Answer: D

- Watch Video Solution

19. If direction-cosines of two lines are proportional to $4,3,2$ and 1 , $-2,1$, then the angle between the lines is:

$$
\text { A. } 90^{\circ}
$$

B. 60°
C. 45°
D. None of these.

Answer: A

- Watch Video Solution

20. The direction consines of a line equally inclined with the coordinate axes are
A. $\langle 1,1,1\rangle$
B. $<\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}>$
C. $< \pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3}>$
D. $< \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}},>$

Watch Video Solution

21. The line $\frac{x-1}{2}=\frac{y-2}{4}=\frac{z-3}{4}$ meets the plane $2 x+3 y-z=14$ in the point
A. $(3,5,7($
B. $(5,7,3)$
C. $(6,5,3)$
D. $(2,5,7)$

Answer: A

D Watch Video Solution

22. Direction-ratios of line given by :
$\frac{x-1}{3}=\frac{2 y+6}{10}=\frac{1-z}{-7}$ are ,
A. $<3,10,-7>$
B. $<3,-5,7>$
C. $\langle 3,5,7>$
D. $<3,5,-7>$,

Answer: C

- Watch Video Solution

23. Find the distance of the plane $3 x 4 y+12 z=3$ from the origin.
A. $\frac{3}{13}$
B. $\frac{13}{3}$
C. -2
D. 3

D Watch Video Solution

24. Find the angle between the pair of lines

$$
\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4} \text { and } \frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2} .
$$

A. $\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)$
B. $\cos ^{-1}\left(\frac{5 \sqrt{7}}{15}\right)$
C. $\cos ^{-1}\left(\frac{15}{8 \sqrt{3}}\right)$
D. $\cos ^{-1}\left(\frac{3 \sqrt{8}}{15}\right)$

Answer: A
25.

$$
\frac{x-1}{-3}=\frac{x-2}{2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}
$$

are perpendicular to each other, then the value of k is,
A. $-\frac{1}{7}$
B. $-\frac{1}{10}$
C. $\frac{7}{10}$
D. $-\frac{10}{7}$

Answer: D

D Watch Video Solution

26. The direction-cosines of te vector $\vec{a}=\hat{i}-\hat{j}-2 \hat{k}$ are, A. $<1,-1,-2>$
B. $\left(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$
C. $\left(\frac{1}{4},-\frac{1}{4}, \frac{-2}{4}\right)$
D. $\left(\sqrt{\frac{1}{6}},-\sqrt{\frac{1}{6}},-\sqrt{\frac{2}{6}}\right)$.

Answer: B

- Watch Video Solution

27. The angle between the vector $\vec{r}=4 \hat{i}+8 \hat{j}+\hat{k}$ makes with the x-axis is :
A. $\cos ^{-1}\left(\frac{13}{9}\right)$
B. $\cos ^{-1}\left(\frac{13}{3}\right)$
C. $\cos ^{-1} \quad\left(\frac{\sqrt{13}}{4}\right)$
D. $\cos ^{-1}\left(\frac{4}{9}\right)$

- Watch Video Solution

28. The length of perpendicular from the origin to the plane :
$\vec{r} \cdot(3 \hat{i}-12 \hat{j}-4 \hat{k})+39=0$ is ,
A. 19
B. 3
C. 13
D. 12

Answer: B

29. The angle between the lines whose direction-ratios are :
$<2,1,2>$ and $<4,8,1\rangle$ is:
A. $\cos ^{-1}\left(\frac{3}{2}\right)$
B. $\cos ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{10}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{3}\right)$

Answer: B

- Watch Video Solution

30. Distance between the point $(0,1,7)$ and the plane $3 x+4 y+1=0$ is :
A. 1 unit
B. 2 units
C. 3 units
D. 4 units

Answer: A

- Watch Video Solution

Objective Type Questions B Fill In The Blanks

1. Direction-cosines of x-axis are,

- Watch Video Solution

2. Direction-cosines of y-axis are
3. Direction-cosines of z-axis are \qquad

- Watch Video Solution

4. If a line makess angle $90^{\circ}, 60^{\circ}$, and theta with x, y and z-axis respectively, then acute $\theta=$ \qquad

- Watch Video Solution

5. The direction-cosines of the vector $-2 \hat{i}+\hat{j}-5 \hat{k}$ are

- Watch Video Solution

6. The point $(1,2,7),(2,6,3),(3,10,-1)$ are \qquad

> 7. $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2} \operatorname{and} \frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are
at right angle, then the value of λ is

- Watch Video Solution

8. Write the sum of intercepts cut off by the plane $\vec{r}(2 \hat{i}+\hat{j}-\hat{k})-5=0$ on the three axis

- Watch Video Solution

9. If α, β, γ are direction angles of a line , then $\cos 2 \alpha, \cos 2 \beta+\cos 2 \gamma=$
10. The equation of the plane with intercepts, 2,5 and 4 on the x, y and z axis respectively is

- Watch Video Solution

Objective Type Questions C True False Questions

1. If α, β, γ are direction angles of a line , then $\cos 2 \alpha, \cos 2 \beta+\cos 2 \gamma=$

- Watch Video Solution

2. The direction-cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$ are
$<\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}>$
3. Find the distance of the plane $2 x-2 y+4 z=6$ from the origin.

- Watch Video Solution

4. angle between two planes :
$2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ is $\sin ^{-1}\left(\frac{4}{21}\right)$

- Watch Video Solution

5. The intercepts cut off by the plane $7 \mathrm{x}+\mathrm{y}-\mathrm{z}=5$ are $\frac{5}{7},-5,5$.

6. State Whether TRUE or FALSE:

Angle between the planes :

$$
\begin{aligned}
& \vec{r} \cdot(\hat{i}-2 \hat{j}-2 \hat{k})=1 \text { and } \vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=0 \\
& \cos ^{-1}\left(\frac{11}{21}\right)
\end{aligned}
$$

- Watch Video Solution

7. The point of interesection of the line $x=y=z$ with the plane $x+$ $2 y+3 z=6$ is $(1,1,-1)$.

- Watch Video Solution

Objective Type Questions D Very Short Answer Type Questions

1. If a line makes angles $900, \quad 135 o, \quad 45 o$ with the x, y and z axes respectively, find its direction cosines.

Watch Video Solution

2. If a line has direction-cosines $<\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}>$, then what are its direction-ratios?

- Watch Video Solution

3. Write the direction-cosines of the line joining the points ($1,0,0$) and $(0,1,1)$.

- Watch Video Solution

4. If α, β, γ be angles which a straighat line makes with the positive direction of the axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is equal to (A) 4 (B) 1 (C) 2 (D) 3
5. The ratio in which the line joining the points (a, b, c) and $(-a,-c,-b)$ is divided by the xy-plane is $a: b b$. $b: c \mathrm{c} . c: a \mathrm{~d} . c: b$

D Watch Video Solution

6. If a line makes angle 90° and 60° respectively with positively direction of x and y axes, find the angle which it makes with the positive direction of z-axis.

D Watch Video Solution

7. Find the direction-cosines of the line

$$
\frac{x-1}{2}=-y=\frac{z+1}{2}
$$

8. Write the vector equation of the line :

$$
\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2} .
$$

- Watch Video Solution

9. The cartesian equations of line is:
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$.
Write the vector equation.

- Watch Video Solution

10. Find the vector equation of the line which passes through the point $(3,4,5)$ and is parallel the vector $2 \hat{i}+2 \hat{j}-3 \hat{k}$.
11. Find the length of the perpendicular drawn from the point $P(3$,
$-4,5)$ on the z-axis.

- Watch Video Solution

12. The equation of a line given by $\frac{4-x}{3}=\frac{y+3}{3}=\frac{z+2}{6}$. Write the direction cosines of a line parallel to this line.

- Watch Video Solution

13. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel and line are (3,5, 6). So, the equation of line is,

$$
\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6}
$$

14. Find the acute angle between the plane:
$\vec{r} \cdot(\hat{i}-2 \hat{j}-2 \hat{k})=1$ and $\vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=0$ '

- Watch Video Solution

15. Write the equation of the plane passing through (a, b, c) and parallel to xy-plane

- Watch Video Solution

16. Write the intercept cut off by the plane $2 x+y-z=5$ on x axis.
17. Find the vector equation of a plane which is at a distance of 5 units from the origin and whose normal vector is $2 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

18. Find the vector equations of the plane whose cartesian form of equation is $5 x-7 x+2 z=3$.

- Watch Video Solution

19. Find the cartesian equation of the plane
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$.

D Watch Video Solution
20. What are the direction-cosines of the normal to the plane $3 x+$ $2 y-3 z=8 ?$

- Watch Video Solution

21. Find the direction-cosines of the perpendicular from the origin to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=18$.

- Watch Video Solution

22. Find the the distance of a point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$.

- Watch Video Solution

23. Find the value of ' k ' for which the plane :
$3 x-6 y-2 z=7$ and $2 x+y-k z=3$
are perpendicular to each other.

- Watch Video Solution

24. Write the vector equation fo the line passing through the point $(1,-2,-3)$ and normal to the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

25. Write the equation of a plane which is at a distance of $5 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes.

- Watch Video Solution

Ncert File Exercise 111

1. If a line makes angles $900, \quad 135 o, \quad 45 o$ with the x, y and z axes respectively, find its direction cosines.

- Watch Video Solution

2. Find the direction cosines of a line which makes equal angles with the coordinate axes.

- Watch Video Solution

3. If a line has direction ratios $-18,-12,-4$ then what are its direction cosines?
4. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

5. Find the direction cosines of the sides of the triangle whose vertices are ($3,5,-4$), ($-1,1,1$) and ($-5,-5,-2$).

- Watch Video Solution

Ncert File Exercise 112

1. Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.
2. Show that the line through the points $(1,-1,2)$ and $(3,4-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

3. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(1,2,1),(1,2,5)$.

- Watch Video Solution

4. The equation of a line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$, is
5. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

6. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel and line are ($3,5,6$). So, the equation of line is,

$$
\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6}
$$

- Watch Video Solution

7. The vector equationm of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ is
8. Find the vector and Cartesiasn equation of the line that passes through the origin and ($5,-2,3$).

- Watch Video Solution

9. Find the vector and the cartesian equations of the line that passes through the point $(3,-2,-5),(3,-2,6)$.

- Watch Video Solution

10. Find the angle between the following pairs of lines:

$$
\begin{aligned}
& \text { (i) } \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \text { and } \\
& \vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& \text { (ii) } \vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k}) .
\end{aligned}
$$

11. Find the angle between the following pair of lines,
(i) $\frac{x-2}{2}=\frac{y+3}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$.

(Watch Video Solution

$$
\begin{aligned}
& \text { 12. Find the values } p \text { so that line } \\
& \frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \operatorname{and} \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5} \text { are }
\end{aligned}
$$

at right angles.

- Watch Video Solution

13. Show that the lines $\frac{x+5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
14. Find the shortest distance betwee the lines:
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-h a k t+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$.

- Watch Video Solution

15. Find the shortest distance between the lines
$\frac{x+1}{7}=\frac{y+1}{-6}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$.

D Watch Video Solution

16. Find the shortest distance between the lines whose vector equations are :

$$
\begin{aligned}
\vec{r} & =(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
\vec{r} & =4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

- Watch Video Solution

17. Find the shortest distance between the following lines whose vector equations are: $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and

$$
\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
$$

- Watch Video Solution

Ncert File Exercise 113

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin .
a. $\mathrm{z}=2$
b. $x+y+z=1$
c. $2 x+3 y-z=5$
d. $5 y+8=0$

- Watch Video Solution

2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$

- Watch Video Solution

3. Find the Cartesian equation of the following planes:
a. $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
b. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
(c) $\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

- Watch Video Solution

4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.(a) $2 x+3 y+4 z 12=0$ (b)

$$
3 y+4 z 6=0 \text { (c) } x+y+z=1 \text { (d) } 5 y+8=0
$$

- Watch Video Solution

5. Find the vector and cartesian equations of the planes:
(a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
(b) that passes through the point $(1,4,6)$ and the normal vector of the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

6. Find the equations of the planes that passes through three points:
(a) $(1,1-1),(6,4,-5)(-4,-2,3)$
(b) $1,1,0),(1,2,1),(-2,2,-1)$.
7. Find the intercepts cut off by the plane $2 x+y z=5$.

- Watch Video Solution

8. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

- Watch Video Solution

9. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point (2,2,1).
10. Find the vector equation of the plane passing through the intersection of the planes

$$
\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r}(r) \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9
$$

and through the point $(2,1,3)$.

- Watch Video Solution

11. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

- Watch Video Solution

12. Find the angle between the planes whose vector equations are

$$
\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5 \text { and } \vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3 .
$$

13. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them :
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d) $2 x-y+4 z+5=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z=0$ and $y+z-4=0$

- Watch Video Solution

14. In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
(a) $(0,0,0) \quad 3 x-4 y+12 z=3$
(b) $(3,-2,1) \quad 2 x-y+2 z+3=0$
(c) $(2,3,-5) \quad x+2 y-2 z=9$
$(d)(-6,0,0) \quad 2 x-3 y+6 z-2=0$

- Watch Video Solution

Miscellaneous Exercise On Chapter 11

1. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

- Watch Video Solution

2. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.
3. Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

4. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

5. If the coordinates of the points
$A, B, C, D b e 91,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$
respectively then find the angle between $A B$ and $C D$.

- Watch Video Solution

6. $\begin{gathered}\text { The } \\ \frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-4}{2} \text { and } \frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}\end{gathered} \begin{aligned} & \text { may }\end{aligned}$ mat
be perpendicular is given by:

- Watch Video Solution

7. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\rightarrow r \hat{i}+2 \hat{j}-5 \hat{k}+9=0$.

- Watch Video Solution

8. Find the equation of the plane passing through (a, b, c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

9. Find the shortest distance between lines:

$$
\begin{aligned}
& \vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})
\end{aligned}
$$

D Watch Video Solution

10. Find the coordinates of the point where the line through (5,1 ,
$6)$ and (3, 4,1) crosses the YZ-plane.

- Watch Video Solution

Revision Exercise

1. If the direction cosines of a variable line in two adjacent points be l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle $\delta \theta$ as between the two positions is given by
2. Prove that the straight lines whose direction cosines are given by the relations $a l+b m+c n=0$ and $f m n+g n l+h l m=0$ are

Perpendicular to each other if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$, and parallel if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 b c g h-2 c a h f-2 a b f g=0$.

- Watch Video Solution

3. Prove that the line joining the mid-points of the two sides of a triangle is parallel to the third side.

- Watch Video Solution

4. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\rightarrow r \hat{i}+2 \hat{j}-5 \hat{k}+9=0$.

- Watch Video Solution

5. Prove that the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime} z=c^{\prime} y+a^{\prime}$ are perpendicular if aa' $+\mathrm{cc}^{\prime}+1=0$

- Watch Video Solution

6. Prove that the line joining the points $\overrightarrow{6 a}-\overrightarrow{4 b}+\overrightarrow{4 c}$ and $\overrightarrow{-4 c}$ and the line joining the points $\overrightarrow{-a}-\overrightarrow{2 b}-\overrightarrow{3 c}, \vec{a}+\overrightarrow{2 b}-\overrightarrow{5 c}$ intersect at $-\overrightarrow{4 c}$.

- Watch Video Solution

7. Find the vector equation o the line passing through $(1,2,3)$ and parallel to the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$

- Watch Video Solution

8. Find the vector equation of the line passing through the point $(1,2,4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

- Watch Video Solution

9. find the coordinates of point where the line through ($3,-4,-5$) and
$(2,-3,1)$ crosses the plane $2 x+y+z=7$.

- Watch Video Solution

10. Show that equation of the plane passing through a point having position vector \vec{a} and parallel to \vec{b} and \vec{c} is $\vec{r}=\vec{a}+\lambda \vec{b}+\mu \vec{c}$.

D Watch Video Solution

11. Find the distance of the point $(2,3,4)$ from the plane $3 x+2 y+2 z+5=0$ measured parallel to the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2}$.

- Watch Video Solution

12. Find the distance of the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})$ with the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.
13. Find the point R, Where the line joining $P(1,3,4)$ and $Q(-3,5,2)$ cuts the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$.
is $|\overrightarrow{P R}|=|\overrightarrow{Q R}|$?

- Watch Video Solution

14. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-Z=3,5 x-3 y+4 z+9=0$ and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

15. If from a point $P(a, b, c)$ perpendiculars $P A a n d P B$ are drawn to $Y Z a n d Z X-$ planes find the vectors equation of the plane

- Watch Video Solution

16. If O be the origin and the coordinates of P be $(1,2, \quad 3)$, then find the equation of the plane passing through P and perpendicular to OP.

- Watch Video Solution

17. Find the equation of the plane, which contains the line of intersection of the planes:

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \text { and } \vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})+5=0 \text { and }
$$

which is perpendicular to the plane :

$$
\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k}))+8=0
$$

18. Prove that the shortest distance between the diagonals of a rectangular parallelopiped whose coterminous sides are a, b, c and the edges not meeting it are

- Watch Video Solution

19. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the tehrahedron OABCisx $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

Check Your Understanding

1. Equation of XY -plane is

Watch Video Solution

2. If \vec{A} makes an angle α, β and γ from x, y and z axis respectively then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$

- Watch Video Solution

3. Write the direction-cosines of the vector
$\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

4. Write the vector equation of the following line:
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$
5. Find the equation of a st. line through ($-1,2,3$) and equally inclined to the axes.

- Watch Video Solution

6. Find the distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z=9$.

- Watch Video Solution

7. Find the distance of the plane $2 x-2 y+4 z=6$ from the origin.

- Watch Video Solution

8. Find the intercepts cut off by the plane $2 x+y z=5$.

Watch Video Solution

9. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

D Watch Video Solution

10. What is the point of intersection of the line $x=y=z$ with the plane $x+2 y+3 z=6$?

- Watch Video Solution

Competition File

1. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the YZ-plane at the point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$. Then,
A. $a=8, b=2$
B. $a=2, b=8$
C. $a=4, b=6$
D. $a=6, b=4$

Answer: D

(Watch Video Solution

2. $\begin{gathered}\text { If } \\ \text { the }\end{gathered} \begin{gathered}\text { straight } \\ k\end{gathered}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$
intersect at a point, then the integer k is equal to
A. -2
B. -5
C. 5
D. 2

Answer: B

- Watch Video Solution

3. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$. Then, (α, β) equals
A. $(-6,-17)$
B. $(5,-15)$
C. $(-5,5)$
D. $(6,-17)$

- Watch Video Solution

4. The projection of a vector on the three coordinate axes are
$6,-3,2$, respectively. The direction cosines of the vector are
A. $\frac{6}{5},-\frac{3}{5}, \frac{2}{5}$
B. $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
C. $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$
D. $6,-3,2$

Answer: B
5. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive x-axis and the positive y-axis respectively. If $A B$ makes an acute angle θ with the positive z-axis, then θ equals
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C

- Watch Video Solution

6. If the angle between the line $x=\frac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2 y+3 z=4 i s \cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{2}{5}$
D. $\frac{5}{3}$

Answer: A

- Watch Video Solution

7. The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is
A. $\sqrt{29}$
B. $\sqrt{33}$
C. $\sqrt{53}$
D. $\sqrt{65}$

Answer: C

- Watch Video Solution

8. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
A. $10 \sqrt{3}$
B. $5 \sqrt{3}$
C. $3 \sqrt{10}$
D. $3 \sqrt{5}$

Answer: A
9.
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect,
then k is equal to
A. -1
B. $\frac{2}{9}$
C. $\frac{9}{2}$
D. 0

Answer: C

- Watch Video Solution

10. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-3=0$
B. $x-2 y+2 z+1=0$
C. $x-2 y+2 z-1=0$
D. $x-2 y+2 z+5=0$

Answer: A

- Watch Video Solution

11.

The
lines
$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1} \quad$ are
coplanar, if
A. exactly one value
B. exactly two values
C. exactly three values
D. any value.

Answer: B

(Watch Video Solution

12.

Distance
between
two parallel
planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. $\frac{3}{2}$

Answer: B

13. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line
A. $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
B. $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
C. $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$
D. $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$

Answer: D

- Watch Video Solution

14. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

15. The disatance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$, is
A. $2 \sqrt{14}$
B. 8
C. $3 \sqrt{21}$
D. 13

Answer: D

- Watch Video Solution

16. The equation of the plane containing the line $2 x-5 y+z=3, x+y+4 z=5$ and parallel to the plane, $x+3 y+6 z=1$ is
A. $2 x+6 y+12 z=13$
B. $x+3 y+6 z=-7$
C. $x+3 y+6 z=7$
D. $2 x+6 y-12 z=-13$.

Answer: C
17. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the place, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to: (1) 26 (2) 18 (3) 5 (4) 2
A. 18
B. 5
C. 2
D. 26

Answer: C

- Watch Video Solution

18. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
A. $10 \sqrt{3}$
B. $\frac{10}{\sqrt{3}}$
C. $\frac{20}{3}$
D. $3 \sqrt{10}$

Answer: A

- Watch Video Solution

19. If the image of the point $P(1,-2,3)$ in the plane, $2 x+3 y-4 z+22=0$ mesured parallel to the line, $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ is Q , then PQ is equal to
A. $\sqrt{42}$
B. $6 \sqrt{5}$
C. $3 \sqrt{5}$
D. $2 \sqrt{42}$

Answer: D

D Watch Video Solution

20. The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines
$\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is
A. $\frac{5}{\sqrt{83}}$
B. $\frac{10}{\sqrt{74}}$
C. $\frac{20}{\sqrt{74}}$
D. $\frac{10}{\sqrt{83}}$

Answer: D

21. If L_{1} is the line of intersection of the planes $2 x-2 y+3 z-2=0, x-y+z+1=0$ and L_{2} is the line of the intersection of the planes $x+2 y-z-3=0$, $3 x-y+2 z-1=0$ then the distance of the origin from the plane containing the lines L_{1} and L_{2} is
A. $\frac{1}{4 \sqrt{2}}$
B. $\frac{1}{3 \sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $-\frac{1}{\sqrt{2}}$

Answer: B

(D) Watch Video Solution
22. The perpendicular distance from the origin to the plane containing the two lines, $\frac{x+2}{3}=\frac{y-2}{5}=\frac{z+5}{7}$ and $\frac{x-1}{1}=\frac{y-4}{4}=\frac{z+4}{7}$ is: (a) $11 \sqrt{6}$ (b) $\frac{11}{\sqrt{6}}$ (c) 11 (d) $6 \sqrt{11}$
A. $11 \sqrt{6}$
B. $6 \sqrt{11}$
C. 11
D. $\frac{11}{\sqrt{6}}$

Answer: D

- Watch Video Solution

23.

$P(1,2,1), Q(2,1,3), R(-1,1,2)$ and $O(0,0,0)$. The angle beween the faces $O P Q$ and $P Q R$ is :
A. $\cos ^{-1}\left(\frac{19}{35}\right)$
B. $\cos ^{-1}\left(\frac{9}{35}\right)$
C. $\cos ^{-1}\left(\frac{17}{31}\right)$
D. $\cos ^{-1}\left(\frac{7}{31}\right)$

Answer: A

- Watch Video Solution

24. A plane passes through the point $(0,-1,0)$ and $(0,0,1)$ and makes an angle of $\frac{\pi}{4}$ with the plane $y-z=0$ then the point which satisfies the desired plane is
A. $(\sqrt{2},-1,4)$
B. $(\sqrt{2}, 1,2)$
C. $(\sqrt{2}, 1,4)$
D. $(\sqrt{2}, 2,4)$

Answer: C

- Watch Video Solution

25. Consider a plane $x+2 y+3 z=15$ and a line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$ then find the distance of origin from point of intersection of line and plane.
A. $\frac{1}{2}$
B. $\frac{9}{2}$
C. $\frac{5}{2}$
D. 4

Answer: B

1. What is the distance (in units) between the two planes
$3 x+5 y+7 z=3$ and $9 x+15 y+21 z=9 ?$
A. 0
B. 3
C. $\frac{6}{83}$
D. 6

Answer: A

2. The angle between the lines whose direction- ratios are $<2,1,2\rangle$ and $<4,8,1\rangle$ is:
A. $\cos ^{-1}\left(\frac{3}{2}\right)$
B. $\cos ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{10}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{3}\right)$

Answer: B

D Watch Video Solution

3. If as line has direction ratios $2,-1,-2$, determine its direction cosines.
4. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

(D) Watch Video Solution

5. Using vectors, find the area of the $\triangle A B C$, whose vertices are $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$.

- Watch Video Solution

6. Find the equations of the straight line passing through point

$$
\begin{array}{ccc}
(2,3,-1) & \text { and } & \text { is } \\
\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-3}{-3} \text { and } \frac{x-3}{1}=\frac{y+2}{1}=\frac{z-1}{1}
\end{array}
$$

7. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

D Watch Video Solution

8. Find the equation of the plane passing through the point (1, 3 , 2) and perpendicular to each of the planes : $x+2 y+3 z=5$ and $3 x+3 y+z=0$

- Watch Video Solution

9. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
(b) Watch Video Solution
10. A line makes angles $\alpha, \beta, \gamma a n d \delta$ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

11. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

