©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (HINGLISH)

VECTOR ALGEBRA

Illustrative Examples

1. Classify the following measures as scalar and vector quantities :
(i) 40°
(ii) 50 watt
(iii) $10 \mathrm{gm} / \mathrm{cm}^{3}$
(iv) $20 \mathrm{~m} / \mathrm{sec}$ towards north
(v) 5 seconds.
2. In the figure, which of the vectors are :
(i) Collinear
(ii) Equal
(iii) Co - initial.

D Watch Video Solution

3. Prove that the resultant of the vectors represented by the sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$ of a triangle $A B C$ is $2 \overrightarrow{A D}$, where D is the mid - point of [BC].
4. Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

5. In the figure, M is the mid - point of [AB] and N is the mid - point of [CD] and O is the mid-point of [MN]. Prove that :
(i) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=\overrightarrow{0}$
(ii) $\overrightarrow{B C}+\overrightarrow{A D}=2 \overrightarrow{M N}$.

Watch Video Solution

6. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\overrightarrow{O B}+\vec{O} C+\overrightarrow{O D}=4 \vec{O} P$

- Watch Video Solution

7. (a) What is the geometric significance of the relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$?
(b) Prove geometrically that $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$.

- Watch Video Solution

8. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.
9. If D, E, F are the mid points of the side $B C, C A$ and $A B$ respectively of a triangle ABC , write the value of $\vec{A} D+\vec{B} E+\vec{C} F$.

- Watch Video Solution

10. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

- Watch Video Solution

11. Prove, by vector method, that the diagonals of a parallelogram bisect each other, conversely, if the diagonals of a quadrilateral bisect each other, it is a parallelogram.

- Watch Video Solution

12. Prove using vectors: The diagonals of a quadrilateral bisect each other iff it is a parallelogram.

- Watch Video Solution

13. Prove that the segment joining the middle points of two non-parallel sides of a trapezium is parallel to the parallel sides and half of their sum.

- Watch Video Solution

14. (Pythagorass Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

15. Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.

Watch Video Solution

16. Prove that the perpendicular let fall from the vertices of a triangle to the opposite sides are concurrent.

- Watch Video Solution

17. Prove that in any triangle ABC (i) $c^{2}=a^{2}+b^{2}-2 a b \cos C$ (ii) $c=b \cos A+a \cos B$

- Watch Video Solution

18. Show that the diagonals of a rhombus are perpendicular to each other
19. In a tetrahedraon, if two pairs of opposite edges are perpendicular to each other, prove that the third pair is also perpendicular and that the sum of the squares on the two opposite edges is same for each pair.

- View Text Solution

20.

For
any
A, B
in
R,
prove
that
$\cos (A-B)=\cos A \cos B+\sin A \sin B$

- Watch Video Solution

21. Find the moment (torque) about the point $\hat{i}+2 \hat{j}+3 \hat{k}$ of a force represented by $\hat{i}+\hat{j}+\hat{k}$ acting through the point $-2 \hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

22. Two unlike forces of equal magnitudes $3 \hat{i}+\hat{k}$ and $-3 \hat{i}-\hat{k}$ acting at the points $\hat{i}+2 \hat{j}-\hat{k}$ and $2 \hat{i}-\hat{j}+3 \hat{k}$ respectively. Find the moment of the coupie formed by the forces.

- Watch Video Solution

23. What is the magnitude of the moment of the couple consisting of the force $\vec{F}=3 \hat{i}+2 \hat{j}-\hat{k}$ acting through the point $\hat{i}-\hat{j}+\hat{k}$ and $-\vec{F}$ acting through the point $2 \hat{i}-3 \hat{j}-\hat{k}$?

- Watch Video Solution

24. Find the moment about a line through ($0,0,0$) having the direction $2 \hat{i}-2 \hat{j}+\hat{k}$ due to a 20 kg force acting at $(-4,2,5)$ in the direction of $12 \hat{i}-4 \hat{j}-3 \hat{k}$.

- View Text Solution

1. Find the position vector of a point which divides the join of points with position vectors $\vec{a}-2 \vec{b}$ and $2 \vec{a}+\vec{b}$ externally in the ration 2:1.

- Watch Video Solution

2. The two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represent the two sides $A B$ and $A C$, respectively of a ABC . Find the length of the median through A .

- Watch Video Solution

3. If $\vec{a}=4 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$, then find a unit vector parallel to the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

4. Find the vector joining the points $\mathrm{P}(2,3,0)$ and $Q(-1,-2,-4)$ directed from P to Q .

- Watch Video Solution

5. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

6. Find the unit vector in the direction of the sum of the vectors :

$$
\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} \text { and } \vec{b}=-\hat{i}+\hat{j}+3 \hat{k}
$$

- Watch Video Solution

7. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\rightarrow a=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\rightarrow b=\hat{i}-2 \hat{j}+\hat{k}$.
8. Prove that if $\vec{u}=u_{1} \hat{1} \hat{i}+u_{2} \hat{j}$ and $\vec{v}=v_{1} \hat{i}+v_{2} \hat{j}$ are non-zero vectors, then they are parallel if and only if $u_{1} v_{2}-u_{2} v_{1}=0$.

- Watch Video Solution

9. Find the value of ' p ' for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{j}+3 \hat{k}$ are parallel.

- Watch Video Solution

10. Show that the points, A, B and C having position vectors $(2 \hat{i}-\hat{j}+\hat{k}),(\hat{i}-3 \hat{j}-5 \hat{k})$ and $(3 \hat{i}-4 \hat{j}-4 \hat{k})$ respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

- Watch Video Solution

11. The position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively. Show that A, B and C are collinear.

Watch Video Solution

12. Prove that the four points having position vectors are coplanar:
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$

- Watch Video Solution

13. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

14. Find the magnitude of each of the two vectors \vec{a} and \vec{b} having the same magnitude such that the angle between them is 60° and their scalar product is $9 / 2$.

- Watch Video Solution

15. If \vec{a} and \vec{b} are perpendicular vectors such that $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$.

- Watch Video Solution

16. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

- Watch Video Solution

17. Find λ, when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

- Watch Video Solution

18. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

19. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \vec{x}+\vec{a}=15$

- Watch Video Solution

20. If $\bar{a}, \mathrm{~b}, \mathrm{c}$ are three vectors such that $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
21. If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{C}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

22. Three vectors $\vec{A}=2 \hat{i}-\hat{j}+\hat{k}, \vec{B}=\hat{i}-3 \hat{j}-5 \hat{k}$, and $\vec{C}=3 \hat{i}-4 \hat{j}-4 \hat{k}$ are sides of an :

- Watch Video Solution

23. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magniltgude, prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with vectors \vec{a}, \vec{b}, and \rightarrow also find the angle.

- Watch Video Solution

24. Find a vector \vec{a} of magnitude $5 \sqrt{2}$ making an angle $\frac{\pi}{4}$ with x-axis, $\frac{\pi}{2}$ with y -axis and an acute angle θ with z -axis

- Watch Video Solution

25. Let $\vec{A}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and is such that $\vec{d} . \operatorname{Vec}(c)=21$.

- Watch Video Solution

26. If with reference to a right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}$ we have $\vec{\alpha}=3 \hat{i}-\hat{j}$, and $\vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$. Express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

27. If vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}.

- Watch Video Solution

28. If ' θ ' is the angle between the vectors : $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$, find $\sin \theta$.

- Watch Video Solution

29. Find ' λ ' and ' μ ' if:
$(\hat{i}+3 \hat{j}+9 \hat{k}) \times(3 \hat{i}-\lambda \hat{j}+\mu \hat{k})=\hat{0}$.
A. $\lambda=-9$ and $\mu=27$
B. $\lambda=9$ and $\mu=27$
C. $\lambda=-3$ and $\mu=27$
D. $\lambda=-9$ and $\mu=-27$

- Watch Video Solution

30. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$
A. $5 \hat{i}+2 \hat{j}+2 \hat{k}$
B. $\frac{1}{3}(5 \hat{i}+2 \hat{j}+2 \hat{k})$
C. $\frac{1}{5}(5 \hat{i}+2 \hat{j}+2 \hat{k})$
D. $\frac{1}{3}(4 \hat{i}+2 \hat{j}+2 \hat{k})$

Answer: B

D Watch Video Solution

31. If $\vec{r}=x \hat{i}+y \hat{j}+x \hat{k}$, find : $(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y$.
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

32.

$\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $(\vec{a}-\vec{d})$ is , it being given that $a \neq d$ and $b \neq c$.

- Watch Video Solution

33. Find a vector of magnitude 7 units, which is perpendicular to two vectors:
$2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$.

Watch Video Solution

34. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.
A. $15 \sqrt{5}$ sq. units
B. $2 \sqrt{2}$ sq. units
C. $12 \sqrt{2}$ sq. units
D. $15 \sqrt{2}$ sq. units

Answer: D

- Watch Video Solution

35. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.
36. Find the area of a triangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices.

- Watch Video Solution

37. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=5 \hat{i}+\hat{j}-\hat{k}$ represent sides of parallelogram, then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

- Watch Video Solution

38. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vecrtices A, B, C of a
$\triangle A B C$ respectively, find an expression for the area of $\triangle A B C$ and hence deduce the condition for the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to be collinear.

- Watch Video Solution

39.

$(\vec{a} \times \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$.

- View Text Solution

40. Show that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\vec{c}$. Illustrate geometrically.

- Watch Video Solution

Questions From Ncert Exemplar Example

1. Find a vector of magnitude 11 in the direction opposite to that of $\overrightarrow{P Q}$, where P and Q are the points $(1,3,2)$ and $(-1,0,8)$ respectively.

- Watch Video Solution

2. Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis respectively.

- Watch Video Solution

3. Find all vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane of $\hat{i}+2 \hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+4 \hat{k}$.

- Watch Video Solution

Exercise 10 A Short Answer Type Questions

1. Represent the following graphically a displacement of :
(i) $40 \mathrm{~km}, 30^{\circ}$ west of south
(ii) $40 \mathrm{~km}, 30^{\circ}$ east of south
(iii) $40 \mathrm{~km}, 30^{\circ}$ west of north.
2. Classify the following measures as scalars and vectors. (i) 10 kg (ii) 2 meters north-west (iii) $40 o$ (iv) 40 watt (v) 1019 coulomb (vi) $\mathrm{m} / \mathrm{s}^{2}$

- Watch Video Solution

3. Classify the following as scalars and vector: 40°

- Watch Video Solution

4. Classify the following measures as scalars and vectors
(i) 20 m north-west
(ii) 10 newton
(iii) $30 \mathrm{~km} / \mathrm{h}$
(iv) $50 \mathrm{~m} / \mathrm{s}$ towards north
(v) 10^{-19} coloumb
5. Classify the following measures as scalars and vectors. (i) 10 kg (ii) 2 meters north-west (iii) 40 o (iv) 40 watt (v) 1019 coulomb (vi) $\mathrm{m} / \mathrm{s}^{2}$

- Watch Video Solution

6. Classify the following as scalars and vector: 10^{-19} Coulomb

- Watch Video Solution

7. Classify the following measures as scalars and vectors :
$20 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

8. Classify the following measures as scalars and vector: $1000 \mathrm{~cm}^{3}$
9. Classify the following measures as scalars and vector: 10 Newton

(Watch Video Solution

10. Classify the following measures as scalars and vectors:
$30 \mathrm{~km} / \mathrm{h}$.

- Watch Video Solution

11. Classify the following as scalar and vector quantities. (i) time period (ii) distance (iii) force (iv) velocity (v) work done

- Watch Video Solution

12. Classify the following as scalar and vector quantity: distance

- Watch Video Solution

13. Classify the following as scalar and vector quantity: force

- Watch Video Solution

14. Classify the following as scalar and vector quantities : velocity

- Watch Video Solution

15. Classify the following as scalar and vector quantity: work

- Watch Video Solution

16. In the figure, identify the following vectors :
(i) Co - initial
(ii) Equal
(iii) Collinear but not equal.

- Watch Video Solution

17. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girls displacement from her initial point of departure.
A. $\sqrt{23}$
B. $\sqrt{3}$
C. $\sqrt{13}$
D. $\sqrt{15}$

Answer: C

- Watch Video Solution

18. Answer the following as true or false.(i) $\rightarrow a$ and $-\rightarrow a$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.(iii) Two vectors having same magnitude are collinear.(iv) Two collinear vectors having the same magni

- Watch Video Solution

19. Answer the following as true or false: Two colliner vectors are always equal in magnitude.

- Watch Video Solution

20. Answer the following as true or false: Two vectors having same magnitude are collinear

Watch Video Solution

21. Answer the following as true or false: Two collinear vectors having the same magnitude are equal

- Watch Video Solution

Exercise 10 B Short Answer Type Questions

1. Give a condition that three vectors \vec{a}, \vec{b} and \vec{c} from the three sides of a triangle. What are the other possibilities?

- Watch Video Solution

2. If $D E$ and F be the mid ponts of the sides $B C, C A$ and $A B$ respectively of the $\triangle A B C$ and O be any point, then prove that $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}$
3. $A B C D E$ is a pentagon prove that $\operatorname{vec}(A B+$ (vec(BC)+vec(CD)+vec(DE)+vec(EA)=vecO`

- Watch Video Solution

4. $A B C D$ is a parallelogram and $A C, B D$ are its diagonals. Show that :
$\overrightarrow{A C}+\overrightarrow{B D}=2 \overrightarrow{B C}, \overrightarrow{A C}-\overrightarrow{B D}=2 \overrightarrow{A B}$.

- Watch Video Solution

5. ABCDEF is a regular hexagon. Show that :
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}=\overrightarrow{0}$

- Watch Video Solution

6. In a regular hexagon $A B C D E F$, prove that $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+e c(A E)+\overrightarrow{A F}=3 \overrightarrow{A D}$

Watch Video Solution

7. In Fig. ABCDEF is a regular hexagon. Prove that
$\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=6 \overrightarrow{A O}$.

- Watch Video Solution

8. Prove that $|\vec{a}|-|\vec{b}| \leq|\vec{a}-\vec{b}|$.

- Watch Video Solution

9. If $\vec{a}+5 \vec{b}=\vec{c}$ and $\vec{a}-7 \vec{b}=2 \vec{c}$, then show that \vec{a} has the same direction as that of \vec{c} and opposite direction to that of \vec{b}.

- Watch Video Solution

1. Find the magnitude of the vector:
$\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

- View Text Solution

2. Find the magnitude of the vector:
$\hat{i}-3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

3. Find the values of ' x ' for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

4. Find the unit vector in the direction of vector $\vec{a}=\hat{i} 9+\hat{j}+2 \hat{k}$.

- Watch Video Solution

5. Find the unit vector in the direction of the vector :
$\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$

- Watch Video Solution

6. Find the unit vector in the direction of the vector :
$\vec{a}=3 \hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

7. Find the unit vector in the direction of the vector :
$\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$
8. Find the unit vector in the direction of the vector :
$\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$

- Watch Video Solution

9. Find the unit vector in the direction of the vector :
$\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$.

- Watch Video Solution

10. Find the unit vector in the direction of vector $\rightarrow P Q$, where P and Q are the points $(1,2,3)$ and ($4,5,6$), respectively.

- Watch Video Solution

11. Find x and y for which the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal
12. Find the values of x, y and z so that the vectors $\rightarrow a=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\rightarrow b=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

13. Show that the direction cosines of a vector equally inclined to the axes
$O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

- Watch Video Solution

14. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes.

- Watch Video Solution

15. For given vectors, $\rightarrow a=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\rightarrow b=-\hat{i}+\hat{j}-\hat{k}$ find the unit vector in the direction of the vector $\rightarrow a+\rightarrow b$.

- Watch Video Solution

16. A and B are two points with position vectors $2 \vec{a}-3 \vec{b}$ and $6 \vec{b}-\vec{a}$ respectively. Write the position vector of a point, which divides the line segment $A B$ internally in the ratio $1: 2$.

- Watch Video Solution

17. P and Q are two points with position vectors $3 \vec{a}-2 \vec{b}$ and $\vec{a}+\vec{b}$ respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.

- Watch Video Solution

18. X and Y are two points with position vectors $3 \vec{a}+\vec{b}$ and $\vec{a}-3 \vec{b}$ respectively. Write the position vector of a point Z, which divides the line segment XY in the ratio $2: 1$ externally.

- Watch Video Solution

19. Find the position vector of the mid-point of the vector joining point $P(2,3,4)$ and $Q(4,1,-2)$

- Watch Video Solution

20. Find the position vector of the mid point of the ne segment $A B$, where A is the point $(3,4,-2)$ and B is the point $(1,24)$.

- Watch Video Solution

21. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

Watch Video Solution

22. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude of 6 units.

- Watch Video Solution

23. Find a vector in the direction of:
$\vec{a}=\hat{i}-2 \hat{j}+2 \hat{k}$, which has magnitude 15 units

- Watch Video Solution

24. Find a vector in the direction of:
$\vec{a}=-2 \hat{i}+\hat{j}+2 \hat{k}$, which has magnitude 9 units.
25. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$

- Watch Video Solution

26. If $|\vec{a}|=3$, what is :
$|5 \vec{a}|$

- Watch Video Solution

27. If $|\vec{a}|=3$, what is:
$|-2 \vec{a}|$

- Watch Video Solution

28. If $|\vec{a}|=3$, what is :
$|0 \vec{a}|$?

- Watch Video Solution

29. If $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$, find $|\vec{a}-2 \vec{b}|$.

- Watch Video Solution

30. Let \vec{a} be a given vector whose initial point is $P\left(x_{1}, y_{1}\right)$ and terminal point is $Q\left(x_{2}, y_{2}\right)$. Find the magnitude and components of the vector along x and y directions : $P(2,3), Q(4,6)$.

- Watch Video Solution

31. In the following, find the components of the vector $\overrightarrow{P Q}$ along x and y directions whose magnitude is M, and makes an angle θ with the x - axis :
$M=15, \theta=30^{\circ}$.

- Watch Video Solution

32. If the position vectors of the points A and B are : $7 \hat{i}+3 \hat{j}-\hat{k}$ and $2 \hat{i}-5 \hat{j}+4 \hat{k}$ respectively, find the magnitude and direction - cosines of the vector $\overrightarrow{A B}$.

- Watch Video Solution

33. Find the position vector of the centroid of the $\triangle A B C$ when the position vectors of its vertices are $A(1,3,0), B(2,1,1)$ and $C(0,-1,0)$

- Watch Video Solution

34. Show that the vectors $\vec{a}=2 \hat{i}+3 \hat{j}$ and $\vec{b}=4 \hat{i}+6 \hat{j}$ are parallel.
35. Find a unit vector in the direction of $(\vec{a}+\vec{b})$, where : $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

36. If $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=6 \hat{i}+2 \hat{j}+3 \hat{k}$, find a unit vector parallel to $\vec{a}+\vec{b}$.

- Watch Video Solution

37. Find the unit vector in the direction of $\vec{a}-\vec{b}$, where:
$\vec{a}=\hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}$.

- Watch Video Solution

38. If $\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\rightarrow c=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \rightarrow a-\rightarrow b+3 \rightarrow c$.

Watch Video Solution

39. (a) Find the condition that the vectors $\vec{a}=k \hat{i}+l \hat{j}$ and $\vec{b}=l \hat{i}+k \hat{j}(k, l \neq 0)$ are parallel.
(b) Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

Exercise 10 C Long Answer Type Questions I

1. Find the position of R , which divides the line joining $P(3 \vec{a}-2 \vec{b})$ and $Q(\vec{a}+\vec{b})$ in the ratio $2: 1$
internally and
2. Find the position of R , which divides the line joining $P(3 \vec{a}-2 \vec{b})$ and $Q(\vec{a}+\vec{b})$ in the ratio 2:1 externally.

- Watch Video Solution

3. Find the position vector of R , which divides the line joining two points $P(2 \vec{a}+\vec{b})$ and $Q(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$. Also show that P is the middle point of the segment RQ .

- Watch Video Solution

4. Show that the following points are collinear :

$$
A(-2,1), B(-5,-1), C(1,3)
$$

5. Show that the following points are collinear :
$A(1,2,7), B(2,6,3), C(3,10,-1)$

- Watch Video Solution

6. Prove that the points $A(2,0,-3), B(1,-2,-5)$ and $C(3,2,-1)$ are collinear.

- Watch Video Solution

7. If $\vec{a}=-2 \hat{i}+3 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$ are position vectors of three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, prove that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.

Watch Video Solution

8. Show that the following vectors are coplanar :
$\hat{i}-\hat{j}+\hat{k}, 6 \hat{i}-\hat{k}$ and $4 \hat{i}+2 \hat{j}-3 \hat{k}$
9. Show that the following vectors are coplanar :
$3 \hat{i}-2 \hat{j}+4 \hat{k}, 6 \hat{i}+3 \hat{j}+2 \hat{k}, 5 \hat{i}+7 \hat{j}+3 \hat{k}$ and $2 \hat{i}+2 \hat{j}+5 \hat{k}$.

- Watch Video Solution

10. Show that the points $A(3,-2,1), B(1,-3,5), C(2,1,-4)$ do not form a right - angled triangle.

- Watch Video Solution

11. The three vector $\vec{A}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{B}=\hat{i}-3 \hat{j}+5 \hat{k} \quad$ and $\vec{C}=2 \hat{i}+\hat{j}-4 \hat{k}$ form

- Watch Video Solution

12. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \overrightarrow{ }$

- Watch Video Solution

Exercise 10 C Long Answer Type Questions li

1. Show that the four points $A, B, \operatorname{Cand} D$ with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if and only if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$.

- Watch Video Solution

2. Show that the four points P, Q, R, S with position vectors $\vec{p}, \vec{q}, \vec{r}, \vec{s}$ respectively such that $5 \vec{p}-2 \vec{q}+6 \vec{r}-9 \vec{s}=\overrightarrow{0}$, are
coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

- Watch Video Solution

3. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$.

- Watch Video Solution

Exercise 10 D Long Answer Type Questions I

1. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively, are position vectors representing the vertices A, B, C, D of a parallelogram, then write \vec{d} in terms of \vec{a}, \vec{b} and \vec{c}.
2. If G is the centroid of a triangle $A B C$, prove that $\vec{G} A+\vec{G} B+\vec{G} C=\overrightarrow{0}$.

- Watch Video Solution

3. If G is the centroid of a triangle $A B C$, prove that $\vec{G} A+\vec{G} B+\vec{G} C=\overrightarrow{0}$.

- Watch Video Solution

4. $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of the four distinct points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D respectively. If $\vec{b}-\vec{a}=\vec{c}-\vec{d}$, then show that ABCD is a parallelogram.
5. Show that the line joining any vertex of a parallelogram to the mid point of an opposite side divides the opposite diagonal in the ratio $2: 1$.

- Watch Video Solution

6. Prove that the quadrilateral formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

- Watch Video Solution

Exercise 10 D Long Answer Type Questions Ii

1. Show that if P, A, B are any three points, then $\lambda \overrightarrow{P A}+\mu \overrightarrow{P B}=(\lambda+\mu) \overrightarrow{P C}$, where C divides $[\mathrm{AB}]$ in the ratio $\mu: \lambda$.

- Watch Video Solution

1. Find the angle between the vectors:
$\vec{a}=\hat{i}+\hat{j}-\hat{k} \quad$ and $\quad \vec{b}=\hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

2. Find the angle between the vectors:
$\vec{a}=3 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{b}=\vec{i}-2 \vec{j}-3 \vec{k}$

- Watch Video Solution

3. Find the angle between the vectors:

$$
\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} \quad \text { and } \quad \vec{b}=6 \hat{i}+2 \hat{j}+3 \hat{k}
$$

- Watch Video Solution

4. What is the cosine of the angle which the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ makes with $y-a \xi s ?$

Watch Video Solution

5. Find the angle between two vectors \vec{a} and \vec{b} such that:
$|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$.

- Watch Video Solution

6. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

- Watch Video Solution

7. Find the magnitude of two vectors $\rightarrow a$ and \rightarrow bhaving the same magnitude and such that the angle between them is 60 oand their scalar product is $\frac{1}{2}$.

- Watch Video Solution

8. If $\vec{a} \vec{a}=0$ and $\vec{a} \vec{b}=0$, what can you conclude about the vector \vec{b} ?

- Watch Video Solution

9. If either vector $\rightarrow a=\rightarrow 0$ or $\rightarrow b=\rightarrow 0$, then $\rightarrow a \rightarrow b=0$ But the converse need not be true. Justify your answer with an example.

- Watch Video Solution

10. Find the scalar projection of :
$\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$

- Watch Video Solution

11. Find the scalar projection of:
$\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}$ on $\vec{b}=\hat{i}-2 \hat{j}-3 \hat{k}$
12. Find the scalar projection of:
$\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$

- Watch Video Solution

13. Find the scalar projection of:
$\vec{a}=\hat{i}-\hat{j}$ on $\vec{b}=\hat{i}+\hat{j}$

- Watch Video Solution

14. Find the scalar projection of :
$\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ on $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$.
15. Find the scalar projection of \vec{b} on \vec{a}, when:
$\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}-4 \hat{k}$

- Watch Video Solution

16. Find the scalar projection of \vec{b} on \vec{a}, when :
$\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

- Watch Video Solution

17. Find the vector projection of the vector:
$7 \hat{i}+\hat{j}-\hat{k}$ on $2 \hat{i}+6 \hat{j}+3 \hat{k}$

- Watch Video Solution

18. Find the vector projection of the vector:
$2 \hat{i}-\hat{j}+\hat{k}$ on $\hat{i}-2 \hat{j}+\hat{k}$.
19. Find λ, when the projection of
$\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

- Watch Video Solution

are mutually perpendicular unit vectors.

- Watch Video Solution

21. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular.

- Watch Video Solution

22. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$, then show that $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.

- Watch Video Solution

23. Write the value of ' p ' for which : $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel.

- Watch Video Solution

24. Find the value of ' λ ' such that the vectors \vec{a} and \vec{b} are perpendicular (orthogonal), where :

$$
\vec{a}=7 \hat{i}-\lambda \hat{j}-7 \hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}-\hat{k}
$$

- Watch Video Solution

25. Find the value of ' λ ' such that the vectors \vec{a} and \vec{b} are perpendicular (orthogonal), where :
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

26. If $2 \hat{i}+\hat{j}-3 \hat{k}$ and $m \hat{i}+3 \hat{j}-\hat{k}$ are perpendicular to each other, then find ' m '. Also find the area of the rectangle having these two vectors as sides.

- Watch Video Solution

27. Show that the projection of \vec{b} on $\vec{a} \neq \overrightarrow{0}$ is:
$\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \vec{a}$.

- Watch Video Solution

28. Show that $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non - zero vectors \vec{a} and \vec{b}.

Exercise 10 E Long Answer Type Questions I

1. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where
$\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

2. If vectors $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ

- Watch Video Solution

3. If $\vec{a}=\hat{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{j}-\hat{j}+\lambda \hat{k}$, then find the value of λ, so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular vectors.
4. If $\vec{p}=5 \hat{i}+\lambda \hat{j}-3 \hat{k}$ and $\vec{q}=\hat{i}+3 \hat{j}-5 \hat{k}$, then find the value of λ such that $\vec{p}+\vec{q}$ and $\vec{p}-\vec{q}$ are perpendicular vectors.

- Watch Video Solution

5. If $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}-\lambda \hat{k}$, find the value of λ for which $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are orthogonal.

(Watch Video Solution

6. If $\vec{a}=3 \hat{i}+\hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$, then find the value of ' λ^{\prime} for which the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.

- Watch Video Solution

7. Find the scalar product of the following pairs of vectors and the angle between them :
$2 \hat{i}-3 \hat{j}+6 \hat{k} \quad$ and $\quad 2 \hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

8. Find the scalar product of the following pairs of vectors and the angle between them :
$\hat{i}+3 \hat{j}-8 \hat{k} \quad$ and $\quad-3 \hat{i}-5 \hat{j}+4 \hat{k}$.

- Watch Video Solution

9. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right angled triangle.

- Watch Video Solution

10. The position vectors of the vertices of $\triangle A B C$ are : $3 \hat{i}-4 \hat{j}-4 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}-3 \hat{j}-5 \hat{k}$ respectively.
(a) Find $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$
(b) Prove that $\triangle A B C$ is a right - angles triangle.

- Watch Video Solution

11. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular.

- Watch Video Solution

12. If \vec{a} and \vec{b} are perpendicular vectors, show that: $(\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2}$.

- Watch Video Solution

13. Prove that $(\rightarrow a+\rightarrow b) \rightarrow a \dot{+} \rightarrow c|\rightarrow a|^{2}+|\rightarrow b|^{2}$, if and only if $\rightarrow a, \rightarrow b$ are perpendicular, given $\rightarrow a \neq \rightarrow 0, \rightarrow b \neq \rightarrow 0$

- Watch Video Solution

14. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \dot{\vec{b}}+\vec{b} \dot{\vec{c}}+\rightarrow \vec{a}$.

- Watch Video Solution

15. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$

- Watch Video Solution

16. If the vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $\quad|\vec{a}|=3,|\vec{b}|=4 \quad$ and $\quad|\vec{c}|=5$, then show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-25$.

- Watch Video Solution

17. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along sum of the thers
$\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to 1 . Find the value of λ and hence find the unit vector along $\vec{b}+\overrightarrow{ }$

- Watch Video Solution

18. Let $\rightarrow a, \rightarrow b$ and $\rightarrow c$ be three vectors such that $|\rightarrow a|=3,|\rightarrow b|=4,|\rightarrow c|=5$ and each one of them being perpendicular to the sum of the other two, find $|\rightarrow a+\rightarrow b+\rightarrow c|$.
19. If $|a|=a$ and $|\vec{b}|=b$, prove that $\left(\frac{\vec{a}}{\vec{a}^{2}}-\frac{\vec{b}}{b^{2}}\right)^{2}=\left(\frac{\vec{a}-\vec{b}}{a b}\right)^{2}$.

- Watch Video Solution

20. If $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}, \vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$ and $|\vec{c}|=3$, find the vector \vec{c}, which is perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

21. Let $\quad \rightarrow a=\hat{i}+4 \hat{j}+2 \hat{k}, \rightarrow b=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and $\rightarrow c=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\rightarrow d$ which is perpendicular to both $\rightarrow a$ and $\rightarrow b$ and $\rightarrow c . \rightarrow d=15$.

- Watch Video Solution

22. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \quad \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$.

- Watch Video Solution

23. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \quad \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$.

- Watch Video Solution

24. Vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ are given.

Find vector \vec{d} if \vec{d} is perpendicular to \vec{c} and $\vec{d} \cdot \vec{a}=6, \vec{d} \cdot \vec{b}=11$.

- Watch Video Solution

25. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=3 \hat{j}-\hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and $\vec{d}=1$.

- Watch Video Solution

Exercise 10 E Long Answer Type Questions li

1. Consider $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be any three points.
(a) Find the projection of $\overrightarrow{B C}$ on $\overrightarrow{A B}$.
(b) Find the area of triangle ABC.

- Watch Video Solution

2. Dot products of a vector with vectors $3 \hat{i}-5 \hat{k}, 2 \hat{i}+7 \hat{j}$ and $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ are respectively $-1,6$ and 5 . Find the vector.

- Watch Video Solution

3. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\rightarrow A B$ and $\rightarrow C D$. Deduce that $\rightarrow A B$ and $\rightarrow C D$
4. If $\vec{a}=2 \hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}=7 \hat{i}+2 \hat{j}-3 \hat{k}$, then express \vec{b} in the form $\vec{b}=\vec{b}_{1}+\vec{b}_{2}$, where \vec{b}_{1} is parallel to \vec{a} and \vec{b}_{2} is perpendicular to \vec{a}.

- Watch Video Solution

Exercise 10 F Short Answer Type Questions

1. What is the area of the triangle $O A B$ where O is the origin, $\overrightarrow{O A}=3 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{O B}=2 \hat{i}-\hat{j}+3 \hat{k}$?

- Watch Video Solution

2. Prove that
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$
3. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$.

- Watch Video Solution

4. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular unit vectors and $\vec{a} \times \vec{b}=\vec{c}$, show that $\vec{b}=\vec{c} \times \vec{a}$ and $\vec{a}=\vec{b} \times \vec{c}$.

- Watch Video Solution

5. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$

- Watch Video Solution

6. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, show that $\vec{a}+\vec{c}=\overrightarrow{m b}$, m being a scalar.

- Watch Video Solution

7. Prove that $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
$=\left|\begin{array}{ccc}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}\end{array}\right|$.

(Watch Video Solution

8. Adjacent sides of a parallelogram are given by vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+5 \hat{j}+\hat{k}$. Find a unit vector in the direction of its diagonal. Also, find the area of parallelogram.

- Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of non - collinear points A, B and C respectively, show that : $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is perpendicular to the plane $A B C$.
10. (a) Prove that the normal to the plane containing three points whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ lie in the direction of $\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}$.
(b) Find the unit vector perpendicular to the plane $A B C$, where the position vectors of A, B and C are $: 2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{k}$ respectively.

- Watch Video Solution

11. Using the formula of $\sin (A-B)=\sin A \cos B-\cos A \sin B$ find the value of $\sin 15^{\circ}$

- Watch Video Solution

Exercise 10 I Short Answer Type Questions

1. Find the moment about $(1,-1,-1)$ of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at $(1,0,-2)$.

- Watch Video Solution

2. The force respresented by $3 \hat{i}+2 \hat{k}$ is acting through the point $5 \hat{i}+4 \hat{j}-3 \hat{k}$. Find the moment about the point $\hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

3. Find the moment about the point $\hat{i}+2 \hat{j}-\hat{k}$ of a force represented by $\hat{i}+2 \hat{j}+\hat{k}$ acting through the point $2 \hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

Exercise 10 I Long Answer Type Questions I

1. A force $\vec{F}=4 \hat{i}+\hat{k}$ acts through point $\mathrm{A}(0,2,0)$. Find the moment \vec{m} of \vec{F} about the point B $(4,0,4)$.

- Watch Video Solution

2. Let $\vec{F}=2 \hat{i}+4 \hat{j}+3 \hat{k}$ at the point P with position vector $\hat{i}-\hat{j}+3 \hat{k}$. Find the moment of \vec{F} about the line through the origin O in the direction of the vector $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

3. A force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is applied at the point $(1,-1,2)$. Find the moment of \vec{F} about the point $(2,-1,3)$.

- Watch Video Solution

4. Two unlike force of equal magnitudes $\hat{j}+2 \hat{k}$ and $-\hat{j}-2 \hat{k}$ are acting at the points whose position vectors are given by $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$ respectively. Find the moment of the couple formed by these forces.

- Watch Video Solution

5. A force of 3 units acts through the point $(4,-1,7)$ in the direction of the vector $9 \hat{i}+6 \hat{j}-2 \hat{k}$. Find the moment of the force about the point $(1,-3,2)$ and the moment about the axes, parallel to the co - ordinate axes, which pass through $(1,-3,2)$.

- Watch Video Solution

6. Find the moment about the point $(3,4,5)$ of the force through the point $(1,2,-3)$ having components equal to $-2,3,-4$. What is the moment of the same force about the line through the origin having direction-ratios $<4,-2,5>$?

- Watch Video Solution

7. Find the moment of the couple formed by the forces $5 \hat{i}+\hat{k}$ and $-5 \hat{i}-\hat{k}$ acting at the points $(9,-1,2)$ and $(3,-2,1)$ respectively.

- Watch Video Solution

8. Find the vector moment of the forces:
$\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $-\hat{i}-\hat{j}+\hat{k}$
acting on a particle at a point $\mathrm{P}(0,1,2)$ about the point $A(1,-2,0)$.

- Watch Video Solution

Exercise 10 J Short Answer Type Questions

1. Find $\vec{a} \cdot(\vec{b} \times \vec{c})$ if:
$\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.
2. Show that if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar, then $\vec{a}, \vec{b}, \vec{c}$ are also coplanar.

Watch Video Solution

3. If $\vec{a}=7 \hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}, \vec{c}=2 \hat{i}+8 \hat{j}$, then find $\vec{a} \cdot(\vec{b} \times \vec{c})$ and $(\vec{b} \times \vec{c}) \cdot \vec{a}$.

- Watch Video Solution

4. Show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar, when
(i) $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$
(ii) $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=7 \hat{j}+3 \hat{k}$
(iii) $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=3 \hat{i}-4 \hat{j}+7 \hat{k}$

- Watch Video Solution

5. Show that the following vectors are coplanar :
$-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}-2 \hat{k}, 4 \hat{i}-2 \hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

6. For what value of ' λ ' are the following vectors coplanar ?
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{j}+3 \hat{k}$

- Watch Video Solution

7. For what value of ' λ ' are the following vectors coplanar ?

$$
\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+\hat{j}+2 \hat{k} \text { and } \vec{c}=\hat{i}+\lambda \hat{j}-3 \hat{k}
$$

- Watch Video Solution

8. For what value of ' λ ' are the following vectors coplanar ?

$$
\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+\hat{k} \text { and } \vec{c}=3 \hat{i}+2 \hat{j}-5 \hat{k}
$$

9. For what value of ' λ ' are the following vectors coplanar ?
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$.

- Watch Video Solution

10. Show that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k} \quad$ and $\quad 4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar.

- Watch Video Solution

11. Show that the four points with position vectors $4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.
12. Find λ for which the points $A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

- Watch Video Solution

13. Find the value of ' x ' for which the four points : $A(x,-1,-1), B(4,5,1), C(3,9,4)$ and $D(-4,4,4)$ are coplanar.

- Watch Video Solution

14. Find the value of ' x ' such that four points with position vectors : $A(3 \hat{i}-2 \hat{j}+\hat{k}), B(4 \hat{i}+x \hat{j}+5 \hat{k}), C(4 \hat{i}+2 \hat{j}-2 \hat{k}) \quad$ and $D(6 \hat{i}+5 \hat{j}-\hat{k})$ are coplanar.

- Watch Video Solution

15. Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}+5 \hat{j}+10 \hat{k}$ are not coplanar.

Watch Video Solution

16. Find the volume of the parallelopiped whose sides are given by the vectors :
(i) $11 \hat{i}, 2 \hat{j}, 13 \hat{k}$
(ii) $3 \hat{i}+4 \hat{j}, 2 \hat{i}+3 \hat{j}+4 \hat{k}, 5 \hat{k}$.

- Watch Video Solution

17. Find the volume of the parallelopiped with coteminous edges $A B, A C$ and \quad AD, \quad where $\quad A \equiv(3,2,1), B \equiv(4,2,1), C \equiv(0,1,4) \quad$ and $D \equiv(0,0,7)$.

- Watch Video Solution

1. Prove that for any two vectors \vec{a} and $\vec{b}, \vec{a} \cdot(\vec{a} \times \vec{b})=0$. Is $\vec{b} \cdot(\vec{a} \times \vec{b})=0 ?$

- Watch Video Solution

2. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular, show that $[\vec{a} \cdot(\vec{b} \times \vec{c})]^{2}=a^{2} b^{2} c^{2}$

- Watch Video Solution

3. What can you conclude about four non - zero vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d}, given that : $[(\vec{a} \times \vec{b}) \cdot \vec{c}]+[(\vec{b} \times \vec{c}) \cdot \vec{d}]=0$?

- Watch Video Solution

4. Simplify $(\vec{b}+\vec{c}) \cdot\{(\vec{c}+\vec{a}) \times(\vec{a}+\vec{b})\}$

- Watch Video Solution

5. Prove that :
$(\vec{b}+\vec{c}) \cdot\{(\vec{c}+\vec{a}) \times(\vec{a}+\vec{b})\}=2[\vec{a} \vec{b} \vec{c}]$.

- Watch Video Solution

6. Prove that :
$\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})\} \cdot(\vec{a}+\vec{b})=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

7. Prove that :
$\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\} \cdot(\vec{a}-\vec{b})=0$.
8. For three non-zero vectors \vec{a}, \vec{b} and \vec{c}, prove that $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$

- Watch Video Solution

9. For any three coplanar vectors $\vec{a}, \vec{b}, \vec{c}$, show that $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are coplanar.

- Watch Video Solution

10. If

$$
\vec{a} \cdot \vec{b} \times \vec{c} \neq 0
$$

and
$\overrightarrow{a^{\prime}}=\frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{b^{\prime}}=\frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{c^{\prime}}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, show that :
$\vec{a} \cdot \overrightarrow{a^{\prime}}+\vec{b} \cdot \overrightarrow{b^{\prime}}+\vec{c} \cdot \overrightarrow{c^{\prime}}=3$

- Watch Video Solution

$\overrightarrow{a^{\prime}}=\frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{b^{\prime}}=\frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{c^{\prime}}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, show that :
$\overrightarrow{a^{\prime}} \cdot\left(\overrightarrow{b^{\prime}} \times \overrightarrow{c^{\prime}}\right)=\frac{1}{\vec{a} \cdot(\vec{b} \times \vec{c})}$

- Watch Video Solution

12. If

$$
\vec{a} \cdot \vec{b} \times \vec{c} \neq 0
$$

and
$\overrightarrow{a^{\prime}}=\frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{b^{\prime}}=\frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \overrightarrow{c^{\prime}}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, show that :
$\vec{a} \cdot \overrightarrow{a^{\prime}}+\vec{b} \cdot \overrightarrow{b^{\prime}}+\vec{c} \cdot \overrightarrow{c^{\prime}}=3$.

- Watch Video Solution

Exercise 10 J Long Answer Type Questions li

1. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then prove that:

$$
\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \text { and hence, show that }[\vec{a} \vec{b} \vec{c}]=0
$$

Objective Type Questions A Multiple Choice Questions

1. In $\Delta A B C$, which of the following is not true?

A. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
B. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
c. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
D. $\overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

Answer: C

D Watch Video Solution

2. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect :
A. $\vec{b}=\lambda \vec{a}$ for some scalar λ.
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional
D. both the vectors \vec{a} and \vec{b} have the same direction, but different magnitude.

Answer: D

D Watch Video Solution

3. If \vec{a} is a non zero vector a magnitude ' a^{\prime} and λ is a non a zero scalar, then $\lambda \vec{a}$ is a unit vector if
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=\frac{1}{|\lambda|}$

Answer: D

- Watch Video Solution

4. Let λ be any non - zero scalar. Then for what possible values of x, y and z given below, the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $x \hat{i}-y \hat{j}-z \hat{k}$ are perpendicular:
A. $x=2 \lambda, y=\lambda, z=\lambda$
B. $x=\lambda, y=2 \lambda, z=-\lambda$
C. $x=-\lambda, y=2 \lambda, z=\lambda$
D. $x=-\lambda, y=-2 \lambda, z=\lambda$

Answer: C

- Watch Video Solution

5. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\rightarrow a \times \rightarrow b$ is a unit vector, if the angle between \vec{a} and \vec{b}
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

6. Area of a rectangle having vertices :
$A\left(-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right), \quad B\left(\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right)$,
$C\left(\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right), \quad D\left(-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right)$ is :
A. $\frac{1}{2}$ square unit
B. 1 square unit
C. 2 square units
D. 4 square units

Answer: C

- Watch Video Solution

7. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \vec{b} \geq 0$ only when
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0<\theta \leq \pi$

Answer: B

- Watch Video Solution

8. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if :
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

Answer: D

9. Write the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$.
A. 0
B. -1
C. 1
D. 3

Answer: D

Watch Video Solution
10. If is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: B

D Watch Video Solution

11. The area of the triangle whose adjacent sides are : $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$ is :
A. $\frac{1}{2} \sqrt{42}$
B. 42
C. $\sqrt{42}$
D. $\sqrt{21}$

Answer: A

D Watch Video Solution

12. The magnitude of the vector $6 \hat{i}+2 \hat{j}+3 \hat{k}$ is:
A. 5
B. 7
C. 12
D. 1

Answer: B

- Watch Video Solution

13. The vector with initial point $P(2,-3,5)$ and terminal point $Q(3,-4,7)$ is :
A. $\hat{i}-\hat{j}+2 \hat{k}$
B. $5 \hat{i}-7 \hat{j}+12 \hat{k}$
C. $-\hat{i}+\hat{j}-2 \hat{k}$
D. None of these
14. The angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $-\frac{\pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: B

- Watch Video Solution

15. The value of ' λ ' for which the two vectors : $2 \hat{i}-\hat{j}+2 \hat{k}$ and $3 \hat{i}+\lambda \hat{j}+\hat{k}$ are perpendicular is :
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

16. If $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+p \hat{j}+q \hat{k})=\overrightarrow{0}$, then the values of p and q are ?
A. $p=6, q=27$
B. $p=3, q=\frac{27}{2}$
C. $p=6, q=\frac{27}{2}$
D. $p=3, q=27$

Answer: B

17. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$, then $|\vec{a}|$ is :
A. $\sqrt{15}$
B. $\sqrt{14}$
C. 14
D. 15

Answer: B
18. Write the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$.
A. 0
B. -1
C. 1
D. 3

- Watch Video Solution

19. For mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}$, we have :
A. $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=3$
B. $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} . \hat{k}=1$
C. $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} . \hat{k}=-1$
D. $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=0$

Answer: B

Watch Video Solution
20. Direction - ratios of vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ are :
A. $<1,2,2>$
B. $\langle 1,1,-2\rangle$
c. $<\frac{2}{\sqrt{16}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}>$
D. $<\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}>$

Answer: B

- Watch Video Solution

21. If $\vec{a}=\hat{i}+2 \hat{j}$, then $|\vec{a}|$ is:
A. 3
B. -1
C. 5
D. $\sqrt{5}$

Answer: D

22. Direction-cosines of $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ are :
A. $<\frac{1}{6}, \frac{1}{6}, \frac{-2}{6}>$
B. $<\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}>$
C. $\langle\sqrt{6}, \sqrt{6},-\sqrt{6}>$
D. $\left\langle\sqrt{6}, \sqrt{6}, \frac{-\sqrt{6}}{2}>\right.$

Answer: B

- Watch Video Solution

23. If $p \hat{i}+3 \hat{j}$ is a vector of magnitude 5 , then the value of p is:
A. 0
B. 1
C. ± 3
D. ± 4

Answer: D

- Watch Video Solution

24. If is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to
A. 0°
B. 45°
C. 30°
D. 60°

Answer: B

Watch Video Solution

25. The inequality $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ is called :
A. Cauchy - Schwartz
B. Triangle Inequality
C. Rolle's Theorem
D. Lagrange's Mean Value Theorem

Answer: A

D Watch Video Solution

26. The vectors \vec{a} and \vec{b} are perpendicular if:
A. $\vec{a} \cdot \vec{b}=0$
B. $\vec{a} \cdot \vec{b} \neq 0$
C. $\vec{a} \times \vec{b}=\overrightarrow{0}$
D. $\vec{a} \times \vec{b} \neq \overrightarrow{0}$

Answer: A

27. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.
A. 3
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

28. Find $|\vec{a}-\vec{b}|, \quad$ if $:|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \vec{b}=4$
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\sqrt{5}$
D. $\sqrt{7}$

Answer: C

- Watch Video Solution

29. The angle between the vectors:
$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}-\hat{j}+2 \hat{k}$ is :
A. $\cos ^{-1}\left(\frac{5}{14}\right)$
B. $\cos ^{-1}\left(\frac{9}{14}\right)$
C. $\cos ^{-1}\left(-\frac{5}{14}\right)$
D. None of these

Answer: C

30. The D.C.'s of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$ are :
A. $\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{3}{\sqrt{6}}$
B. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
C. $1,2,3$
D. None of these

Answer: B

31. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}$, then its magnitude is:
A. 17
B. $\sqrt{17}$
C. 34
D. None of these

Answer: B

- Watch Video Solution

32. If \vec{a} and \vec{b} are unlike vectors, then the angle between them is:
A. 0
B. $\frac{\pi}{2}$
C. $-\pi$
D. π

Answer: D

33. The angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}+\hat{k}$ is :
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

34. If $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$, then angle between vector \vec{a} and vector \vec{b} is :
A. $\frac{\pi}{2}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

35. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$
A. $\frac{60}{\sqrt{114}}$
B. $\frac{60}{114}$
C. $\frac{66}{\sqrt{114}}$
D. None of the above

Answer: A

36. If the angle between two vectors \vec{a} and \vec{b} is zero, then:
A. $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$
B. $\vec{a} \cdot \vec{b}=0$
c. $|\vec{a}||\vec{b}|=1$
D. None of the above

- Watch Video Solution

37. The projection of vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ is:
A. $\frac{\sqrt{5}}{6}$
B. $\frac{2}{3} \sqrt{6}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{5}{3} \sqrt{6}$

Answer: D

- Watch Video Solution

38. If the vectors $5 \hat{i}+2 \hat{j}-\hat{k}$ and $\lambda \hat{i}-\hat{j}+5 \hat{k}$ are orthogonal vectors, then the value of λ is:
A. $\frac{3}{5}$
B. $\frac{5}{7}$
C. $\frac{7}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

39. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b}
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$
40. Which of the following is true?
A. $\hat{i} . \hat{j}=\hat{j} . \hat{k}=\hat{k} . \hat{i}=0$
B. $\hat{i} . \hat{i}=\hat{j} . \hat{j}=\hat{k} . \hat{k}=0$
C. $\hat{i}^{2}+\hat{j}^{2}+\hat{k}^{2}=0$
D. None of these

Answer: A

- Watch Video Solution

Objective Type Questions B Fill In The Blanks

1. The magnitude of projection of $(2 \hat{i}-\hat{j}+\hat{k})$ on $(\hat{i}-2 \hat{j}+2 \hat{k})$ is
2. Vector of magnitude 5 units and in the direction opposite to $2 \hat{i}+3 \hat{j}-6 \hat{k}$ is \qquad .

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. Find } \\
& \vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \vec{c}=\hat{i}-6 \hat{j}-7 \hat{k} \text {. }
\end{aligned}
$$

- Watch Video Solution

4. The value of 'a' when the vectors :
$2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+b \hat{j}-8 \hat{k}$ are collinear is \qquad .

- Watch Video Solution

5. If $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$, then $|\vec{a}|=$
6. The direction - ratios of the vector $\vec{a}=6 \hat{i}-3 \hat{j}+2 \hat{k}$ are \qquad .

- Watch Video Solution

7. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

8. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$

- Watch Video Solution

9. If \vec{p} is a unit vector and $(\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})=80$, then $|\vec{x}|=$
10. Angle between $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is \qquad .

- Watch Video Solution

11. Find the value of:
(i) $(\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}$ (ii) $(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}$
$\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$

- Watch Video Solution

12. $(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}=\ldots$.

- Watch Video Solution

13. $(\hat{k} \times \hat{i}) \cdot \hat{j}+\hat{i} \cdot \hat{k}$
14. Find λ if $(2 \hat{i}+6 \hat{j}+14 \hat{k}) x(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$

- Watch Video Solution

15. The magnitude of $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ is
\qquad .

- Watch Video Solution

16. If any two of three vectors $\vec{a}, \vec{b}, \vec{c}$ are parallel, then $[\vec{a} \vec{b} \vec{c}]=$
\qquad .

- Watch Video Solution

17. The value of ' λ ' such that the vectors:
$3 \hat{i}+\lambda \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are coplanar is

Objective Type Questions C True False Questions

1. If $\vec{a}=-\vec{b}$, then $|\vec{a}|=|\vec{b}|$.

- Watch Video Solution

2. If $|\vec{a}|=|\vec{b}|$, then $\vec{a}=\vec{b}$.

- Watch Video Solution

3. Show that If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then $x+y+z=0$.
4. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$.
(i) Then, $|\vec{a}|=|\vec{b}|$
(ii) Then vectors \vec{a} and \vec{b} are equal.

- Watch Video Solution

5. If $\vec{a}=\vec{b}+\vec{c}$, then $|\vec{a}|=|\vec{b}+\vec{c}|$.

- Watch Video Solution

6. Two vectors \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \cdot \vec{b}=0$.

- Watch Video Solution

7. The value of $\vec{a} \times \vec{b}$ if $\vec{a}=\hat{i}-7 \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ is $19 \hat{i}+19 \hat{k}$.
8. If $\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}$, then check whether $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$.

- Watch Video Solution

9. $[\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{a}]=[\vec{c} \vec{a} \vec{a} \vec{b}]$.

- Watch Video Solution

10. Prove that $\hat{i} .(\hat{j} \times \hat{k})=1$.

- Watch Video Solution

Objective Type Questions D Very Short Answers Type Questions

1. Find the sum of the vectors : $\vec{a}=\hat{i}-2 \hat{j}, \vec{b}=-2 \hat{i}-3 \hat{j}$ and $\vec{c}=2 \hat{i}+3 \hat{k}$.

- Watch Video Solution

2. Write a unit vector in the direction of $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

- Watch Video Solution

3. Write a unit vector in the direction of the sum of the vectors : $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

4. If vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k} \quad$ and
$\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$, then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.
5. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}+9 \hat{k}$ find a unit vector parallel to $\vec{a}+\vec{b}$.

- Watch Video Solution

6. For what value of 'a' the vectors:
$2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear ?

Watch Video Solution

7. Write a unit vector in the direction of $\vec{P} Q$, where P and Q are the points $(1,3,0)$ and $(4,5,6)$ respectively.

- Watch Video Solution

8. In a triangle OAC , if B is the mid point of side AC and $\vec{O} A=\vec{a}, \vec{O} B=\vec{b}$, then what is $\vec{O} C$?

Watch Video Solution

9. Find the position vector of the point, which divides the join of points with position vectors $3 \vec{a}-2 \vec{b}$ and $2 \vec{a}+3 \vec{b}$ in the ratio $2: 1$.

- Watch Video Solution

10. If $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

11. Obtain the dot product of the vectors :
$\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{k}$.

- Watch Video Solution

12. Write the magnitude of the vector \vec{a} in terms of dot product.

- Watch Video Solution

13. Let $\vec{a}=(2 \hat{i}+3 \hat{j}+2 \hat{k})$ and $\vec{b}=(\hat{i}+2 \hat{j}+\hat{k})$.

Find the projection of (i) \vec{a} on \vec{b} and (ii) \vec{b} on \vec{a}.

- Watch Video Solution

14. Evaluate : $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

15. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$
16. Find the angle between $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

17. Find the angle between \vec{a} and \vec{b} such that: $|\vec{a}|=\sqrt{2},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$.

- Watch Video Solution

18. The position vectors of three vectors A, B and C are given to be $\hat{i}+3 \hat{j}+3 \hat{k}, 4 \hat{i}+4 \hat{k}$ and $-2 \hat{i}+4 \hat{j}+2 \hat{k}$ respectively. Find the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

- Watch Video Solution

19. Find ' λ ' when the vectors: $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ are perpendicular to each other.
20. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=3$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$.

- Watch Video Solution

21. Find the magnitude of each of the two vectors \vec{a} and \vec{b} having the same magnitude such that the angle between them is 60° and their scalar product is $9 / 2$.

- Watch Video Solution

22. Find λ if $(2 \hat{i}+6 \hat{j}+14 \hat{k}) x(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$

- Watch Video Solution

23. Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of the vectors $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

24. If $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$, find $[\vec{a} \vec{b} \vec{c}]$.

- Watch Video Solution

25. Find the value of ' λ ' such that the vectors : $3 \hat{i}+\lambda \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are coplanar.

- Watch Video Solution

Ncert File Question From Ncert Book Exercise 101

1. Respresent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

- Watch Video Solution

2. Classify the following measures as scalars and vectors. (i) 10 kg (ii) 2 meters north-west (iii) $40 o$ (iv) 40 watt (v) 1019 coulomb (vi) $\mathrm{m} / \mathrm{s}^{2}$

- Watch Video Solution

3. Classify the following as scalar and vector quantities. (i) time period (ii) distance (iii) force (iv) velocity (v) work done
4. In the Fig., identify the following vectors:

(i) Coinitial
(ii) Equal
(iii) Collinear but not equal

- Watch Video Solution

5. Answer the following as true or flase: \vec{a} and \vec{b} are collinear. Two collinear vectors are always equal in magnitude. Zero vector is unique. Two vectors having same magnitude are collinear. Two collinear vectors having the same magnitude are equal.
6. Compute the magnitude of the following vectors: $\rightarrow a=\hat{i}+\hat{j}+\hat{k}$;
$\rightarrow b=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \rightarrow c=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

- Watch Video Solution

2. Write two different vectors having same magnitude.

(Watch Video Solution

3. Write two different vectors having same direction.

- Watch Video Solution

4. Find the values of ' x ' and ' y ' so that vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

5. Find the scalar and vector components of the vector with initial point $A(2,1)$ and terminal point $B(-5,7)$.

- Watch Video Solution

6. Find the sum of the vectors
$\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$, and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.

- Watch Video Solution

7. Find the unit vector in the direction of the vector $\vec{a}=\hat{i} 9+\hat{j}+2 \hat{k}$.
8. Find the unit vector in the direction of vector $\rightarrow P Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

- Watch Video Solution

9. For given vectors, $\rightarrow a=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\rightarrow b=-\hat{i}+\hat{j}-\hat{k}$ find the unit vector in the direction of the vector $\rightarrow a+\rightarrow b$.

- Watch Video Solution

10. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

11. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.
12. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

13. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$ directed from A to B.

- Watch Video Solution

14. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX , OY and OZ .

- Watch Video Solution

15. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$
respectively, in the ratio 2 : 1(i) internally (ii) externally

- Watch Video Solution

16. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.

- Watch Video Solution

17. Show that the points A, B and C with position vectos $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ represent, form the vertices of a right angled triangle.

- Watch Video Solution

18. In triangle $A B C$, which of the following is not true:

A. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
B. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
c. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
D. $\overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

Answer: C

19. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect :
A. $\vec{b}=\lambda \vec{a}$ for some scalar λ.
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional
D. both the vectors \vec{a} and \vec{b} have the same direction, but different magnitude.

Answer: D

- Watch Video Solution

Ncert File Question From Ncert Book Exercise 103

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ nd 2 respectively such that $\vec{a} \cdot \vec{b}=\sqrt{6}$
2. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k} a n d 3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

3. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

4. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

5. Show that each of the given three vectors is a unit vector: $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ Also, show that they are mutually perpendicular to each other.
6. find $|\vec{a}|,|\vec{b}|$ if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

7. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

8. Find the magnitude of two vectors \vec{a} and \vec{b} having the same magnitude and such that the angle between them is 60° and their scalar product is .

- Watch Video Solution

9. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.
10. If vectors $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

- Watch Video Solution

11. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ for any two nonzero vectors \vec{a} and \vec{b}

- Watch Video Solution

12. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b} ?

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ find the value of $\vec{a} \vec{b}+\vec{b} \dot{\vec{c}}+\vec{a}$.

- Watch Video Solution

14. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ then $\vec{a} \vec{b}=\overrightarrow{0}$ but, the converse need not be true. Justify your answer with an example.

- Watch Video Solution

15. If the vertices A, B, C of a triangle $A B C$ are ($1,2,3$),(-1,0,0),(0,1,2), respectively, then find $\angle A B C$.

- Watch Video Solution

16. Show that the points $\mathrm{A}(1,2,7), \mathrm{B}(2,6,3)$ and $C(3,10,1)$ are collinear.
17. Show that the points, A, B and C having position vectors $(2 \hat{i}-\hat{j}+\hat{k}),(\hat{i}-3 \hat{j}-5 \hat{k})$ and $(3 \hat{i}-4 \hat{j}-4 \hat{k})$ respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

- Watch Video Solution

18. If \vec{a} is a non zero vector a magnitude ' a^{\prime} and λ is a non a zero scalar, then $\lambda \vec{a}$ is a unit vector if $\lambda=1 \mathrm{~b} . \lambda=-1$ c. $a-|\lambda|$ d. $a=\frac{1}{|\lambda|}$
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=1 /|\lambda|$

Answer: D

Ncert File Question From Ncert Book Exercise 104

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k} a n d \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

2. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

3. If a unit vector \vec{a} makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \vec{a}.

- Watch Video Solution

4. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

(Watch Video Solution

5. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\hat{0}$.

- Watch Video Solution

6. Given that $\rightarrow a \longrightarrow b=0$ and $\rightarrow a \times \rightarrow b=\rightarrow 0$. What can you conclude about the vectors $\rightarrow a$ and $\rightarrow b$.

- Watch Video Solution

7. Let the vectors $\rightarrow a, \rightarrow b, \rightarrow c$ be given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then show that $\rightarrow a \times(\rightarrow b+\rightarrow c)=\rightarrow a \times \rightarrow b+\rightarrow a \times \rightarrow c$
8. If either $\rightarrow a=\rightarrow 0$ and $\rightarrow b=\rightarrow 0$ then $\rightarrow a \times \rightarrow b=\rightarrow 0$. Is Is the converse true? Justify your answer with an example.

- Watch Video Solution

9. Using vectors, find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3$, 5) and C (1, 5, 5).

- Watch Video Solution

10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

12. What is the area of the rectangle having vertices A, B, C and D with positive vectors $-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{1}-\frac{1}{2} \hat{j}+4 \hat{k} ?$
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

Ncert File Question From Ncert Book Exercise 105

1. Find $[\vec{a} \vec{b} \vec{c}]$ if $\vec{a}=\vec{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k} \quad$ and

$$
\vec{c}=3 \hat{i}+\hat{j}-2 \hat{k} .
$$

- Watch Video Solution

2. Show that the vectors:
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

3. Find ' λ ' if the vectors:
$\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}-3 \hat{k}$ are coplanar.

Watch Video Solution

4. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\hat{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then, If $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar. If $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

5. Show that the four points with position vectors $4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.
6. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,2)$ and $D(6,5,1)$ are coplanar

- Watch Video Solution

7. Show that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

Miscellaneous Exercise On Chapter 10

1. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

- Watch Video Solution

2. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$

- Watch Video Solution

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30 o east of north and stops. Determine the girls displacement from her initial point of departure.

- Watch Video Solution

4. If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer.

- Watch Video Solution

5. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.
6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\rightarrow a=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\rightarrow b=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

7. If $\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\rightarrow c=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \rightarrow a-\rightarrow b+3 \rightarrow c$.

- Watch Video Solution

8. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and ($\vec{a}-3 \vec{b}$) respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment $R Q$.

- Watch Video Solution

10. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

- Watch Video Solution

11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

- Watch Video Solution

12. Let $\quad \rightarrow a=\hat{i}+4 \hat{j}+2 \hat{k}, \rightarrow b=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and $\rightarrow c=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\rightarrow d$ which is perpendicular to both $\rightarrow a$ and $\rightarrow b$ and $\rightarrow c . \rightarrow d=15$.

- Watch Video Solution

13. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpenedicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b}, and $\overrightarrow{.}$

- Watch Video Solution

15. Prove that $(\rightarrow a+\rightarrow b) \rightarrow a \dot{+} \rightarrow c|\rightarrow a|^{2}+|\rightarrow b|^{2}$, if and only if $\rightarrow a, \rightarrow b$ are perpendicular, given $\rightarrow a \neq \rightarrow 0, \rightarrow b \neq \rightarrow 0$

Watch Video Solution

16. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \vec{b} \geq 0$ only when ${ }^{`} 0$
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0<\theta \leq \pi$

Answer: B

- Watch Video Solution

17. If \vec{a} and \vec{b} be two unit vectors and θ is the angle between them.

Then $\vec{a}+\vec{b}$ is an unit vector, if $\theta=\frac{\pi}{2}$ b. $\frac{2 \pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

18. Write the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$.
A. 0
B. -1
C. 1
D. 3

Answer: C

- Watch Video Solution

19. If is the angle between any two vectors $\rightarrow a$ and $\rightarrow b$, then $|\rightarrow a \xrightarrow{\dot{C}} b|=|\rightarrow a \times \rightarrow b|$ when θ is equal to (a) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (d) π
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: B

1. Using vectors, find the value of k, such that the points ($k,-10,3$), ($1,-1,3$) and $(3,5,3)$ are collinear.

- Watch Video Solution

2. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the points with position vectors : $\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ respectively. Find the projection of $\overrightarrow{A B}$ along CD.

- Watch Video Solution

3. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

- Watch Video Solution

1. Write all the unit vectors in $X Y$ - plane.

- Watch Video Solution

2. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

- Watch Video Solution

3. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\rightarrow a=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\rightarrow b=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

4. If $\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\rightarrow c=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \rightarrow a-\rightarrow b+3 \rightarrow c$.

- Watch Video Solution

5. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-\hat{k}, \vec{c}=-2 \hat{i}+\hat{j}-3 \hat{k} \quad$ and $\vec{d}=3 \hat{i}+2 \hat{j}+5 \hat{k}$, find the scalars α, β and γ such that $\vec{d}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$.

- Watch Video Solution

6. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

7. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

- Watch Video Solution

8. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpenedicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b}, and $\overrightarrow{ }$

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors such that $\vec{a} \cdot \vec{a}=\vec{d} \vec{b}=\vec{d} \cdot \vec{c}=0$, then show that \vec{d} is the null vector.
A. $\vec{d}=\overrightarrow{1}$.
B. $\vec{d}=\overrightarrow{0}$.
C. $\vec{d}=\overrightarrow{2}$.
D. $\vec{d}=\overrightarrow{3}$.

Answer: B

- Watch Video Solution

Competition File

1. The non-zero vectors are \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
A. π
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A

2. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p, q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for
A. exactly two values of (p, q)
B. more than two but not all values (p, q)
C. all values of (p, q)
D. exactly one value of (p, q)

Answer: D

- Watch Video Solution

3. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector b satisfying $\vec{a} x \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$, is
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-\hat{j}-2 \hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

Answer: A

- Watch Video Solution

4. If the vectors $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k} \quad$ and
$\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}$ are mutually orthogonal, then (λ, μ)
A. $(-3,2)$
B. $(2,-3)$
C. $(-2,3)$
D. $(3,-2)$

Answer: A

5. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \vec{c} \vec{b} \vec{d}=\vec{a} \vec{d}=0$. Then the vector \vec{d} is equal to
A. $\vec{b}-\left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
B. $\vec{c}+\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
C. $\vec{b}+\left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
D. $\vec{c}-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$

Answer: D

- Watch Video Solution

6. If the vectors $p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r \hat{k}(p \neq q \neq r \neq 1)$ are coplanar, then the value of $p q r-(p+q+r)$ is :
A. 2
B. 0
C. -1
D. -2

Answer: D

- Watch Video Solution

7. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that any two of them are non-collinear. If $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a} then prove that $\vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$
A. \vec{a}
B. \vec{b}
C. $\overrightarrow{0}$
D. $\vec{a}+\vec{c}$

Answer: C

8. Let \vec{a} and \vec{b} he two unit vectors. If the vectors : $\vec{c}=\vec{a}+2 \vec{b}$ and $\vec{d}=5 \vec{a}-4 \vec{b}$ are perpendicular to eqach other, then the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

9. If the vectors $\vec{A} B=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$, then the length of the median through A is
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{45}$
D. $\sqrt{18}$

Answer: B

- Watch Video Solution

10. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$, then λ is equal to
A. 3
B. 0
C. 1
D. 2

Answer: C

11. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c}, then the value of $\sin \theta$ is:
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{-\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{-2 \sqrt{3}}{3}$

Answer: A

- Watch Video Solution

12. Let \vec{a}, \vec{b} and \vec{c} be there unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{e}, then the angle between $\vec{a} \& \vec{b}$ is:
A. $\frac{\pi}{2}$
B. $\frac{2 \pi}{3}$
C. $\frac{5 \pi}{6}$
D. $\frac{3 \pi}{4}$

Answer: C

- Watch Video Solution

13. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$ Let \vec{c} be a vector such that $|\vec{c}-\vec{a}|=3, \quad|(\vec{a} x \vec{b}) x \vec{c}|=3$ and the angle between \vec{c} and $\vec{a} x \vec{b}$ be 30^{0}. Then $\vec{a} \cdot \vec{c}$ is equatl to :
A. 5
B. $-\frac{1}{8}$
C. $\frac{25}{8}$
D. 2

- Watch Video Solution

14. Let \vec{u} be a vector coplanar with the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$. If \vec{u} is perpendicular to \vec{a} and $\vec{u} \cdot \vec{b}=24$ then $|\vec{u}|^{2}$ is equal to
A. 336
B. 315
C. 256
D. 84

Answer: A

15. The sum of the distinct real values of mu for which the vectors, $\mu \hat{i}+\hat{j}+\hat{k}, \hat{i}+\mu \hat{j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}$ are co-planar is :
A. 2
B. 1
C. -1
D. 0

Answer: C

- Watch Video Solution

16. Let $\vec{\alpha}=3 \hat{i}+\hat{j}, \vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{\beta}=\vec{\beta}_{1}-\vec{\beta}_{2}$, such that $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to α. Find $\vec{\beta}_{1} \times \vec{\beta}_{2}$.
A. $\frac{1}{2}(\hat{i}-9 \hat{j}+8 \hat{k})$
B. $\frac{1}{2}(\hat{i}-3 \hat{j}+4 \hat{k})$
C. $\frac{1}{2}(-3 \hat{i}+9 \hat{j}+10 \hat{k})$
D. $\frac{3}{2}(3 \hat{i}+9 \hat{j}+10 \hat{k})$

Answer: C

- Watch Video Solution

Chapter Test 10

1. What is the area of the rectangle having vertices A, B, C and D with positive
vectors
$-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{1}-\frac{1}{2} \hat{j}+4 \hat{k}$?
A. $\frac{1}{2}$ square unit
B. 1 square unit
C. 2 square units
D. 4 square units

Answer: C

2. Write the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$.
A. 0
B. -1
C. 1
D. 3

Answer: D

- Watch Video Solution

3. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

4. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.
5. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

6. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

7. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k} f o r m$ the vertices of a right angled triangle.

- Watch Video Solution

8. If $|a|=a$ and $|\vec{b}|=b$, prove that $\left(\frac{\vec{a}}{\vec{a}^{2}}-\frac{\vec{b}}{b^{2}}\right)^{2}=\left(\frac{\vec{a}-\vec{b}}{a b}\right)^{2}$.
9. If $\vec{r}=x \hat{i}+y \hat{j}+x \hat{k}$, find : $(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y$.

- Watch Video Solution

10. Find the value of ' λ ' such that vectors : $3 \hat{i}+\lambda \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are coplanar.

- Watch Video Solution

11. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of magnitudes 3,4 and 5 respectively. If each one is perpendicular to the sum of the other two vectors, prove that $|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$.

- Watch Video Solution

12. Prove by vector method that $\sin (A-B)=\sin A \cos B-\cos A \sin B$ and $\sin (A+B)=\sin A \cos B+\cos A \sin B$
