©゙doubtnut

CHEMISTRY

BOOKS - NARENDER AVASTHI CHEMISTRY (ENGLISH)

CHEMICAL EQUILIBRIUM

Level 1

1. A reversible reaction is one which
A. proceeds in one direction
B. proceeds in both directions
C. proceeds spontaneously
D. all the statements are wrong

Answer: b

Level 2

1. The following equilibrium constants were determined at 1120 K :
$2 C O(g) \Leftrightarrow C(s)+C O_{2}(g), K_{p 1}=10^{-14} a t m^{-1}$
$C O(g)+C l_{2}(g) \Leftrightarrow C O C l_{2}(g),, K_{p 2}=6 \times 10^{-3} \mathrm{~atm}^{-1}$
What is the equilibrium constant K_{c} for the foollowing reaction at
1120 K :
$C(s)+\mathrm{CO}_{2}(g)+2 \mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{COCl}_{2}(g)$
A. $3.31 \times 10^{11} M^{-1}$
B. $5.5 \times 10^{10} M^{-1}$
C. $5.51 \times 10^{6} M^{-1}$
D. None of these

Answer: A

1. Assertion (A): The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.

Reason (R) : when a system in equilibrium is disturbed by changing the temperature, it will tend to adjust itself so as to overcome the effect of the change.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

2. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The melting point of ice decreases with increase of pressure.

STATEMENT-2: Ice contracts on melting .
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

3. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The equilibrium of $A(g) \Leftrightarrow B(g)+c(g)$ is not affected by changing the volume.

STATEMENT-2: K_{c} for the reaction does not depend on volume of the container.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

4. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1:For a chemical reaction at initial stage rate of forward reaction $\left(r_{f}\right)$ is greater than rate of reversed reaction $\left(r_{b}\right)$

STATEMENT-2: When $r_{f}=r_{b}$, chemical reaction is at equilibrium.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

5. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the reaction $A(g) \Leftrightarrow B(g)+C(g), K_{p}=1$ atm. If we start with equal moles of all gases at 9 tm of initial pressure, then at equilibrium partial pressure of A increases.

STATEMENT-2: Reaction quotient $Q_{p}>K_{p}$ hence equilibrium shifts in backward direction.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE

Answer: A

- Watch Video Solution

6. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1:The gas phase reaction $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$ shifts to the right on increasing pressure.

STATEMENT-2: When pressure increase, equilibrium shifts towards more number of moles.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

7. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For a reaction at equilibrium, the Gibb's free energy of reaction is minimum at constant temp. and pressure.

STATEMENT-2: The Gibb's free energy of both reactants and products increases and become equal at equilibrium.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

8. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The physical equilibrium is not static but dynamic in nature.

STATEMENT-2: The physical equilibrium is a state in which two opposing process are proceeding at the same rate.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

9. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.

STATEMENT-2: Equilibrium constant depends upon the way in which the reaction is written.
A. (a) If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. (b) both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. (c) If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. (d) If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

10. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: If $Q_{p}<K_{p}$ reaction moves in direction of reactants.

STATEMENT-2: Reaction quotient is defined in the same way as equilibrium constant at any stage of the reaction.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

11. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according
to the instruction given below:
STATEMENT-1: For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ if the volume of vessel is reduced to half of its original volume, equilibrium concentration of all gases will be doubled.

STATEMENT-2: According to Le- Chatelier's principle, reaction shifts in a direction that tends to minimized the effect of the stess.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

12. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The equilibrium constant of the exothermic reaction at high temperature decreases.

STATEMENT-2: Since $\ln \frac{K_{2}}{K_{1}}=\frac{\Delta H^{\circ}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$ and for exothermic reaction,
$\Delta H^{\circ}=$-ve and thereby, $\frac{K_{2}}{K_{1}}<1$
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

- Watch Video Solution

13. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the reaction at certain temperature
$A(g)+B(g) \Leftrightarrow C(g)$
there will be no effect by addition of inert gas at constant volume.
STATEMENT-2: Molar concentration of all gases remains constant.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

14. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: For the physical equilibrium $\mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)$ on increasing temperature and increasing pressure more water will form.

STATMENT-2: Since forward reaction is endothermic in nature and voume of water is greater than that of the volume of ice.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE

Answer: C

- Watch Video Solution

15. Each question contains STATEMENT-1 (Assertion) and STATEMENT-2(Reason).

Examine the statements carefully and mark the correct answer according to the instruction given below:

STATEMENT-1: The catalyst does not alter the equilibrium constant.
STATEMENT-2: Because for the catalysed reaction and uncatalysed reaction ΔH reamains same and equilibrium constant depends of ΔH.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

Subjective Problems

1. In the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$, the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts, calculate K_{p}.

- Watch Video Solution

2. Calculate partial pressure of B at equilibrium in the following equilibrium

$$
A(s) \Leftrightarrow B(g)+2 C(g), \quad K_{P}=32 a t m^{3} .
$$

3. In a gaseous reaction $A+2 B \Leftrightarrow 2 C+D$ the initial concentration of B was 1.5 times that of A. At equilibrium the concentration of A and D were equal. Calculate the equilibrium constant K_{C}.

- Watch Video Solution

4. For the reaction $A(g) \Leftrightarrow B(g), K_{C}=10$
$B(g) \Leftrightarrow C(g), K_{C}=2$
$C(g) \Leftrightarrow D(g), K_{C}=0.01$
Calculate K_{C} for the reaction $D(g) \Leftrightarrow A(g)$.

- Watch Video Solution

5. 5 litre vessel contains 2 moles of each of gases A and B at equilibrium. If 1 mole each of A and B are removed. Calculate K_{C} for the reaction $A(g) \Leftrightarrow B(g)$
6. Calculate K_{P} for the reaction $A(g) \Leftrightarrow B(s)+2 C(g), K_{C}=0.2$ at 305 K.

Watch Video Solution

7. A mixture of 3 moles of $\mathrm{SO}_{2}, 4$ moles of $\mathrm{NO}_{2}, 1$ mole of SO_{3} and 4 moles of NO is placed in a 2.0L vessel. $S O_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(\mathrm{g})$.

At equilibrium, the vessel is found to contain 1 mole of SO_{2}. Calculate the value of K_{C}.

- Watch Video Solution

8. The density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm and 373.5 K is $2.0 \mathrm{~g} / \mathrm{L}$.

Calculate K_{C} for the reaction $N_{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
9. If chemical equilibrium is attained at standard states then what is the value of ΔG° ?

- Watch Video Solution

10. Calculate the equilibrium concentration ratio of C to A if equimolar ratio of A and B were allowed to come to equilibrium at 300 K .
$A(g)+B(g) \Leftrightarrow C(g)+D(g), \Delta G^{\circ}=-830 \mathrm{cal}$.

- Watch Video Solution

11. A definite amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.1 atm pressure.
$\mathrm{NH}_{4} \mathrm{HS}$ decompses to give NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ and at equilibrium total pressure in flask is 1.1 atm . If the equilibrium constant K_{P} for the reaction
$N H_{4} H S(s) \Leftrightarrow N H_{3}(g)+H_{2} S(g)$ is represented as $z \times 10^{-1}$ then find the value of z.

- Watch Video Solution

12. The gaseous reaction : $A(g)+n B(g) \Leftrightarrow m C(g)$ is represented by following curves

What is the value of $n+m$?

- Watch Video Solution

1. For a gaseous reaction
$a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)$
equilibrium constants K_{c}, K_{p} and K_{x} are
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} \cdot P_{D}^{d}}{P_{A}^{a}} / P_{b}^{b}$ and $K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}$
where $[A] \rightarrow$ molar concentration of $A, p_{A} \rightarrow$ partial pressure of A and $\mathrm{P} \rightarrow$ total pressure, $x_{A} \rightarrow$ mole fraction of A

Select the write option
A. (a) $K_{p}=K_{c}(R T)^{\Delta n g}, K_{x}=K_{p}(R T)^{\Delta n g}$
B. (b) $K_{c}=K_{c}(R T)^{\Delta n g}, K_{p}=K_{x} P^{\Delta n g}$
C. (c) $K_{c}=K_{x} P^{\Delta n g}, K_{p}=K_{x} P^{\Delta n g}$
D. (d) $K_{c}=K_{p}(R T)^{-\Delta n g}, K_{x}=K_{p}(R T)^{\Delta n g}$

Answer: B

1. A catalyst :
A. increase the average kinetic energy of reactiong molecules
B. decreases the activation energy
C. can alters the reaction mechanism
D. Can change pre-exponential factor

Answer: B

- Watch Video Solution

Match The Column

1. Column-I and Column-II contains fore enteries each. Entries of Column-I are to be matched with, some entries of Column-II One or more than one entries of Column-I may have the mathching with the same entries of

Column-II

Column-I

(A) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(B) $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
(C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(D) $\mathrm{HCl}(g) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

Column-II

(P) $K_{p}>K_{c}$ above room temperature
(Q) $K_{p}=K_{c}$ above room temperature
(R) $K_{p}<K_{c}$ above room temperature
(S) K_{p} and K_{c} not defined

- Watch Video Solution

Others

1. The equilibrium constant K_{c} for the reaction
$P_{4}(g) \Leftrightarrow 2 P_{2}(g)$
is 1.4 at $400^{\circ} \mathrm{C}$. Suppose that 3 moles of $P_{4}(g)$ and 2 moles of $P_{2}(g)$ are mixed in 2 litre container at $400^{\circ} \mathrm{C}$. What is the value of reaction quotient $\left(Q_{c}\right)$?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. 1
D. none of these

Answer: b

- Watch Video Solution

2. In a chemical reaction, equilibrium is said to have been established when the
A. opposing reacation ceases
B. concentrations of reactants and product are equal
C. velocity of opposing reaction is the same as that of forward reaction
D. reaction ceases to generate heat

Answer: bc

3. The equilibrium constant for a reaction is K , and the reaction quotient is Q . For a particular reaction mixture, the ration $\frac{K}{Q}$ is 0.33 . this means that:
A. the reaction mixture will equilirate to from more reactant species
B. the rection mixture will equilirate to from more product species
C. the equlibrium ratio of reactant to product concentration will be 3
D. the equilibrium ratio of reactant to product concentrations will be 0.33

Answer: b

- Watch Video Solution

4. Consider the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$ for which $K_{c}=278 M^{-1} .0 .001$ mole ofeach of the reagents $S O_{2}(g), O_{2}(g)$ and $S O_{3}(g)$ are mixed in a 1.0 L flask. Dterminr=e the
reaction quotient of the system and the spontaneus direction of the system:
A. $Q_{c}=1000$, the equilibrium shifts to the right
B. $Q_{c}=1000$, the equilibrium shifts to the left
C. $Q_{c}=0.001$, the equilibrium shifts to the left
D. $Q_{c}=0.001$, theequilibrium shifts to the right

Answer: a

- Watch Video Solution

5. In Q.No .5, if the mixture of gases was allowed to come to quilibrium .The volume of the reaction vessel was then rapidly increased by a factor of two As a result of the change the reaction quotient $\left(Q_{c}\right)$ would:
A. increase because of the pressure decrease
B. decrease because of the pressure decrease
C. remain the same because the equilibrium constant is indendent of volume
D. increase because the reaction is endothermioc

Answer: a

- Watch Video Solution

6. For the reaction $A(g)+3 B(g) \Leftrightarrow 2 C(g)$ at $27^{\circ} C$, 2 moles of $A, 4$ moles of B and 6 moles of C are present in 2 litre vessel. If K_{c} for the reaction is 1.2 , the reaction will proceed in :
A. Forward direction
B. backward direction
C. neither direction
D. none of these

Answer: a

7. For a reversible gaseous reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at equilibrium , if some moles of H_{2} are replaced by same number of moles of T_{2} (T is tritium , isotope of H and assume isotopes do not have different chemical properties) without affecting other parameters, then:
A. the sample of ammonia obtained after something will be radioactive.
B. moles of N_{2} after the change will be different as compared to moles of $N)(2)$ present before the change
C. the volue of K_{p} or K_{c} will change
D. the average molecular mass of new equilibrium will be same as that of old equilibrium

Answer: a

8. For the synthesis of ammonia by the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber's process ,the attainment of equilibrium is correctly predicated bt the curve
(a)

B.
(b)

(c)

C.
D.

Answer: a

9. The figure shows the change in concentration of species A and B as a function of time.

The equilibrium constant K_{c} for the reaction $A(g) \Leftrightarrow 2 B(g)$ is :

A. $K_{c}>1$
B. $K<1$
C. $K=1$
D. data insufficient

- Watch Video Solution

10. Attainment of the equilibrium $A(g) \Leftrightarrow 2 C(g)+B(g)$ gave the following graph . Find the correct option $(\%$ dissociation $=$ Frationdissoiatedxx100)

A. At $\mathrm{t}=5 \mathrm{sec}$ equilibrium has been reached and $K_{c}=40(\mathrm{~mol} / \text { litre })^{2}$
B. At $\mathrm{t}=5 \mathrm{sec}$ equilibrium has been reached and \% dissciation of A is 20\%
C. At $t=5 \mathrm{sec}$ equilibrum has been reached and \% dissocition of A is
D. none of these

Answer: b

- Watch Video Solution

11. Using moler concentrations, what is the unit of K_{c} for the reaction ?

$$
\mathrm{CH}_{3} \mathrm{OH}(g) \Leftrightarrow C O(g)+2 \mathrm{H}_{2}(g)
$$

A. M^{-2}
B. M^{2}
C. M^{-1}
D. M

Answer: b

- Watch Video Solution

12. What is the unit of K_{p} for the reaction ?
$C S_{2}(g)+4 H_{2}(g) \Leftrightarrow C H_{4}(g)+2 H_{2} S(g)$
A. atm
B. atm^{-2}
C. $a t m^{2}$
D. atm^{-1}

Answer: b

- Watch Video Solution

13. What is the equilibrium expression for the reaction

$$
P_{4}(s)+50_{2}(g) \Leftrightarrow P_{4} O_{10}(s)
$$

A. $K_{c}=\left[O_{2}\right]^{5}$
B. $K_{c}=\left[P_{4} O_{10}\right] / 5\left[P_{4}\right]\left[O_{2}\right]$
C. $K_{c}=\left[P_{4} O_{10}\right] /\left[P_{4}\right]\left[O_{2}\right]^{5}$
D. $K_{c}=1 /\left[O_{2}\right]^{5}$

Answer: d

- Watch Video Solution

14. At $527^{\circ} C$, the reaction given below has $K_{c}=4$
$N H_{3}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g)$
what is the K_{p} for the reaction ?
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
A. $16 \times(800 R)^{2}$
B. $\left(\frac{800 R}{4}\right)^{-2}$
C. $\left(\frac{1}{4 \times 800 R}\right)^{2}$
D. none of these

Answer: c

15. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 4×10^{-4}
B. 50
C. 2.5×10^{2}
D. 0.02

Answer: b

- Watch Video Solution

16. The equilibrium constant K_{c} for the following reaction at $842^{\circ} \mathrm{C}$ is 7.90×10^{-3}.What is K_{p} at same temperature ?

$\frac{1}{2} F_{2}(g) \Leftrightarrow F(g)$

A. 8.64×10^{-5}
B. 8.26×10^{-4}
C. 7.90×10^{-2}
D. 7.56×10^{-2}

Answer: d

- Watch Video Solution

17. The equilibrium constant K_{p} for the following rection at $191^{\circ} C$ is 1.24 .
what is K_{c} ?
$B(s)+\frac{3}{2} F_{2}(g) \Leftrightarrow B F_{3}(g)$
A. 6.7
B. 0.61
C. 8.30
D. 7.6

Answer: d

- Watch Video Solution

18. For the equilibrium $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$, what is the temperature at which $\frac{K_{p}(\mathrm{~atm})}{K_{c}(M)}=3$?
A. $0.027 K$
B. 0.36 K
C. 36.54 K
D. 273 K

Answer: c

19. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.082 \times 773)^{2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

Answer: d

- Watch Video Solution

20. For the reaction $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{COCl}_{2}(g)$ the value of $\left(\frac{K_{c}}{K_{P}}\right)$ is equal to :
A. $\sqrt{R T}$
B. RT
C. $\frac{1}{R T}$
D. 1.0

Answer: b

- Watch Video Solution

21. The concentration of a pure solid or liquid phase is not include in the expression of equilibrium constant because :
A. density of solid and liquid are independent of their quantities .
B. solids and liquids react slowly.
C. solids and liquids at equilibrium do not interact with gaseous phase.
D. the molecules of solids and liquids cannot migrate to the gaseous phose.

Answer: a

- Watch Video Solution

22. A catalyst is a substance which
A. increase the equilibrium concentration of the product.
B. change the equilibrium constant of the reaction.
C. shortens the time to rach equilibrium.
D. supplies energy to the reaction.

Answer: c

23. What will be the effect of the equilibrium constant on increasing temperature. If the reaction neither absorbs heat nor releases heat?
A. Equililbrium constant will remain constant.
B. Equilibrium constant will decrease .
C. Equilibrium constant will increase.
D. Can not be predicted.

Answer: a

- Watch Video Solution

24. The equilibrium constant for a reacton
$N_{2}(g)+O_{2}(g)=2 N O(g)$ is 4×10^{-4} at 2000 K . In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-3}
D. difficult to compute without more data

Answer: a

- Watch Video Solution

25. For the reaction $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ the equilibrium constant K_{p} changes with
A. total pressure
B. catalyst
C. concentration of H_{2} and I_{2}
D. temperature

Answer: d

26. Consider the reaction :-
$2 \mathrm{CO}(g)+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2(g)}$ eq. const $=K_{1}$
$\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}$, eq. const $=K_{2}$
$\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)}$, eq. const $=K_{3}$
Which of the following relation is correct ?
A. $K_{3}=\frac{K_{1}}{K_{2}}$
B. $K_{3}=\frac{K_{1}^{2}}{K_{2}^{2}}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3}=\sqrt{K_{1}} \cdot K_{2}$

Answer: d

- Watch Video Solution

27. For the reaction $2 \mathrm{NO}_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N_{2} O_{5}(g)$ if the equilibrium constant is K_{p}, then the equilibrium constant for the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be :
A. K_{P}^{2}
B. $\frac{2}{K_{P}}$
C. $\frac{1}{K_{p}^{2}}$
D. $\frac{1}{\sqrt{K_{p}}}$

Answer: c

- Watch Video Solution

28. The equilibrium constant (K_{c}) for the reaction
$2 \mathrm{HCl}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is 4×10^{-34} at $25^{\circ} \mathrm{C}$ what is the equilibrium constant for the reaction ?
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{HCl}(\mathrm{g})$
A. (a) 2×10^{-17}
B. (b) 2.5×10^{33}
C. (c) 5×10^{6}
D. (d) none of these

Answer: d

- Watch Video Solution

29. At a certain temperature , the following reactions have the equilibrium constants as shown below:
$S(s)+O_{2}(g) \Leftrightarrow S O_{2}(g), K_{c}=5 \times 10^{52}$
$2 S(s)+3 O_{2}(g) \Leftrightarrow 2 S O_{3}(g), K_{c}=10^{29}$
what is the equilibrium constant K_{c} for the reaction at tahea same temperature?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
A. 2.5×10^{76}
B. 4×10^{23}
C. 4×10^{-77}
D. none of these

D Watch Video Solution

30. Given
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), K_{1}$
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), K_{2}$
$H_{2}(g)+\frac{1}{2} O_{2} \Leftrightarrow H_{2} O(g), K_{3}$
The equilibrium constant for
$2 \mathrm{NH}_{3}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$
will be
A. $K_{1} K_{2} K_{3}$
B. $\frac{K_{1} K_{2}}{K_{3}}$
C. $\frac{K_{2} K_{3}^{3}}{K_{1}}$
D. $\frac{K_{1} K_{3}^{2}}{K_{3}}$
31. In the reaction $X(g)+Y(g) \Leftrightarrow 2 Z(g), 2$ mole of $\mathrm{X}, 1$ mole of Y and 1 mole of Z are placed in a 10 litre vessel and allowed to reach equilibrium .If final concentration of Z is 0.2 M , then K_{c} for the given reaction is :
A. 1.60
B. $\frac{80}{3}$
C. $\frac{16}{3}$
D. none of these

Answer: c

- Watch Video Solution

32. An equilibrium mixture of the reaction $2 H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$ had 0.5 mole $H_{2} S, 0.10$ mole H_{2} and 0.4 mole S_{2} in one litre vessel. The value of equilibrium constants (K) in mole litre ${ }^{-1}$ is
A. 0.0004
B. 0.008
C. 0.016
D. 0.160

Answer: c

- Watch Video Solution

33.

Given
$\left[C S_{2}\right]=0.120 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.10,\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.20$ and $\left[\mathrm{CH}_{4}\right]=8.40 \times 10^{-5} \mathrm{M}$ for the following reaction at $900^{\circ} \mathrm{C}$ at eq.

Calculate the equilibrium constant $\left(K_{c}\right)$.
$C S_{2}(g)+4 H_{2}(g) \leftrightarrow C H_{4}(g)+2 H_{2} S(g)$
A. (a) 0.0120
B. (b) 0.0980
C. (c) 0.280
D. (d) 0.120

Answer: c

- Watch Video Solution

34. The equilibrium constant for the following reaction is 10.5 at $500 \mathrm{~K} . \mathrm{A}$
syatem at equilibrium has
$[C O]=0.250 M$ and $\left[\mathrm{H}_{2}\right]=0.120 M$ what is the $\left[\mathrm{CH}_{3} \mathrm{OH}\right] ?$
$\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
A. 0.0378
B. 0.435
C. 0.546
D. 0.0499

Answer: a

35. When sulphur (in the form of S_{8} is heated at temperature T, at equilibrium , the pressure of S_{8} falls by 30% from 1.0 atm , because $S_{8}(g)$ in partially converted into $S_{2}(g)$.

Find the value of K_{P} for this reaction.
A. 2.96
B. 6.14
C. 204.8
D. none of these

Answer: a

- Watch Video Solution

36. 9.2 grams of $N_{2} O_{4(g)}$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$. At equilibrium, $50 \% N_{2} O_{4(g)}$ is dissociated. What is the equilibrium constant (in mol litre ${ }^{-1}$) (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$) ?
A. 0.1
B. 0.4
C. 0.2
D. 2

Answer: c

- Watch Video Solution

37. Two moles of NH_{3} when put into a proviously evacuated vessel (one litre) pertially dissociate into N_{2} and H_{2}. If at equilibrium one mole of NH_{3} is present, the equilibrium constant is
A. $3 / 4 \mathrm{~mol}^{2}{ }^{2}$ itre e^{-2}
B. $27 / 64 \mathrm{~mol}^{2}{ }^{2}$ litre ${ }^{-2}$
C. $27 / 32$ mol $^{2}{ }^{2}$ litre ${ }^{-2}$
D. $27 / 16 \mathrm{~mol}^{2}{ }^{2}$ litre ${ }^{-2}$

D Watch Video Solution

38. In the presence of excess of anhydrous (in torr) of water taken up is governed by $K_{p}=10^{12} \mathrm{~atm}^{-4}$ for the following reaction at 273 K
$\mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(s)$

What is equilibrium vapour pressure (in torr) of water in a closedvessel that contains $\mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$?
A. 0.001torr ${ }^{`}$
B. 10^{3} torr ${ }^{`}$
C. 0.76 torr
D. 1.31torr

Answer: c

- Watch Video Solution

39.

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{CuSO}_{4} .3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}_{p}=4 \times 10^{-4} \mathrm{~atm}^{2}$ If the vapour pressure of water is 38 toor then percentage of relatative humidity is :(Assume all data at constant temperture)
A. 4
B. 10
C. 40
D. none of these

Answer: c

- Watch Video Solution

40. $N H_{4} H S(s) \Leftrightarrow N H_{3}(g)+H_{2} S(g)$

Theequilibriumpressureat 25 degree Celsius ` is 0.660 atm . What is Kp for the reaction?

$$
\text { A. } 0.109
$$

B. 0.218
C. 1.89
D. 2.18

Answer: a

- Watch Video Solution

41. For the reaction $2 A(g) \Leftrightarrow B(g)+3 C(g)$, at a given temperature , $K_{c}=16$. What must be the volume of the flask, if a mixture of 2 mole rach of A, B and C exist in equilibrium ?
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. none of these
42. One mole of pure ethyl alcohol was treated with one mole of pure acetic acid at $25^{\circ} \mathrm{C}$ One -third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be:
A. (a) $\frac{1}{4}$
B. (b) 2
C. (c) 3
D. (d) 4

Answer: a

- Watch Video Solution

43. $I_{2}+I^{\ominus} \Leftrightarrow I_{3}^{\ominus}$

This reaction is set-up in aqueous medium. We start with 1 mol of I_{2} and
0.5 mol of I^{\ominus} in $1 L$ flask. After equilibrium reached, excess of AgNO_{3} gave 0.25 mol of yellow precipitate. Equilibrium constant is
A. 1.33
B. 2.66
C. 2.0
D. 3.0

Answer: a

- Watch Video Solution

44. At $87^{\circ} C$, the following equilibrium is established.
$H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g), K_{c}=0.08$
If 0.3 mole hydrogen and 2 mole sulphur are heated to $87^{\circ} C$ in a $2 L$ vessel, what will be concentration of $H_{2} S$ at equilibrium ?
A. $0.011 M$
B. $0.022 M$
C. $0.044 M$
D. 0.08 M

Answer: a

- Watch Video Solution

45. In the equilibrium $2 \mathrm{SO}_{2}(g)+O_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$, the partial pressure of $S O_{2}, O_{2}$ and $S O_{3}$ are 0.662,0.10 and 0.331 atm respectively . What should be the partial pressure of Oxygen so that the equilibrium concentrations of SO_{3} are equal ?
A. (a) $0.4 a \mathrm{tm}$
B. (b) 1.0 atm
C. (c) 0.8 atm
D. (d) 0.25 atm

Answer: a

46. When heated, ammonium carbamate decomate decompoes as follows :
$\mathrm{NH}_{4} \mathrm{COOH}_{2}(s)$ gives $2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$
At a certain temperature, the equilibrium pressure of the system is $0.318 \mathrm{~atm} . \mathrm{Kp}$ for the reaction is:
A. 0.128
B. 0.426
C. 4.76×10^{-3}
D. none of these

Answer: c

- Watch Video Solution

47. In the system $A_{(s)} \Leftrightarrow 2 B_{(g)}+3 C_{(g)}$, if the concentration of C at equilibrium is increased by a factor of 2 , it will cause the equilibrium concentration of B to change to:
A. Two times original value
B. One half of its original value
C. $2 \sqrt{2}$ times to the original value
D. $\frac{1}{2 \sqrt{2}}$ times the original value

Answer: d

- Watch Video Solution

48. $A+B \Leftrightarrow C+D$. If finally the concentrations of A and B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
A. (a) $\frac{4}{9}$
B. (b) $\frac{9}{4}$
C. (c) $\frac{1}{9}$
D. (d) 4

Answer: d

- Watch Video Solution

49.

The
equilibrium
K_{c} for the
reaction
$S O_{2}(g) N O_{2}(g) \Leftrightarrow S O_{3}(g)+N O(g) i s 161$ mole of rach of all the four gases is taken in $1 d m^{3}$ vessel, the equilibrium concentration of NO would be:
A. $0.4 M$
B. $0.6 M$
C. $1.4 M$
D. 1.6 M

- Watch Video Solution

50. On increasing the temperature, the rate of a reaction:
A. (a) always increases
B. (b) always decreases
C. (c) first increases and then decreases
D. (d) may increase or decrease depending
upon the nature of the reaction

Answer: a

- Watch Video Solution

51. A catalyst increases the rate of a reaction by:
A. (a) increasing the activation energy of a reaction
B. (b) decreasing the activation energy
C. (c) increasing the enthalpy change of the reaction
D. (d) decreasing the enthalpy change of the reaction

Answer: b

- Watch Video Solution

52. At a certain temperature, only $50 \% \mathrm{HI}$ is dissociated at equilibrium in the following reaction:
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
the equilibrium constant for this reaction is:
A. 0.25
B. 1.0
C. 3.0
D. 0.5

Answer: a

- Watch Video Solution

53. The equilibrium constant K_{p} for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
is 4.0 at $1660^{\circ} \mathrm{C}$ Initially 0.80 mole H_{2} and 0.80 mole CO_{2} are injected into a 5.0 litre flask. What is the equilibrium concentration of $\mathrm{CO}_{2}(\mathrm{~g})$?
A. 0.533
B. 0.0534
C. 0.535
D. none of these

Answer: b

54. At 273 K and 1atm, 10 litre of $\mathrm{N}_{2} \mathrm{O}_{4}$ decompose to NO_{4} decompoes to NO_{2} according to equation
$\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO} 。(G)$
What is degree of dissociation (α) when the original volume is 25% less then that os existing volume?
A. 0.25
B. 0.33
C. 0.66
D. 0.5

Answer: b

- Watch Video Solution

55. The equilibrium constant for the reaction
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) i s 5$ how many moles of CO_{2} must
be added to 1 litre container alrady containing 3 moles each of CO and $\mathrm{H}_{2} \mathrm{O}$ to make 2 M equilibrium conentration of CO ?
A. 15
B. 19
C. 5
D. 20

Answer: b

- Watch Video Solution

56. A nitrogen-hydrogen mixture initially in the moler ratio of $1: 3$ reached equilibrium to from ammonia when 25% of the N_{2} and N_{2} had reacterd .If the pressure of the system was 21 atm , the partial pressure of ammonia at the equilibrium was:
A. 4.5 atm
B. 3.0atm
C. 2.0atm
D. 1.5 atm

Answer: b

- Watch Video Solution

57. NH_{3} is heated at 15 atm, from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate $\%$ moles of NH_{3} actually decomposed.
A. (a) 65%
B. (b) 61.3%
C. (c) 62.5%
D. (d) 64%
58. 0.1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ was sealed in a tude under one atmospheric conditions at $25^{\circ} \mathrm{C}$ Calculate the number of moles of $\mathrm{NO}_{2}(\mathrm{~g})$ present, if the equilibrium $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)\left(K_{P}=0.14\right)$ is reached after some time :
A. 1.8×10^{2}
B. 2.8×10^{2}
C. 0.036
D. 2.8×10^{-2}

Answer: c

- Watch Video Solution

59.5 moles of $S O_{2}$ and 5 moles of O_{2} are allowed to react .At equilibrium, it was foumnd that 60% of SO_{2} is used up .lf the pressure of the
equilibrium mixture is one aatmosphere, the parital pressure of O_{2} is :
A. 0.52 atm
B. 0.21 atm
C. 0.41 atm
D. 0.82 atm

Answer: c

- Watch Video Solution

60. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

For the reaction intially the mole ratio was $1: 3$ of $N_{2}: H_{2}$. At equilibrium 50% of each has reacted .If the equilibrium pressure is P, the parial pressure of NH_{3} at equilibrium is :
A. $\frac{p}{3}$
B. $\frac{P}{4}$
C. $\frac{P}{6}$
D. $\frac{p}{8}$

Answer: a

- Watch Video Solution

61. 2.0 mole of PCl_{5} were nttoducedd in a vessel of 5.0 L capacity of a particular temperature At equilibrium, $P C l_{5}$ was found to be 35% dissociated into PCl_{3} and Cl_{2} the value of K_{c} for the reaction $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
A. 1.89
B. 0.377
C. 1.33
D. 13.3

Answer: d

62. At certain temperature compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
With degree of dissociation α Which is small compared with unity, the expression of K_{p} in terms of α and initial pressure P is :
A. (a) $\frac{P \alpha^{3}}{2}$
B. (b) $\frac{P \alpha^{2}}{3}$
C. (c) $\frac{P \alpha^{3}}{3}$
D. (d) $\frac{P \alpha^{2}}{2}$

Answer: a

- Watch Video Solution

63. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x moles /litres of hydrogen is consumed at equilibrium , the correct expression of K_{p} is :
A. (a) $\frac{x^{2}}{(1-x)^{2}}$
B. (b) $\frac{(1-x)^{2}}{(1-x)^{2}}$
C. (c) $\frac{x^{2}}{(2+x)^{2}}$
D. (d) $\frac{x^{2}}{(1-x)^{2}}$

Answer: a

- Watch Video Solution

64. If D_{T} and D_{o} are the theoretical and observed vapour densities at a definite temperature and α be the degree of dissociation of a substance ,then,α in the terms of D_{o}, D_{T} and n (number of moles of products formed from 1 mole reactant) is calculated by the formula :
A. (a) $\alpha=\frac{D_{o}-D_{T}}{(1-n) D_{T}}$
B. (b) $\alpha=\frac{D_{T}-D_{o}}{(n-1) D_{T}}$
C. (c) $\alpha=\frac{D_{T}-D_{o}}{(n-1) D_{o}}$
D. (d) $\alpha=\frac{D-D_{T}}{(n-1) D_{T}}$

Answer: c

- Watch Video Solution

65. For the dissociation of PCl_{5} into PCl_{3} and Cl_{2} in gaseous phase reaction, if d is the observed vapour density and D the theoretical vapour density with ' α ' as degree of dissociation ,variaton of D / d with ' α ' is given by ?

A. (a)
B. (b)
(b)

C. (c)
(c) $\overbrace{\frac{D}{d} \longrightarrow}^{\square}$
D. (d) none of these

Answer: a

D Watch Video Solution

66. At $27^{\circ} \mathrm{C}$ and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 20% dissociation into NO 。 What is the density of equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at $27^{\circ} \mathrm{C}$ and 1 atm?
A. (a) $3.11 \mathrm{~g} /$ litre
B. (b) $2.11 \mathrm{~g} /$ litre
C. (c) $4.5 \mathrm{~g} /$ litre
D. (d) none of these

- Watch Video Solution

67. COCl_{2} gas dissociates according to the equation, $\mathrm{COCl}_{2} \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$. When heated to 700 K the density of the gas mixture at 1.16 atm and at equilibrium is $1.16 \mathrm{~g} /$ litre The degree of dissociation of COCl_{2} at 700 K is :
(a) 0.28
(b) 0.50
(c) 0.72
(d) 0.42
A. 0.28
B. 0.50
C. 0.72
D. 0.42

Answer: c

D Watch Video Solution

68. The degree of dissociation of I_{2} "mole"cule at $1000^{\circ} \mathrm{C}$ and under 1.0 atm is 40% by volume. If the dissociation is reduced to 20% at the same temperature, the total equilibrium pressure on the gas will be:
A. 1.57 atm
B. 2.57 atm
C. 3.57 atm
D. 4.57 atm

Answer: d

69. Determinre the value of equilibrium constant $\left(K_{C}\right)$ for the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$
if 10 moles of $A_{2}, 15$ moles of B_{2} and 5 moles of AB are placed in a 2 litre vessel and allowed to come to equilibrium . The final concentration of $A B$ is 7.5 M :

A. 4.5

B. 1.5
C. 0.6
D. none of these

Answer: a

- Watch Video Solution

70. At $87^{\circ} C$, the following equilibrium is established
$H_{2}(g)+S(s) \Leftrightarrow H_{2}(g), K_{p}=7 \times 10^{-2}$

If 0.50 mole of hydrogen and 1.0 mole of sulphur are heated to $87^{\circ} \mathrm{C}$ in $1 L$ vessel. What is the partial pressure of $H_{2} S(g)$ at equilibrium?
A. 0.966 atm
B. 1.38 n atm
C. 0.0327 atm
D. 1atm

Answer: a

- Watch Video Solution

71. Pure $P C l_{5}$ is introduced into an evacuated chamber and to equilibrium at $247^{\circ} \mathrm{C}$ and 2.0 atm .The equilibrium gases mixture contains 40% chlorine by volume .

Calculate K_{p} at $247^{\circ} \mathrm{C}$ for the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
A. (a) 0.625 atm
B. (b) $4 a t m$
C. (c) 1.6 atm
D. (d) none of these

Answer: c

- Watch Video Solution

72. For
the
reaction
$X C O_{3} \Leftrightarrow X O(s)+C O_{2}(g), K p=1.64 a t m a t 727^{\wedge}(@) \mathrm{C} . I f 4 m o \leq \operatorname{sofX}$ was put into a 50 litre container and heated to $727^{\circ} \mathrm{C}$

What mole percent of the XCO_{3} remains unreacted at equilibrium ?
A. 20
B. 25
C. 50
D. none of these

- Watch Video Solution

73. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ may be converted to Fe by the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ for which $\mathrm{K}_{c}=8$ at temp. $720^{\circ} \mathrm{c}$.

What percentage of the H_{2} ramains unreacted after the reaction hascome to equilibrium ?
A. 22%
B. 34%
C. 66%
D. 78%

Answer: b

74. $A B_{3}(g)$ is dissociates as $A B_{3}(g) \Leftrightarrow A B_{2}(g)+\frac{1}{2} B_{2}(g)$

When the initial pressure of $A B_{3}$ is 800 torr and the pressure developed at equilibrium is 900 torr, what fraction of $A B_{3}(g)$ is dissociated?
A. 10%
B. 20%
C. 25%
D. 30%

Answer: c

- Watch Video Solution

75. At 1000 K , a sample of pure NO_{2} gases decomposes as :
$2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
The equilibrium constant K_{P} is 156.25 atm .Analysis showns that the partial pressure of O_{2} is 0.25 atm at equilibrium .The parital pressure of f NO_{2} at equilibrium is :
A. 0.03
B. 0.02
C. 0.025
D. 0.04

Answer: b

- Watch Video Solution

76. pure nitrosyl chloride (NOCl) gas was heated to $240^{\circ} \mathrm{C}$ in a 1.0 L container. At equilibrium the total pressure was 1.0 atm and the NOCl pressure was 0.64 atm . What would be the value of K_{P} ?
A. 1.02atm
B. $16.875 \times 10^{-3} \mathrm{~atm}$
C. $16 \times 10^{-2} \mathrm{~atm}$
D. none of these

- Watch Video Solution

77. At a certain temperature the equilibrium constant K_{c} is 0.25 for the reaction
$A_{2}(g)+B_{2}(g) \Leftrightarrow C_{2}(g)+D_{2}(g)$
If we take 1 mole of each of the four gases in a 10 litre container ,what would be equilibrium concentration of $A_{2}(\mathrm{~g})$?
A. 0.331 M
B. 0.033 M
C. 0.133 M
D. $1.33 M$

Answer: c

78. At $200^{\circ} \mathrm{CPCl}_{5}$ dissociates as follows :
$P C l_{5}\left(g 0 \Leftrightarrow P C l_{3}(g)+C l_{2}(g)\right.$
It was found that the equilibrium vapours are 62 times as heavy as hydreogen. The degree of dissociation of PCl_{5} at $200^{\circ} \mathrm{C}$ is nearly :
A. 10%
B. 42%
C. 50%
D. 68%

Answer: d

- Watch Video Solution

79. For the dissociation reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the degree of dissociation (α) interms of K_{p} and total equilibrium pressure P is:
A. $\alpha=\sqrt{\frac{4 P+K_{p}}{K_{P}}}$
B. $\alpha=\sqrt{\frac{K_{P}}{4 P+K_{p}}}$
C. $\alpha=\sqrt{\frac{K_{P}}{4 P}}$
D. none of these

Answer: b

Watch Video Solution

80. Consider the following equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Then the select the correct graph, which shows the variation in concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ against concentrations of NO_{2} :

A.
B.

(c)
$\xrightarrow[{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]} \longrightarrow]{\substack{0_{2}^{2}}}$
C.
(d)

D.

Answer: b

Watch Video Solution
81. The vapour pressure of mercury is 0.002 mm Hg at $27^{\circ} C . K_{c}$ for the process $H g(l) \Leftrightarrow H g(g)$ is :
A. 0.002
B. 8.12×10^{-5}
C. 6.48×10^{-5}
D. 1.068×10^{-7}

D Watch Video Solution

82. Calculate the equilibrium constant $\left(K_{c}\right)$ for the reaction given below, if at equilibrium, mixture contains 5.0 mole of $A_{2}, 3$ mole of B_{2} and 2 mole of $A B_{2}$ at 8.21 atm and 300 K
$A_{2}(g)+2 B_{2}(g) \Leftrightarrow 2 A B_{2}(g)+$ Heat
A. 1.333
B. 2.66
C. 20
D. none of these

Answer: b

83. For the reaction (1)and(2)
$A(g) \Leftrightarrow B(g)+C(g)$
$X(g) \Leftrightarrow 2 Y(g)$
Given $, K_{p 1}: K_{p 2}=9: 1$
If the degree of dissociation of $A(g)$ and $X(g)$ be same then the total pressure at equilibrium
(1) and (2) are in the ratio:
A. (a) $3: 1$
B. (b) $36: 1$
C. (c) $1: 1$
D. (d) $0.5: 1$

Answer: b

- Watch Video Solution

84. Given the following reaction at equilibrium $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$. Some inert gas at constant pressure is added to the system. Predict the following facts:
A. (a) more NH_{3} is produced
B. (b) Less NH_{3} is produced
C. (c) No affect on the equilibrium
D. (d) K_{p} of the reaction is decreased

Answer: b

- Watch Video Solution

85. In which of the following equilibrium ,change in volume of the system does not alter the number of moles:
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $P C l_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
D. ${S O_{2} C l}_{2}(g) \Leftrightarrow \mathrm{SO}_{2} \Leftrightarrow \mathrm{SO}_{2}(g)+C l_{2}(g)$

Answer: a

- Watch Video Solution

86. For the reaction
$N_{2}(G)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta=-93.6 \mathrm{KJmol}^{-1}$
The number of moles of H_{2} at equilibrium will increase If :
A. (a) volume is increased
B. (b) volume is decreased
C. (c) argon gas is added at constant volume
D. (d) NH_{3} is removed

Answer: a

87. The volume of the reaction vessel containing an equilibrium mixture is increased in the following reaction
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
When equilibrium is re-established :
A. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ remains unchanged
B. the amount of $C l_{2}(g)$ increases
C. The amount ofSO。 $\mathrm{Cl}_{2}(\mathrm{~g})$ decreases
D. The amount of $S O \circ(g)$ decrsases

Answer: b

- Watch Video Solution

88. Some inert gas is added at constant volume to the following reaction at equilibrium
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ predict the effect of adding the inert gas:
A. The equilibrium shifts in the forward direction
B. The equilibrium shifts in the backward direction
C. The equilibrium remins unaffected
D. The value of K_{p} is increased

Answer: c

- Watch Video Solution

89. Consider thr reaction where $K_{p}=0.497$ at 500 K
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the htree gasses are mixed in a right container so that the partial pressure of each gas in initially 1 atm ,then which is correct observation ?
A. More $P C l_{5}$ will be produced
B. More PCl_{3} will be produced
C. Equilibrium will be eatablished when 50% reaction is complete
D. none of these

Answer: a

- Watch Video Solution

90. The prepation of $\mathrm{SO}_{3}(g)$ by reaction $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$ is an exothermic reaction .If the preparation follows the following temperature -pressure relationship for \% yield, then for temperatures
T_{1}, T_{2} and T_{3} the correct option is:

A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. Nothing could be predicated about temperature though given

D Watch Video Solution

91. An equilibrium mixture at 700 K of $0.05 \mathrm{M} N_{2}(g)$ and $0.2 M N H_{3}(g)$ is present in a container .Now if this equilibrium is disturbed by adding N_{\circ}
(g) so that its concentration becomes 0.15 M just after addition then which of the following graph represents the above situation more appropriately:
A.

B.

C.

D.

Answer: a

- Watch Video Solution

92. In a vessel containing N_{2}, H_{2} and NH_{3} at equilibrium, some helium gas is introduced so that total pressure increase while temperature and volume remain constant .According to Le Chatelier's principle, the dissociation of NH_{3} :
A. Increases
B. decreases
C. remains unltered
D. changes unpredictably

Answer: c

93. Le - Chatelier principle is not applicable to :
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $F e(s)+S(s) \Leftrightarrow F e S(s)$
C. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: b

- Watch Video Solution

94. Consider the following reactions .In which case the formation of product is favoured by decreasein pressure?
(1) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), \Delta H^{\circ}=+172.5 \mathrm{Kj}$
(2) $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H^{\circ}=-91.8 K J$
(3) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H^{\circ}=181 K J$
(4) $2 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=484.6 \mathrm{KJ}$
A. 2,3
B. 3,4
C. 2, 4
D. 1,4

Answer: d

- Watch Video Solution

95. In which of the following reactions, the formation of product is favoured by decrease in temperature?
(1) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H^{\circ}=181$
(2) $2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta H^{\circ}=566$
(3) $H_{2}(g)+I_{2} \Leftrightarrow 2 H I(g), \Delta H^{\circ}=-9.4$
(4) $H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g), \Delta H^{\circ}=-541$
A. 1,2
B. 2 only
C. 1,2,3
D. 3,4

Answer: d

- Watch Video Solution

96. For which of the following reaction is product formation favoured by low pressure and high temperature?
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g), \Delta H^{\circ}=-9.4 K J$
B. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), \Delta H^{\circ}=172.5 \mathrm{KJ}$
C. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta \mathrm{H}^{\circ}=-21.7 \mathrm{KJ}$
D. $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g), \Delta H^{\circ}=285 K J$
97. For which of the following reaction is product formation favoured by low pressure and high temperature?
A. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g), \Delta H^{\circ}=172 K J$
B. $\mathrm{CO}(g)+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta \mathrm{H}^{\circ}=-21.7 \mathrm{KJ}$
C. $2 O_{3}(g) \Leftrightarrow 3 O_{2}(g), \Delta H^{\circ}=-285 K J$
D. $H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g), \Delta H^{\circ}=-541 K j$

Answer: c

- Watch Video Solution

98. Consider the following reaction at equilibrium and determine which of the indicated changes will cause the reaction to proceed to right.
(1) $\mathrm{CO}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\left(\right.$ add $\left.\mathrm{CH}_{4}\right)$
(2) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\left(\right.$ remove $\left.\mathrm{NH}_{3}\right)$
(3) $H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g)\left(a d d F_{2}\right)$
(4) $\mathrm{BaO}(s)+S O_{3}(g) \Leftrightarrow B A S O_{4}(s)(a d d B a O)$
A. 2,3
B. 1,4
C. 2,4
D. $2,3,4$

Answer: a

- Watch Video Solution

99. If the pressure in a reaction vessel for the following reaction is increased by decreasing the volume , what will happen to the concentrations of CO and CO_{2} ?
$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{Heat}$
A. both the $[\mathrm{CO}]$ and $\left[\mathrm{CO}_{2}\right]$ will decrease
B. neither the [Co] nor the $\left[\mathrm{CO}_{2}\right]$ will change
C. the [CO] will decrease and the $\left[\mathrm{CO}_{2}\right]$ will increase
D. both the $[\mathrm{CO}]$ and $\left[\mathrm{CO}_{2}\right]$ will increase

Answer: d

- Watch Video Solution

100. Cosider the following reaction and determine which o fthe conditions will shift the equilibrium postion to the right ?
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat
A. Increasing the temperature
B. increasing the pressure
C. assigning a catalyst
D. none of above is correct

Answer: d

101. The conversion of ozone into oxygen is exothermic under what conditions is ozone is most stable?
$2 O_{3}(g) \Leftrightarrow 3 O_{2}(g)$
A. At low pressure and low temperature
B. At high pressure and high temperature
C. At high pressure and low temperature
D. At low pressure and high temperature

Answer: b

- Watch Video Solution

102. A System at equilibrium is described by the equation of fixed temperature T .
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

What effect will be the effect on equilibrium, if total pressure is reducing volume?
A. Concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ increases
B. Concentrations of $\mathrm{SO}_{2}(\mathrm{~g})$ increases
C. Concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ increases
D. Concentration of all gases increaseses

Answer: d

- Watch Video Solution

103. The reaction $2 \mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)$ is an exothermic equilibrium . This means that:
A. equilibration of this gas mixture will be slower at high temperature
B. A mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ will occupy twice the volume of a mole of NO_{2} at the same temperature.
C. the equilibrium will move to the right if an equilibrium maxture is cooled
D. the postion of equilibrium will move to the left with increasing gas
pressure

Answer: c

- Watch Video Solution

104. Densities of diamond and graphite are $3.5 \mathrm{~g} / \mathrm{mL}$ and $2.3 \mathrm{~g} / \mathrm{mL}$
$\Delta_{r} H=-1.9 k J / \mathrm{mol}$
Favourable conditions for formation of diamond are:
A. (a) high pressure and low temperature
B. (b) low pressure and high temperature
C. (c) high pressure and high temperature
D. (d) low pressure and low temperature

- Watch Video Solution

105. For an equilibrium $H_{2} O(s) \Leftrightarrow H_{2} O(l)$, which of the following statements is ture ?
A. The pressure changes do not affect the equilibrium
B. More of ice melts if pressure on the system is increased
C. More of liquid freezes if prssure on the system is increased
D. Less of ice melts if the pressure on the system is increased.

Answer: b

- Watch Video Solution

106. A pressure cooker reduces cooking time because
A. (a) the higher pressure inside the cooker crushes the food material
B. (b) cooking involves chemical change helped by a rise in temperature
C. (c) heat is more evenly distributed in the cooking space
D. (d) boiling point of water involed in cooking is increased

Answer: d

- Watch Video Solution

107. The vapour pressure of a liquid in a closed container depends upon
(1) temperature of liquid (2) quantity of liquid (3) surface area of the liquid
A. 1 only
B. 2 only
C. 1 and 3 only
D. 1,2,and3

Answer: a

- Watch Video Solution

108. The pressure on a sample of water at its triple point is reduced while the temperature is held constant .Which phases changes are favoured?
(1) melting of ice
(2)sublimation of ice
(3) vaporization of liquid water
A. 1 only
B. 3 only
C. 2 only
D. 2 and 3

Answer: d

109. An exothermic reaction is represented by the graph :
(a)

(b)
B.
.

$\xrightarrow{1 / T}$
.
A.
(c)

C.

110. An endothermic reaction is represented by the graph :
(a)
A.

B.
(b)

C.

D.

Answer: b
111. A schematic plot of $\ln K_{e q}$ versus inverse o ftemperature for a reaction is shown below

the reaction must be:
A. Exothermic
B. Endothermic
C. One with negligible enthalpy change
D. Highly spontanceous at ordinary temperature

Answer: a

- Watch Video Solution

112. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_{c} is:
A. $\Delta G^{\circ}=R T \operatorname{In} K$
B. $\Delta G^{\circ}=-R T \operatorname{In} K$
C. $\Delta G=R T I n K$
D. $\Delta G=-R T \operatorname{In} K$

Answer: b

- Watch Video Solution

113. For the chemical equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta_{r} H^{\ominus}$ can be determined from which one of the following plots?
(a)

1/T
A.
B.
(b)

C.
(c)

(d)

D.

Answer: a

- Watch Video Solution

114. K_{p} has the value of $10^{-6} \mathrm{~atm}^{3}$ and $10^{-4} \mathrm{~atm}^{3}$ at 298 K and 323 K respectiely for the reaction
$\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta_{r} H^{\circ}$ for the reaction is:
A. $7.7 \mathrm{KJ} / \mathrm{mol}$
B. $-147.41 \mathrm{KJ} / \mathrm{mol}$
C. $147.41 \mathrm{KJ} / \mathrm{mol}$
D. none of these

Answer: c

- Watch Video Solution

115. Vant's Hoff's equation shows the effect of temperature on equilibrium constants K_{c} and K_{p}. The K_{P} varies with tempertaure according to the relation:
A. $\log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta H^{\circ}}{2.303 R}\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right)$
B. $\log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta H^{\circ}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
C. $\log \frac{K_{p 2}}{K_{p 1}}=\frac{\Delta E^{\circ}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
D. None of these

Answer: b

- Watch Video Solution

116. For a reaction, the value of K_{p} increases with increase n temperature.

The ΔH for the reaction would be :
A. positive
B. negative
C. zero
D. cannot be predicted

Answer: A

117. The most stable oxides of nitrogen will be :
A. (a) $2 \mathrm{NO}_{2}(g) \Leftrightarrow N_{2}(g)+2 \mathrm{O}_{2}(g),, K=6.7 \times 10^{16} \mathrm{molL}^{-1}$
B. (b) $2 N_{2} O_{5}(g) \Leftrightarrow 2 N_{2}(g)+50_{2}(g),, K=1.2 \times 10^{-24} \mathrm{~mol}^{5} L^{-5}$
C. (c) $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g),, K=2.2 \times 10^{30}$
D. (d) $2 N_{2} O(g) \Leftrightarrow 2 N_{2}(g)+O_{2}(g),, K=3.5 \times 10^{33}, m o l L^{-1}$

Answer: A

- Watch Video Solution

118. When 1 mole of pure ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is mixed with 1 mole of acetic acid at $25^{\circ} \mathrm{C}$. the equilibrium mixture contains $2 / 3$ mole each of ester and water

$$
\mathrm{C}_{2} h_{5} \mathrm{OH}(l)+\mathrm{CH}_{3} \mathrm{COOH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The ΔG° for the reaction at 298 K is :
A. 3435 J
B. 4 J
C. -3435 J
D. zero

Answer: C

- Watch Video Solution

119. The value of ΔG° for a reaction in aqueous phase having $K_{c}=1$, would be :
A. $-R T$
B. -1
C. 0
D. $+R T$

Answer: C

120. A plot of Gibbs energy of a reaction mixture against the exent of the reaftion is :
A. minimum at eqilibrium
B. zero at equilibrium
C. miximum at equilibrium
D. None of these

Answer: A

- Watch Video Solution

121. For the reaction at 300 K
$A(g) \Leftrightarrow V(g)+S(g)$
$\Delta_{r} H^{\circ}=-30 \mathrm{~kJ} / \mathrm{mol}, \Delta_{r} S^{\circ}=-0.1 \mathrm{kJK}^{-1} . \mathrm{mol}^{-1}$
What is the value of equilibrium constant ?
A. 0
B. 1
C. 10
D. None of these

Answer: B

- Watch Video Solution

122. Solid $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ decomposes as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the total pressure is 0.2 bat at 420 K , what is the standard free energy change for the given reaction $\left(\Delta_{r} G^{\circ}\right)$?
A. $840 \mathrm{~kJ} / \mathrm{mol}$
B. $3.86 \mathrm{~kJ} / \mathrm{mol}$
C. $6.98 \mathrm{~kJ} / \mathrm{mol}$
D. $16.083 \mathrm{~kJ} / \mathrm{mol}$

Answer: D

- Watch Video Solution

123. The standard free energy change of a reaction is $\Delta G^{\circ}=-115 \mathrm{~kJ} / \mathrm{mol}^{-1}$ at 298 K . Calculate the value of $\log _{10} K_{p}$ $\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$
A. 20.16
B. 2.303
C. 2.016
D. 13.83

Answer: A

124. One mole of $N_{2}(\mathrm{~g})$ is mixed with 2 moles of $H_{2}(g)$ in a 4 litre vessel If 50% of $\mathrm{N}_{2}(\mathrm{~g})$ is converted to $\mathrm{NH}_{3}(\mathrm{~g})$ by the following reaction:

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g)
$$

What will the value of K_{c} for the following equilibrium ?

$$
N H_{3}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g)
$$

A. 256
B. 16
C. $\frac{1}{16}$
D. None of these

Answer: C

- Watch Video Solution

125.

The gas A_{2} in the left flask allowed to react with gas B_{2} present in right flask as $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g), K_{c}=4$ at $27^{\circ} C$. What is the concentrartion of $A B$ when equilibrium is established ?
A. 1.33 M
B. 2.66 M
C. 0.66 M
D. 0.33 M

Answer: C

126. Assume that the decomposition of HNO_{3} can be repersented by the following equation
$4 \mathrm{HNO}_{3}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ and the reaction approaches wquilibrium at 400 K temperature and 30 atm pressure. At equilibrium partial pressure of HNO_{3} is 2 atm

Calculate K_{c} in $(\mathrm{mol} / L-K)$ at 400 K
(Use : R $=0.08 \mathrm{~atm}-L / \mathrm{mol}-K)$
A. 4
B. 8
C. 16
D. 32

Answer: D

127. For the equilibrium:
$L i C l .3 N H_{3(s)} \Leftrightarrow L i C l . N_{3(s)}+2 N H_{3}, K_{p}=9 a t m^{2}$
at $40^{\circ} \mathrm{C}$. A $5 l i t r e$ vessel contains 0.1 mole of $\mathrm{LiCl} . \mathrm{NH}_{3}$. How many mole of NH_{3} should be added to the flask at this temperture to derive the backward reaction for completion?
A. 0.2
B. 0.59
C. 0.69
D. 0.79

Answer: D

- Watch Video Solution

128. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$.
In a closed vessel, solid ammonium carbamate is in equilibrium with its
dissociation products. At equilibrium, ammonia is added such that the partial pressure of NH_{3} at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure.
A. 4
B. 9
C. $\frac{31}{27}$
D. $\frac{2}{9}$

Answer: C

- Watch Video Solution

129. For the reaction $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
K_{p} is 5×10^{-2} atm. Calculate the mole per cent of $C_{2} H_{6}(g)$ at equilibruium if pure $C_{2} H_{6}$ at 1 atm is passed over a suitable catalyt at 900K :
A. 20
B. 33.33
C. 66.66
D. None of these

Answer: C

- Watch Video Solution

130. $2 \mathrm{NOBr}(g) \Leftrightarrow 2 N O(g)+\operatorname{Br} 2(g)$. If nitrosyl bromide (NOBr) 40% dissociated at certain temp. and a total pressure of 0.30 atm K_{p} for the reaction $2 \mathrm{NO}(g)+B r_{2}(g) \Leftrightarrow 2 N O B r(g)$ is
A. 45
B. 25
C. 0.022
D. 0.25

D Watch Video Solution

131. Consider the pertial decomposition of A as
$2 A(g) \Leftrightarrow 2 B(g)+C(g)$ At equilibrium 700 mL gaseous mixture contains 100 mL of gas C at 10 atm and 300 K what is the value of K_{p} for the reaction ?
A. $\frac{40}{7}$
B. $\frac{1}{28}$
C. $\frac{10}{28}$
D. $\frac{28}{10}$

Answer: C

132. At a certain temperature and 2 atm pressure equilibrium constant $\left(K_{p}\right)$ is 25 for the reaction
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$ Initially if we take 2 moles of each of the four gases and 2 moles of inert gas, what would be the equilibrium partial pressure of NO_{2} ?
A. (a) 1.33 atm
B. (b) 0.1665 atm
C. (c) 0.133 atm
D. (d) None of these

Answer: C

- Watch Video Solution

133. 0.020 g of selenium bapour at equilibrium occupying a volume of 2.463 mL at 1 atm and $27^{\circ} \mathrm{C}$. The selenium is in a state of equilibrium according to reaction
$3 S e_{2}(g) \Leftrightarrow S e_{6}(g)$
What is the degreeo f association of selenium ?
(At.mass of se $=79$)
A. 0.205
B. 0.315
C. 0.14
D. None of these

Answer: B

- Watch Video Solution

134. Determine the degree of association (polymerization) for the reaction in aqueous solution, if observed (mean) molar mass of HCHO and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is 150 :
$6 \mathrm{HCHO} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
A. (a) 0.50
B. (b) 0.833
C. (c) 0.90
D. (d) 0.96

Answer: D

- Watch Video Solution

135. A reaction system in equilibrium according to reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ in one litre vessel at a given temperature was found to be 0.12 mole each of SO_{2} and SO_{3} and 5 mole of $\mathrm{O}_{2} \mathrm{In}$ another vessel of one litre contains 32 g of $S O_{2}$ at the same temperature.

What mass of O_{2} must be added to this vessel in order that at equilibrium 20% of SO_{2} is oxidized to SO_{3} ?
A. 0.4125 g
B. 11.6 g
C. 1.6 g
D. None of these

Answer: B

- Watch Video Solution

136. The equilibrium constant K_{p} for the following reaction is 4.5
$N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ What would be the average molar mass (ing $/ \mathrm{mol}$) of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} formed by the dissociation of pure $\mathrm{N}_{2} \mathrm{O}_{4}$ at a total pressure of 2 atm ?
A. 69
B. 57.5
C. 80.5
D. 85.5

Answer: B

137. A flask containing 0.5 atm pressure of $A_{2}(g$, some solid AB added into flask which undergoes dissociation according to

$$
2 A B(s) \Leftrightarrow A_{2}(g)+B_{2}(g), K_{p}=0.06 \mathrm{~atm}^{2}
$$

The total pressure (in atm) at equilibrium is :
A. 0.70
B. 0.6
C. 0.10
D. None of these

Answer: A

- Watch Video Solution

138. A vessel of 250 litre was filled with 0.01 mole of $S b_{2} S_{3}$ and 0.01 mole of H_{2} to attain the equilibrium at $440^{\circ} \mathrm{C}$ as
$S b_{2} S_{3}(s) 3 H_{2}(g) \Leftrightarrow 2 S b(s)+3 H_{2} S(g)$ After equilibrium, the $H_{2} S$ formed was analysed by dissolved it in water and treating with execess of
Pb^{2+} to give 1.19 g of PbS as precipitate. What is the value of K_{c} at $440^{\circ} C ?$
A. 1
B. 2
C. 4
D. 8

Answer: A

- Watch Video Solution

139. For the reaction $2 A(g)+B(g) \Leftrightarrow C(g)+D(g), K_{c}=10^{12}$.if initially $4,2,6,2$ moles of A, B, C, D respectively are taken in a 1 litre vessel, then the equilibrium concentration of A is :
A. 4×10^{-4}
B. 2×10^{-4}
C. 10^{-4}
D. 8×10^{-4}

Answer: A

- Watch Video Solution

140. The equilibrium constant for the following reaction in aqueous solution is 0.90 .
$\mathrm{H}_{3} \mathrm{BO}_{3}+$ glycerin $\Leftrightarrow\left(\mathrm{H}_{3} \mathrm{BO}_{3}-\right.$ glycerin $)$
How many mole of glycerin should be added per litre of $0.10 \mathrm{MH}_{3} \mathrm{BO}_{3}$ so that 80% of the $\mathrm{H}_{3} \mathrm{BO}_{3}$ is converted to the boric-acid glycerin complex ?
A. 4.44
B. 4.52
C. 3.6
D. 0.08

- Watch Video Solution

141. Rate of diffucion of ozonized oxygen is $0.4 \sqrt{5}$ times that of pure oxygen what is the per cent degreeof association of oxygen assuming pure O_{2} in the sample initially ?
A. 20
B. 40
C. 60
D. 'None of these

Answer: C

- Watch Video Solution

142. One mole of SO_{3} was placed in a two litre vessel at a certain temperature. The following equilibrium was established in the vessel $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The equilibrium mixture reacts with 0.2 mole KMnO_{4} in acidic medium.
Hence, K_{c} is :
A. 0.50
B. 0.25
C. 0.125
D. None of these

Answer: C

- Watch Video Solution

143. At $800^{\circ} \mathrm{C}$, the following equilibrium is established as
$F_{2}(g) \Leftrightarrow 2 F(g)$
The cojmpositionof equilibrium may be determinded by measuring the rate of effusion of theh kmixture through a pin hole. It is found that at $800^{\circ} \mathrm{C}$ and 1 atm mixture effuses 1.6 times as fast as SO_{2} effuse under the similar conditions. (At. mass of $\mathrm{F}=19$) what is the value of K_{p} (in atm)
A. 0.315
B. 0.685
C. 0.46
D. 1.49

Answer: D

- Watch Video Solution

144. The equilibrium constant for the ionization of $\mathrm{RNH}_{2}(\mathrm{~g})$ in water as
$R \mathrm{NH}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{RNH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q)$
is $8 \times 10^{-6} a t 25^{\circ} C$. find the pH of a solution at equilibrium when pressure of $\mathrm{RNH}_{2}(\mathrm{~g})$ is 0.5 bar :
A. ≈ 12.3
B. ≈ 11.3
C. ≈ 11.45
D. None

- Watch Video Solution

145. Calculate $\Delta_{r} G$ for the reaction at $27^{\circ} C$
$H_{2}(g)+2 A g^{+}(a q) \Leftrightarrow 2 A g(s)+2 H^{+}(a q)$
Given : $P_{H 2}=0.5 \mathrm{bar},\left[A g^{+}\right]=10^{-5} M$, $\left[H^{+}\right]=10^{-3} M, \Delta_{r} G^{\circ}\left[\mathrm{Ag}^{+}(a q)\right]=77.1 \mathrm{~kJ} / \mathrm{mol}$
A. $-154.2 k J / m o l$
B. $-178.9 \mathrm{~kJ} / \mathrm{mol}$
C. $-129.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

146. When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated at certain temperature, it dissociates as $N_{2} O_{5}(g) \Leftrightarrow N_{2} O_{3}(g)+O_{2}(g), K_{c}=2.5$ At the same time $N_{2} O_{3}$ also decomposes as :
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$. "If initially" 4.0 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ "are taken in" 1.0 litre flask and alowed to dissociate. Concentration of O_{2} at equilibrium is 2.5 M . "Equilibrium concentratio of " $\mathrm{N}_{2} \mathrm{O}_{5}$ is :
A. (a) 1.0 M
B. (b) 1.5 M
C. (c) $2.166 M$
D. (d) 1.846 M

Answer: D

- Watch Video Solution

147. Two solid compounds X and Y dissociates at a certain temperature as follows
$X(s) \Leftrightarrow A(g)+2 B(g), K_{p 1}=9 \times 10^{-3} a t m^{3}$
$Y(s) \Leftrightarrow 2 B(g)+C(g), K_{p 2}=4.5 \times 10^{-3} \mathrm{~atm}^{3}$
The total pressure of gases over a mixture of X and Y is :
A. (a) 4.5 atm
B. (b) 0.45 atm
C. (c) 0.6 atm
D. (d) None of these

Answer: B

- Watch Video Solution

148. For a gaseous reaction
$a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)$
equilibrium constants K_{c}, K_{p} and K_{x} are represented by the following reation
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} . P_{D}^{d}}{P_{A}^{a}}$ and $K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}$
where $[A]$ represents molar concentrationof A, p_{A} represents partial pressure of A and P represents total pressure, x_{A} represents mole fraction of A

For the reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g), K_{p}>K_{x}$ is obtained at :
A. 0.5 atm
B. 0.8 atm
C. 1 atm
D. 2atm

Answer: D

- Watch Video Solution

149. For a gaseous reaction
$a A(g)+b B(g) \Leftrightarrow c C(g)+d D(g)$
equilibrium constants K_{c}, K_{p} and K_{x} are represented by the following reation
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{P c^{c} . P_{D}^{d}}{P_{A}^{a}}$ and $K x=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}}$
where $[A]$ represents molar concentrationof A, p_{A} represents partial pressure of A and P represents total pressure, x_{A} represents mole fraction of For the following equilibrium relation betwen K_{c} and K_{c} (in terms of mole fraction) is
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
A. $K_{c}=K_{x}(R T)^{-1}$
B. $K_{c}=K_{x}(R T)$
C. $K_{c}=K_{x}\left(\frac{R T}{P}\right)$
D. $K_{c}=K_{x}\left(\frac{P}{R T}\right)$

Answer: C

- Watch Video Solution

150. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constants K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
For an isomerization $X(g) \Leftrightarrow Y(g)$ the temperature dependency of equilibrium constant is given by :
$\ln K=2-\frac{1000}{T}$
The value of $\Delta_{r} S^{\circ}$ at $300 K$ is:
A. 2 R
B. $\frac{2}{R}$
C. 1000 R
D. None of these

Answer: A

- Watch Video Solution

151. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
Select the correct statement :
A. Value of $K_{e q}$ always increases with increasing temperature
B. For expthermic reaction of value of $K_{e q}$ increases with decreasing in temperature
C. For endothermic reaction value of $K_{e q}$ increases with decreasihng
in temperature
D. For exothermic reactionslope is $(\log K V s .1 / T)$ negative

Answer: B

- Watch Video Solution

152. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constans K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
Variation of $\log _{10} \mathrm{~K}$ with $\frac{1}{T}$ is shown by the following graph in which straight line is at 45° hence ΔH° is :
A. $-4.606 \mathrm{~kJ} / \mathrm{mol}$
B. $-19.147 \mathrm{~kJ} / \mathrm{mol}$
C. $-8.314 \mathrm{~kJ} / \mathrm{mol}$
D. $-10 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

153. Variation of equilibrium constan K with temperature is given by van't Hoff equation
$I n K=\frac{\Delta_{r} S^{\circ}}{R}-\frac{\Delta_{r} H^{\circ}}{R T}$
for this equation, $\left(\Delta_{r} H^{\circ}\right)$ can be evaluated if equilibrium constants K_{1} and K_{2} at two temperature T_{1} and T_{2} are known.
$\log \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$ The equilibrium constant $K p$ for the following reaction is 1 at $27^{\circ} C$ and 4 at $47^{\circ} \mathrm{C}$.
$A(g) \Leftrightarrow B(g)+C(g)$
For the reaction calculate enthalpy change for the
$B(g)+C(g) \Leftrightarrow A(g)$
(Given: $R=2 \mathrm{cal} / \mathrm{mol}-K)$
A. $-13.31 \mathrm{Kcal} / \mathrm{mol}$
B. $13.31 \mathrm{Kcal} / \mathrm{mol}$
C. $-19.2 \mathrm{Kcal} / \mathrm{mol}$
D. $-55.63 \mathrm{Kcal} / \mathrm{mol}$
154. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into $\mathrm{NO}(\mathrm{g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \quad, K_{p_{1}=2.5}$ bar
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 ber.
The equilibrium partiaal pressure of $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ is:
A. 0.5 bar
B. 1.0 bar
C. 1.5 bar
D. 0.1 bar

Answer: A

155. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into NO (g) and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \quad, K_{p_{1}=2.5}$ bar
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 ber.
The equilibrium partial presure of $\mathrm{NO}_{2}(\mathrm{~g})$ is:
A. 0.066 bar
B. 0.133 bar
C. 0.423 bar
D. 0.83 bar

Answer: D

156. $\mathrm{N}_{2} \mathrm{O}_{3}$ is an unstable oxide of nitrogen and it decomposes into NO (g)
and $\mathrm{NO}_{2}(\mathrm{~g})$ where $\mathrm{NO}_{2}(\mathrm{~g})$ is further dimerise dimerise into $\mathrm{N}_{2} \mathrm{O}_{4}$ as
$\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \quad, K_{p_{1}=2.5} \mathrm{bar}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad: K_{P 2}$
A flask is initially filled with pure $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of $\mathrm{NO}(\mathrm{g})$ was found to be 1.5 ber.
The value of $K_{P 2}$ is
A. $0.16 \mathrm{bar}^{-1}$
B. $0.32 \mathrm{bar}^{-1}$
C. $0.48 \mathrm{bar}^{-1}$
D. $0.64 \mathrm{bar}^{-1}$

Answer: C

- Watch Video Solution

157. A gas $X(g)$ is when dissolved in water heat is evolved. Then solubility of X^{\prime} will increase :
A. high temperature, low pressure
B. low temperature, high pressure
C. high temperature, high pressure
D. low temperature, high pressure

Answer: B

- Watch Video Solution

158. $F e(l) \Leftrightarrow F e(s)$

Above equilibrium is favoured at :
A. high pressure, low temperature
B. high pressure, high temperature
C. low pressure, high temperature
D. low pressure, low temperature

Answer: A

- Watch Video Solution

159. For the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
If pressure id increased by reducing the volume of the container then :
A. total pressure at equilibrium will remain same
B. concentration of all the component at equilibrium will change
C. concentration of all the component at equilibrium will ramin same
D. equilibrium will shift in the beckward direction

Answer: B

- Watch Video Solution

160. Which of the following is correct about the chemical equilibrium ?
A. $(\Delta G)_{T, p}=0$
B. Equilibrium constant is independent of initial concentration of reactants
C. Catalyst has no effect on equilibrium state
D. Reaction stops at equilibrium

Answer: A,B,C

- Watch Video Solution

161. For the reaction
$A B_{2}(g) \Leftrightarrow A B(g)+B(g)$
If \propto is negligiable w.r.t 1 then degree of dissociaation (\propto) of $A B_{2}$ is proportional to :
A. $\frac{1}{P}$
B. $\frac{1}{V}$
C. $\frac{1}{\sqrt{P}}$
D. \sqrt{V}

Answer: C,D

- Watch Video Solution

162. Consider the reaction given below. In which cases will the reaction proceed toward right by increasing the pressure ?
A. $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{Cl}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{HCl}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
C. $\mathrm{CO}_{2}(g)+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

Answer: A,C

163. Ammonia is a weak base that reacts with water according to the equation
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$
Select the correct option (s) that can increase the moles of ammonium ion in water:
A. Addition of HCl
B. Addition of NaOH
C. Additon of $\mathrm{NH}_{4} \mathrm{Cl}$
D. Addition of $\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

164. Consider the reaction $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{CO}_{2}(g)+$ Heat Under what conditions shift is undeterminable?
A. Addition of O_{2} and decrease in volume
B. Addition of CO and removal of CO_{2} at constant volume
C. Increase in temperature and decrease in volume
D. Addition of CO and increase in temperature at constant volume

Answer: C,D

- Watch Video Solution

165. What will be the effect of addition of catalyst at constant temperature?
A. The equilibrium constant will remain constant
B. ΔH of the reaction will remain constant
C. K_{f} and K_{b} wil increase upto same extent
D. equilibrium composition will change

Answer: A,B,C

166. For the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, the forward reaction at constant temperature favorrd by :
A. introducing an inert gas at constant volume
B. introducing chlorine gas at constant volume
C. introducing an inert gas at constant pressure
D. increasing the volume of the container

Answer: C,D

- Watch Video Solution

167.

For
the
reaction
$C l F_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g), \Delta H=-329 k J, \quad$ dissociation of $\mathrm{ClF}_{3}(\mathrm{~g})$ will be favourate by :
A. increasing the temperature
B. increasing the volume of the container
C. adding of F_{2} gas
D. adding of inert gas at constant pressure

Answer: A,B,D

- Watch Video Solution

168. Increase in the presssure for the following equilibrium results in the :
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Equilibrium will shift left
A. formation of more $\mathrm{H}_{2} \mathrm{O}$ (I)
B. formation of more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. increase in b.p of $\mathrm{H}_{2} \mathrm{O}(l)$
D. decrease in b.p. of $\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

169. Heating a II group metal carbonate leads to decomposition as :
$\mathrm{BaCO}_{3}(s) \Leftrightarrow \mathrm{BaO}(s)+\mathrm{CO}_{2}(g)$
Equilibrium will shift left
A. by addition of BaO (s)
B. by addition of $\mathrm{CO}_{2}(\mathrm{~g})$
C. by decreasing the temperature
D. by decreasing the volume of the vessel

Answer: B,C,D

170. $N_{2}(g)$ and $H_{2}(g)$ are allowed to react in a closed vessel at given temp. and pressure for the formation of $\mathrm{NH}_{3}(\mathrm{~g}),\left[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.4 \mathrm{kcal}\right]$ If $\mathrm{He}(\mathrm{g})$ is added at equilibrium at constant pressure than which is/are correct ?
A. Concentration of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{NH}_{3}(\mathrm{~g})$ decrease.
B. Moles of $\mathrm{NH}_{3}(\mathrm{~g})$ decreases.
C. The extent of cooling depends on amount of he (g) added.
D. Concentration of N_{2} and H_{2} increases and concentration of NH_{3} decreases.

Answer: D

- Watch Video Solution

Column-I
(A) $30_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$
(B) $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)$
(C) $2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
(D) $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Column-II

(P) no unit
(Q) $\mathrm{atm}^{-1 / 2}$
(R) atm^{-1}
(S) atm^{-2}

- Watch Video Solution

172. Match the
following
columns

Column-I
(Reaction)
(A) $2 X(g) \rightleftharpoons Y(g)+Z(g)$
(B) $X(g) \rightleftharpoons Y(g)+Z(g)$
(C) $3 X(\mathrm{~g}) \rightleftharpoons Y(\mathrm{~g})+Z(\mathrm{~g})$
(D) $2 X(g) \rightleftharpoons Y(g)+2 Z(g)$

Column-II
(If α is negligiable w.r.t. 1)
(P) $\alpha=2 \times \sqrt{K_{c}}$
(Q) $\alpha=3 \times \sqrt{K_{c}}$
(R) $\alpha=\left(2 K_{c}\right)^{1 / 3}$
(S) $\alpha=\sqrt{K_{c}}$
173. Match the
following
Column-I
(A) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) ; \Delta H=-\mathrm{ve}$
(B) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) ; \Delta H=+\mathrm{ve}$
(C) $\mathrm{A}(g)+B(g) \rightleftharpoons 2 \mathrm{C}(g)+D(g) ; \Delta H=+\mathrm{ve}$
(D) $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) ; \Delta H=+\mathrm{ve}$
Column-II
(P) K increases with increase in temperature
(Q) K decreases with increase in temperature
(R) Pressure has no effect
(S) Moles of product increase due to addition of inert gas at constant pressure

D Watch Video Solution

174.

Match
the
following
columns
(A) $\frac{K_{10+T^{\circ} \mathrm{C}}}{K_{T^{\circ} \mathrm{C}}}=2$
(B) $\frac{K_{10+T^{*} C}}{K_{T^{*} C}}=\frac{1}{2}$
(C) $A(g)+B(g) \rightleftharpoons C(g)$
(D) $X(\mathrm{~s})+Y(\mathrm{~g}) \rightleftharpoons Z(\mathrm{~g})$

Column-I

Column-II
(P) Endothermic
(Q) Not affected by pressure
(R) Exothermic
(S) Affected by volume

D Watch Video Solution

Column-I

(A) Pressure increased in $2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$
(B) Pressure increased in $\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
(C) Temp. increased and pressure increased $3 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{O}_{3}(g) ;$ $\Delta H=285 \mathrm{~kJ}$
(D) Pressure decreased and moles of N_{2} increased
$\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) ;$ $\Delta H=66.4 \mathrm{~kJ}$

Column-II

(P) Equilibrium shifted in forward direction
(Q) Equilibrium shifted in backward direction
(R) Equilibrium remains unaffected
(S) Theoretically we cannot predict

- Watch Video Solution

