びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

ALGEBRA

Thinking Corner

1. The number of possible solutions when soving system of linear equations in three variables are......

- Watch Video Solution

2. If three planes are parallel then the number of possible point(s) of intersection is/are \qquad
3. Complete the factor tree for the given polynomials $f(x)$ and $g(x)$. Hence find their GCD and LCM.

4. $\operatorname{GCD}[f(x)$ and $g(x)]=$ \qquad
5. LCM $[f(x)$ and $g(x)]=$ \qquad

- Watch Video Solution

4.

$f(x) \times g(x) \times r(x)=L C M[f(x), g(x), r(x)] \times G C D[f(x), g(x), r(x)]$
?

- Watch Video Solution

5. Are $x^{2}-1$ and $\tan x=\frac{\sin x}{\cos x}$ rational expressions ?

Watch Video Solution

6. The number of excluded values of $\frac{x^{3}+x^{2}-10 x+8}{x^{4}+8 x^{2}-9}$ is

- Watch Video Solution

7. The sum of two rational expression is always a rational expression.

- Watch Video Solution

8. The product of two rational expressions is always a rational expression.

- Watch Video Solution

9. Fill up the empty box in each of the given expression so that the resulting quadratic polynomial becomes a perfect square.
(i) $x^{2}+14 x+$
(ii) $x^{2}-24 x+$
(iii) $(p)^{2}+2 q p+$

- Watch Video Solution

Progress Check

1. For system of linear equations with three variables the minimum number of equations required to get unique solution is

- Watch Video Solution

2. A system with Will reduce to identity.

- Watch Video Solution

3. A system with

- Watch Video Solution

4. When two polynomials of same degree has to be divided,should be considered to fix the dividend.

- Watch Video Solution

5. If $r(x)=0$ when $\mathrm{f}(\mathrm{x})$ is divided by $\mathrm{g}(\mathrm{x})$ then $\mathrm{g}(\mathrm{x})$ then $\mathrm{g}(\mathrm{x})$ is called of the polynomials.

- Watch Video Solution

6. If $f(x)=g(x) q(x)+r(x), \ldots \ldots \ldots$. must be added to $\mathrm{f}(\mathrm{x})$ to make $\mathrm{f}(\mathrm{x})$ completely divisible by $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

7. If $f(x)=g(x) q(x)+r(x)$, Must be subtracted to $\mathrm{f}(\mathrm{x})$ to make $f(x)$ completely divisible by $g(x)$.

- Watch Video Solution

8. Find the unknown expression in the following figures.

- Watch Video Solution

9. Write an expression that represents the perimeter of the figure and simplify.

O
 Watch Video Solution

10. Find the base of the given parallelogram whose perimeter is
$=\frac{4 x^{2}+10 x-50}{(x-3)(x+5)}$.

11. Is $x^{2}+4 x+4$ a perfect square ?

- Watch Video Solution

12. What is the value of x in $3 \sqrt{x}=9$?

- Watch Video Solution

13. The square root of $361 x^{4} y^{2}$ is \qquad .

- Watch Video Solution

14. $\sqrt{a^{2} x^{2}+2 a b x+b^{2}}=$ \qquad
15. If a polynomial is a perfect square then its factors will be repeated number of times.

- Watch Video Solution

16. Complete the following table

Quadratic equation	Roots of quadratic equation α and β	Coefficients of x^{2}, x and constants	Sum of Roots $\alpha+\beta$	Product of roots $(\alpha \beta)$	$-\frac{b}{a}$	$\frac{c}{a}$	Conclusion
$4 x^{2}-9 x+2=0$							
$\left(x-\frac{4}{5}\right)^{2}=0$							
$2 x^{2}-15 x-27=0$							

- Watch Video Solution

Exercise 31

1. Solve the following system of linear equations in three variables
$x+y+z=5,2 x-y+z=9, x-2 y+3 z=16$
2. Discuss the nature of solutions of the following system is equations $x+2 y-z=6,-3 x-2 y+5 z=-12, x-2 z=3$

- Watch Video Solution

3. Vani, her father and her grand father have an average age of 53 . Onehalf of her grand father's age plus one-third of her father's age plus one fourth of Vani's age is 65 . Four years ago if Vani's grandfather was four times as old as Vani then how old are they all now?

- Watch Video Solution

4. The sum of the digits of a three-digit number is 11 . If the digits are revesed, the new number is 46 more than five times the former number.

If the hundreds digit plus twice the tens digit is equal to the units digits, then find the original three digit number?

- Watch Video Solution

5. There are 12 pieces of five, ten and twenty rupee currrencies whose total value is ₹105. When first 2 sorts are interchanged in their numbers its value will be increased by ₹20. Find the number of currencies in each sort.

- Watch Video Solution

Exercise 32

1. Find the GCD of the given polynomials
$3 x^{4}+6 x^{3}-12 x^{2}-24 x, 4 x^{4}+14 x^{3}+8 x^{2}-8 x$
2. Find the LCM of the given expressions.
$4 x^{2} y, 8 x^{3} y^{2}$

- Watch Video Solution

Exercise 33

1. Find the LCM and GCD for the following and verify that
$f(x) \times g(x)=L C M \times G C D$
$21 x^{\wedge}(2) y, 35 x y^{\wedge}(2)^{\wedge}$

- Watch Video Solution

2. Find the LCM of each pair of the following polynomials
$a^{2}+4 a-12, a^{2}-5 a+6$ whose GCD is a-2
3. Find the GCD for each pair of the following polynomials $12\left(x^{4}-x^{3}\right), 8\left(x^{4}-3 x^{3}+2 x^{2}\right)$ whose LCM is $24^{3}(x-1)(x-2)$

- Watch Video Solution

4. Given the LCM and GCD of the two polynomials $p(x)$ and $q(x)$ find the unknownn polynomial in the following table

S. No	LCM	GCD	$p(x)$	$q(x)$
(i)	$a^{3}-10 a^{2}+$ $11 a+70$	$a-7$	$a^{2}-12 a$	
(ii)	$\left(x^{2}+y^{2}\right)\left(x^{4}\right.$ $\left.+x^{2} y^{2}+y^{4}\right)$	$\left(x^{2}-y^{2}\right)$		$\left(x^{4}-y^{4}\right)\left(x^{2}\right.$ $\left.+y^{2}-x y\right)$

- Watch Video Solution

1. Reduce each of the following retional expression to its lowest table form .
$\frac{x^{2}-1}{x^{2}+x}$

- Watch Video Solution

2. Find the excluded values, if any of the following expressions

$$
\frac{y}{y^{2}-25}
$$

- Watch Video Solution

Exercise 35

1. Simplify
$\frac{4 x^{2} y}{2 z^{2}} \times \frac{6 x z^{3}}{20 y^{4}}$
2. Simplify:
$\frac{x^{3}-y^{3}}{3 x^{2}+9 x y+6 y^{2}} \times \frac{x^{2}+2 x y+y^{2}}{x^{2}-y^{2}}$

- Watch Video Solution

3. Simplify
$\frac{b^{2}+3 b-28}{b^{2}+4 b+4} \div \frac{b^{2}-49}{b^{2}-5 b-14}$

- Watch Video Solution

4. If $x=\frac{a^{2}+3 a-4}{3 a^{2}-3}$ and $y=\frac{a^{2}+2 a-8}{2 a^{2}-2 a-4}$ find the value of $x^{2} y^{-2}$

- Watch Video Solution

5. If a polynomial $p(x)=x^{2}-5 x-14$ is divided by another polynomial $\mathrm{q}(\mathrm{x})$ we get $\frac{x-7}{x+2}$, find $\mathrm{q}(\mathrm{x})$.

Exercise 36

1. Simplify
$\frac{x(x+1)}{x-2}+\frac{x(1-x)}{x-2}$

- Watch Video Solution

2. Simplify

$$
\frac{(2 x+1)(x-2)}{x-4}-\frac{\left(2 x^{2}-5 x+2\right)}{x-4}
$$

- Watch Video Solution

3. Subtract $\frac{1}{x^{2}+2}$ from $\frac{2 x^{3}+x^{2}+3}{\left(x^{2}+2\right)^{2}}$

- Watch Video Solution

4. Which rational expression should be subtracted from $\frac{x^{2}+6 x+8}{x^{3}+8}$ to get $\frac{3}{x^{2}-2 x+4}$.

D Watch Video Solution

5. If $A=\frac{2 x+1}{2 x-1}, B=\frac{2 x-1}{2 x+1}$ find $\frac{1}{A-B}-\frac{2 B}{A^{2}-B^{2}}$

D Watch Video Solution

6. If $A=\frac{x}{x+1}, B=\frac{1}{x+1}, \operatorname{provet}^{\wedge}\left((\mathrm{A}+\mathrm{B})^{\wedge}(2)+(\mathrm{A}-\mathrm{B})^{\wedge}(2)\right) /(\mathrm{A} \div \mathrm{B})=$ $\left(2\left(x^{\wedge}(2)+1\right)\right) /\left(x(x+1)^{\wedge}(2)\right)^{\wedge}$

- Watch Video Solution

7. Peri needs 4 hours to complete a work. His friend Yuvan needs 6 hours to complete the same work. How long will take to complete if they work together?

- Watch Video Solution

8. Iniya bought 50 kg of fruits consisting of apples and bananas. She paid twice as much per kg for the apple as she did for the banana. If Iniya bought ₹ 1800 worth of apples and ₹ 600 worth bananas, then how many kg of each fruits did she buy?

- Watch Video Solution

Exercise 37

1. Find the square root of the following rational expressions.
$\frac{400 x^{4} y^{12} z^{16}}{100 x^{8} y^{4} z^{4}}$
2. Find the square root of the following
$\left(2 x^{2}+\frac{17}{6} x+1\right)\left(\frac{3}{2} x^{2}+4 x+2\right)\left(\frac{4}{3} x^{2}+\frac{11}{3} x+2\right)$

- Watch Video Solution

Exercise 38

1. Find the square root of the following polynomials by division method $x^{4}-12 x^{3}+42 x^{2}-36 x+9$

- Watch Video Solution

2. Find the square root of the expressions
$\frac{x^{2}}{y^{2}}-10 \frac{x}{y}+27-10 \frac{y}{x}+\frac{y^{2}}{x^{2}}$
3. Find the values of a and b if the following polynomials are perfect squares
$4 x^{4}-12 x^{3}+37 x^{2}+b x+a$

- Watch Video Solution

4. Find the values of m and n if the following expression are perfect squares.

$$
\frac{1}{x^{4}}-\frac{6}{x^{3}}+\frac{13}{x^{2}}+\frac{m}{x}+n
$$

- Watch Video Solution

Exercise 39

1. Determine the quadratic equations, whose sum and product of roots
are
$-9,20$
2. Find the sum and product of the roots for each of the following quadratic equations
$x^{2}+3 x-28=0$

- Watch Video Solution

Exercise 310

1. Solve the following quadratic equations by factorization method.
$4 x^{2}-7 x-2=0$

- Watch Video Solution

2. The number of volleyball games that must be scheduled in a league with n teams is given by $G(n)=\frac{n^{2}-n}{2}$ where each team plays with
every other team exactly once. A league scheledules 15 games. How many teams are in the league?

- Watch Video Solution

Exercise 311

1. Solve the following quadratic equation by completing the square method
$9 x^{2}-12 x+4=0$

- Watch Video Solution

2. Solve the following quadratic equation by formula method
$2 x^{2}-5 x+2=0$
3. A ball rolls down a slope and travels a distance $d=t^{2}-0.75 t$ feet in t seconds. Find the time when the distance traveled by the ball is 11.25feet.

- Watch Video Solution

Exercise 312

1. If the difference between a number and its reciprocal is $\frac{24}{5}$, find the number.

- Watch Video Solution

2. A garden measuring 12 m by 16 m is to have wide installed all the way around so that it incease the total area of $285 \mathrm{~m}^{2}$. What is the width of the pathway?
3. A bus covers a distance of 90 km at a unform speed. Had the speed been $15 \mathrm{~km} /$ hour more it would have taken 30 minutes less for the journey. Find the original speed of the bus.

- Watch Video Solution

4. A girl is twice as old as her sister. Five years hence, the product of their ages (in years) will be 375 . Find their present ages.

- Watch Video Solution

5. A pole has to be erected at a point on the boundary of a circular ground of diameter 20 m in such a way that the difference of its distance form two diameterically opposite fixed gates P and Q on the boundary is 4 m . Is it possible to do so? If answer is yes at what distance from the two gates should the pole be erected?
6. From a group of black bees $2 x^{2}$, square root of half of the group went to a tree. Again eightninth of th ebess went to the same tree. The remaining two got caught up in a fragrant lotus. How many bees were there in total?

- Watch Video Solution

7. Music is been played in two opposite galleries with certain group of people. In the first gallery a group of 4 singers were singing and in the second gallery 9 singers were singing. The two galleries are separate by the distance of 70 m . Where should a person stand for hearing the same intensity of the singers voice? (Hit: The ratio of the sound intensity is equal to square of the ratio of their corresponding distances).

- Watch Video Solution

8. There is a square field whose side is 10 m . A square flower bed is prepared in its centre leaving a gravel path all round the flower bed. The total cost of the laying the flower bed and gravelling the path at ₹3 and ₹ 4 per square metre respectively is ₹ 364 . Find the width of the gravel path.

- Watch Video Solution

9. Two woman together took 100 eggs to a market, one had more than the other. Both sold tham for the same sum of the money. The first then said to the second, "If 1 had your eggs, I would have earned ₹15", to which the second replied: "If 1 had your eggs, I would have earned ₹ $6 \frac{2}{3}$?. How many eggs did each had in the beginning?

- Watch Video Solution

10. The hypotenuse of a right angled triangle is 25 cm an dits perimeter 56 cm . Find the length of the smallest side.

Watch Video Solution

Exercise 313

1. Determine the nature of the roots for the following quadratic equations

$$
15 x^{2}+11 x+2=0
$$

- Watch Video Solution

2. Find the value of ' k ' for which the roots of the following equations are real and equal

$$
(5 k-6) x^{2}+2 k x+1=0
$$

3. If the roots of $(a-b) x^{2}+(b-c) x+(c-a)=0$ are real and equal, then prove that b, a, c are in arithmetic progression.

- Watch Video Solution

4. If a, b are real then show that the roots of the equation $(a-b) x^{2}-6(a+b) x-9(a-b)=0$ are real and unequal.

- Watch Video Solution

5. If the roots of the equation $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0$ are equal, prove that either $a=0$ or $a^{3}+b^{3}+c^{3}=3 a b$.

- Watch Video Solution

1. Write each of the following expressions in terms of $\alpha+\beta$ and $\alpha \beta$.

$$
\frac{\alpha}{3 \beta}+\frac{\beta}{3 \beta}
$$

- Watch Video Solution

2. The roots of the equation $2 x^{2}-7 x+5=0$ are α and β. Without solving the root find

$$
\frac{\alpha+2}{\beta+2}+\frac{\beta+2}{\alpha+2}
$$

- Watch Video Solution

3. The roots of the equation $x^{2}+6 x-4=0$ are α, β. Find the quadratic equation whose roots area $\left(\alpha^{2} \beta\right)$ and $\beta^{2} \alpha$
4. If α, β are the roots of $7 x^{2}+a x+2=0$ and if $\beta-\alpha=\frac{-13}{7}$. find the value of a.

- Watch Video Solution

5. If one root of the equation $2 y^{2}-a y+64=0$ is twice the other then find the values of a.

- Watch Video Solution

6. If one root of equation $3 x(2)+k x+81=0$ (having real roots) is the square of the other then find k.

- Watch Video Solution

1. Graph the following quadratic equations and state their nature of solutions.

$$
x^{2}+x+7=0
$$

- Watch Video Solution

2. Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$.

- Watch Video Solution

3. Draw the graph of $y=x^{2}+x$ and hence solve $x^{2}+1=0$.

- Watch Video Solution

4. Draw the graph of $y=x^{2}+3 x+2$ and use it to solve $x^{2}+2 x+1=0$.
5. Draw the graph $y=x^{2}+3 x-4$ and hence use it to solve $x^{2}+3 x-4=0$.

- Watch Video Solution

6. Draw the graph of $y=x^{2}-5 x+6$ and hence solve $x^{2}-5 x-14=0$.

- Watch Video Solution

7. Draw the graph of $y=2 x^{2}-3 x-5$ and hence solve $2 x^{2}-4 x-6=0$.

- Watch Video Solution

8. Draw the graph of $y=(x-1)(x+3)$ and hence solve $x^{2}-x-6=0$.

- Watch Video Solution

Exercise 316

1. In the matrix $A=\left[\begin{array}{cccc}8 & 9 & 4 & 3 \\ -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1\end{array}\right]$, write

The number of elements.

- Watch Video Solution

2. In the matrix $A=\left[\begin{array}{cccc}8 & 9 & 4 & 3 \\ -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1\end{array}\right]$, write

The order of the matrix.
3. In the matrix $A=\left[\begin{array}{cccc}8 & 9 & 4 & 3 \\ -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1\end{array}\right]$, write

Write the elements $a_{22}, a_{23}, a_{24}, a_{34}, a_{43}, a_{44}$,

- Watch Video Solution

4. If a matrix has 18 elements, what are the possible orders it can have?

What, if it has 5 elements?

- Watch Video Solution

5. Construct a 3×3 matrix whose elements are given by
$a_{i j}=\frac{(i+j)^{3}}{3}$
6. If $A=\left(\begin{array}{ccc}5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2\end{array}\right)$ then find the transpose of A .

- Watch Video Solution

7. If $A=\left(\begin{array}{cc}\sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5\end{array}\right)$ then find the transpose of -A .

- Watch Video Solution

8. If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(A^{T}\right)^{T}=A$.

(D) Watch Video Solution

9. Find the values of x, y, and z from the following equations

$$
\left[\begin{array}{cc}
12 & 3 \\
x & \frac{3}{2}
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
3 & 5
\end{array}\right]
$$

- Watch Video Solution

Exercise 317

1. If $A=\left[\begin{array}{cc}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right], B=\left[\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right]$ then verify that
$A+B=B+A$

- Watch Video Solution

2. If $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4\end{array}\right], B=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1\end{array}\right], C=\left[\begin{array}{ccc}8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1\end{array}\right]$
then verify that $A+(B+C)=(A+B)+c$

(D) Watch Video Solution

3. Find the X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 3 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$
4. If $A=\left[\begin{array}{lll}0 & 4 & 9 \\ 8 & 3 & 7\end{array}\right], B=\left[\begin{array}{lll}7 & 3 & 8 \\ 1 & 4 & 9\end{array}\right]$ find the value of B-5A

- Watch Video Solution

5. Find the value of x, y, z if

$$
\left(\begin{array}{cc}
x-3 & 3 x-z \\
x+y+7 & x+y+z
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 6
\end{array}\right)
$$

- Watch Video Solution

6. Find x and y if $x\left[\begin{array}{ll}4 & -3\end{array}\right]+y\left[\begin{array}{ll}-2 & 3\end{array}\right]=\left[\begin{array}{ll}4 & 6\end{array}\right]$

- Watch Video Solution

7. Find the non-zero values of x satisfying the matrix equation $x\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right], 2\left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]=2\left[\begin{array}{cc}x^{2}+8 & 24 \\ 10 & 6 x\end{array}\right]$

- Watch Video Solution

8. Solve for $\mathrm{x}, \mathrm{y},\left[\begin{array}{l}x^{2} \\ y^{2}\end{array}\right]+2\left[\begin{array}{c}-2 x \\ -y\end{array}\right]=\left[\begin{array}{l}5 \\ 8\end{array}\right]$

- Watch Video Solution

Exercise 318

1. Find the order of the product matrix $A B$ is

	(i)	(ii)	(iii)	(iv)	(v)
Orders of A	3×3	4×3	4×2	4×5	1×1
Orders of B	3×3	3×2	2×2	5×1	1×3

2. If A is of order $p \times q$ and B is of order $q \times r$, what is order of AB and BA?

- Watch Video Solution

3. A has 'a' rows and 'a+3' columns. B has 'b' rows and '17-b' columns, and if both products $A B$ and $B A$ exists, find a, b ?

- Watch Video Solution

4. If $A=\left[\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & -3 \\ 2 & 5\end{array}\right]$ find AB, BA and check if $\mathrm{AB}=\mathrm{BA}$?

- Watch Video Solution

5. Given that $A=\left[\begin{array}{cc}1 & 3 \\ 5 & -1\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & 2\end{array}\right], C=\left[\begin{array}{ccc}1 & 3 & 2 \\ -4 & 1 & 3\end{array}\right]$ verify that $A(B+C)=A B+A C$.
6. Show that the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ satisfy commutative property $\mathrm{AB}=\mathrm{BA}$.

- Watch Video Solution

7. Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right], C=\left[\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right]$ show that $A(B C)=(A B) C$

- Watch Video Solution

8. If $A=\left(\begin{array}{cc}\cos \theta & 0 \\ 0 & \cos \theta\end{array}\right), B=\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right)$ then show that $A^{2}+B^{2}=I$.

- Watch Video Solution

9. If $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ prove that $\mathrm{AA}^{T}=I$.

- Watch Video Solution

10. Verify that $A^{2}=I$ when $A=\left(\begin{array}{rr}5 & -4 \\ 6 & -5\end{array}\right)$

- Watch Video Solution

11. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $I-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ show that $A^{2}-(a+d) A=(b c-a d) I_{2}$.

- Watch Video Solution

12. If $A=\left[\begin{array}{lll}5 & 2 & 9 \\ 1 & 2 & 8\end{array}\right], B=\left[\begin{array}{cc}1 & 7 \\ 1 & 2 \\ 5 & -1\end{array}\right]$ verify that $(A B)^{T}=B^{T} A^{T}$.
13. If $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$ show that $A^{2}-5 A+7 I_{2}=0$

- Watch Video Solution

Exercise 319

1. A system of three linear equations in three variables is inconsistent if their planes.
A. intersect only at a point
B. intersect in a line
C. coincides with each other
D. do not intersect

Answer: D

2.

$x+y-3 z=-6,-7 y+7 z=7,3 z=9$ is
A. $x=1, y=2, z=3$
B. $x=-1, y=2, z=3$
C. $x=-1, y=-2, z=3$
D. $x=1, y=2, z=3$

Answer: A

- Watch Video Solution

3. If $(\mathrm{x}-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is.
A. 3
B. 5
C. 6
D. 8

Answer: B

- Watch Video Solution

4. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
A. $\frac{9 y}{7}$
B. $\frac{9 y^{3}}{(21 y-21)}$
C. $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
D. $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$

Answer: A

- Watch Video Solution

5. $y^{2}+\frac{1}{y^{2}}$ is not equal to
A. $\frac{y^{4}+1}{y^{2}}$
B. $\left(y+\frac{1}{y}\right)^{2}$
C. $\left(y-\frac{1}{y}\right)^{2}$
D. $\left(y+\frac{1}{y}\right)^{2}-2$

Answer: B

- Watch Video Solution

6. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives
A. $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
B. $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
C. $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
D. $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$

Answer: C

7. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
A. $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
B. $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
C. $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
D. $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$

Answer: D

- Watch Video Solution

8. Which of the following should be added to make $x^{4}+64$ a perfect square.
A. $4 x^{2}$
B. $16 x^{2}$
C. $8 x^{2}$
D. $-8 x^{2}$

Answer: B

- Watch Video Solution

9. The solution of $(2 x-1)^{2}=9$ is equal to None of these
A. -1
B. 2
C. $-1,2$
D. None of these

Answer: C

- Watch Video Solution

10. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
A. 100120
B. 10,12
C. $-120,100$
D. 12,10

Answer: C

- Watch Video Solution

11. If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q,p,r are in A.P G.P Both A.P and G.P none of these
A. A.P
B. G.P
C. Both A.P and G.P
D. None of these

Answer: B

- View Text Solution

12. Graph of a linear polynomial is a
A. straight line
B. circle
C. parabola
D. hyperbola

Answer: A

- Watch Video Solution

13. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis.
A. 0
B. 1
C. 0 or 1
D. 2

Answer: B

- Watch Video Solution

14. For the given matrix $A=\left[\begin{array}{cccc}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ the order of the matrix A^{T} is
A. 2×3
B. 3×2
C. 3×4
D. 4×3

Answer: C

- Watch Video Solution

15. If A is a 2×3 matrix and B is 3×4 matrix, how many columns does
$A B$ have
A. 3
B. 4
C. 2
D. 5
16. If number of columns and rows are not equal in a matrix then it is said to be a
A. diagonal matrix
B. rectangular matrix
C. square matrix
D. identity matrix

Answer: B

- Watch Video Solution

17. Transpose of a column matrix is
A. Unit matrix
B. diagonal matrix
C. column matrix
D. row matrix

Answer: D

- Watch Video Solution

18. Find the matrix X if $2 X+\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right]$
A. $\left[\begin{array}{cc}-2 & -2 \\ 2 & -1\end{array}\right]$
B. $\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$
D. $\left[\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right]$

Answer: B

- Watch Video Solution

19. Which of the following can be caluculated from the given matrices
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(i) A^{2} (ii) B^{2}
(iii) $A B$ (iv) $B A$
A. (i) and (ii) only
B. (ii) and (iii) only
C. (ii) and (iv) only
D. all of these

Answer: C

- Watch Video Solution

20. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 2 & -1 \\ 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{cc}0 & 1 \\ -2 & 5\end{array}\right]$ which of the following statements are corrrect? (i) $A B+C=\left[\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\right]$
$B C=\left[\begin{array}{cc}0 & 1 \\ 2 & -3 \\ -4 & 10\end{array}\right]$ (iii) $B A+C=\left[\begin{array}{cc}2 & 5 \\ 3 & 0\end{array}\right]$ (iv) $(A B) C=\left[\begin{array}{cc}-8 & 20 \\ -8 & 13\end{array}\right]$
A. (i) and (ii) only
B. (ii) and (iii) only
C. (iii) and (iv) only
D. all of these

Answer: A

- Watch Video Solution

Unit Exercise

1. Solve $\frac{1}{3}(x+y-5)=y-z=2 x-11=9-(x+2 z)$.
2. One hundred and fifty students are admitted to a school. They are distributed over three sections A, B, C. If 6 students are shifted from section A to Sections C, the students will have equal number of students. If 4 times of students of section C exceeds the number of students of setion A by the number of students in sectionB, find the number of students in the sections.

- Watch Video Solution

3. In a three-digit number, when the tens and the hundreds digit are interchanged the new number is 54 more than three times the original number. If 198 is added three times the original number. If 198 is added to the number, the digits are reversed. The tests difit exceeds the hundreds digit by twice as that of the tens digit exceeds the unit digit. Find the originall number.
4. Find the least number common multiple of $x y\left(k^{2}+1\right)+k\left(x^{2}+y^{2}\right)$ and $x y\left(k^{2}-1\right)+k\left(x^{2}-y^{2}\right)$.

- Watch Video Solution

5. Find the GCD of following by division algorithm $2 x^{4}+13 x^{3}+27 x^{2}+23 x+7, x^{3}+3 x^{2}+3 x+1, x^{2}+2 x+1$.

- Watch Video Solution

6. Reduce the given Rational expression to its lowest form

$$
\frac{10 x^{3}-25 x^{2}+4 x-10}{-4-10 x^{2}}
$$

- Watch Video Solution

7. Simplify $\frac{\frac{1}{p}+\frac{1}{q+r}}{\frac{1}{p}-\frac{1}{q+r}} \times\left[1+\frac{q^{2}+r^{2}-p^{2}}{2 p r}\right]$
8. Arul, Ravi, and Ram working together can clean a store in 6 hours. Working alone, Ravi takes twice as long to clean the store as Arul does. Ram needs three times as long as Arul does. How long would it take each if they are working alone?

- Watch Video Solution

9. Find the square root of $289 x^{4}-612 x^{3}+970 x^{2}-684 x+361$.

- Watch Video Solution

10. Solve $\sqrt{y+1}+\sqrt{2 y-5}=3$.

- Watch Video Solution

11. A boat takes 1.6 hours longer to go 36 kms up a river than down the river. If the speed of the water current is 4 km per hr , what is the speed of the boat in still water?

- Watch Video Solution

12. Is it possible to design a rectangular park of perimeter 320 m and area $4800 \mathrm{~m}^{2}$? If so find its length and breadth.

- Watch Video Solution

13. At t minutes past 2 pm , the time needed by the minutes hand of a clock to show 3 pm was found to be 3 minutes less than ${ }^{`}\left(t^{\wedge} 2\right) / 4$ minutes. Find t .

- Watch Video Solution

14. The number of seats in a row is equal to the total number of rows in a hall. The total number of seats in the hall will increase by 375 if the number of rows is doubled and the number of seats in each row is reduced by 5 . Find the number of rows in the hall at the beginning.

- Watch Video Solution

15. If α and β are zeroes of the polynomial $f(x)=x^{2}-2 x+3$. Find a polynomial whose roots are $\alpha+2$ and $\beta+2$

- Watch Video Solution

16. If -4 is a root of the equation $x^{2}+p x-4=0$ and the equation $x^{2}+p x+q=0$ has coincident roots, find the values of p and q .

- Watch Video Solution

17. Two farmers and Ravi cultivates three varieties of grains namely rice, wheat and ragi. If the sale (in ₹) of three varieties of grains by both the farmers in the month of April is given by the matrix.

April sale in ₹

$A=\left[\begin{array}{rrr}\text { rice } & \text { Wheat } & \text { ragi } \\ 500 & 1000 & 1500 \\ 2500 & 1500 & 500\end{array}\right] \begin{aligned} & \text { Senthil } \\ & \text { Ravi }\end{aligned}$
and the May
month sale (in ₹) is exactly twice as that of the April month sale for each variety.

What is the average sales of the months April and May.

- Watch Video Solution

18. If $\cos \theta\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)+\sin \theta\left(\begin{array}{cc}x & -\cos \theta \\ \cos \theta & x\end{array}\right)=I_{2}$, find x .
19. Given $A=\left[\begin{array}{ll}p & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & q \\ 1 & 0\end{array}\right], C=\left[\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right]$ and If $B A=C^{2}$, find p and q.

Watch Video Solution
20. $A=\left[\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{ll}6 & 3 \\ 8 & 5\end{array}\right], C=\left[\begin{array}{ll}3 & 6 \\ 1 & 1\end{array}\right]$ find the matrix D , such that $C D-A B=0$.

- Watch Video Solution

Additional Questions Solved

1. The HCF of $x^{2}-y^{2}, x^{3}-y^{3}, \ldots \ldots x^{n}-y^{n}$, where $n \in N$ is
A. $x-y$
B. $x+y$
C. $x^{n}-y^{n}$
D. do not intersect

Answer: A

- Watch Video Solution

2. The zeroes of $x^{2}-2 x-8$ are:
A. $(2,-4)$
B. $(4,-2)$
C. $(-2,-2)$
D. $(-4,-4)$

Answer: B

- Watch Video Solution

3. The HCF of $x^{2}-2 x y+y^{2}$ and $x^{4}-y^{4}$ is
A. 1
B. $x+y$
C. $x-y$
D. $x^{2}-y^{2}$

Answer: C

- Watch Video Solution

4. The L.C.M. of a^{k}, a^{k+3}, a^{k+5} where $k \in N$ is
A. a^{k+5}
B. a^{k}
C. a^{k+6}
D. a^{k+9}
5. The LCM of $(x+1)^{2}(x-3)$ and $\left(x^{2}-9\right)(x+1)$ is
A. $(x+1)^{3}\left(x^{2}-9\right)$
B. $(x+1)^{2}\left(x^{2}-9\right)$
C. $(x+1)^{2}(x-3)$
D. $(x-9)(x+1)$

Answer: B

- Watch Video Solution

6. If $\frac{a^{3}}{a-b}$ is added with, $\frac{b^{3}}{b-a}$ then the new expressions is
A. $a^{2}-a b+b^{2}$
B. $a^{2}+a b+b^{2}$
C. $a^{3}+b^{3}$
D. $a^{3}-b^{3}$

Answer: B

- Watch Video Solution

7. The solution set of $x+\frac{1}{x}=\frac{5}{2}$ is
A. $2, \frac{1}{2}$
B. $2,-\frac{1}{2}$
C. $-2, \frac{-1}{2}$
D. $-2, \frac{7}{2}$

Answer: A

- Watch Video Solution

8. On dividing $\frac{x^{2}-25}{x+3}$ by $\frac{x+5}{x^{2}-9}$ is equal to
A. $(x-5)(x+3)$
B. $(x+5)(x-3)$
C. $(x-5)(x-3)$
D. $(x-5)(x+3)$

Answer: C

- Watch Video Solution

9. The square root of $(x+11)^{2}-44 x$ is
A. $\left|(x-11)^{2}\right|$
B. $|x+11|$
C. $\left|11-x^{2}\right|$
D. $|x-11|$
10. If α, β are the zeros of the polynomial $p(x)=4 x^{2}+3 x+7$, then
$\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to (a) $\frac{7}{3}$ (b) $-\frac{7}{3}$ (c) $\frac{3}{7}$ (d) $-\frac{3}{7}$
A. $\frac{7}{3}$
B. $-\frac{7}{3}$
C. $\frac{3}{7}$
D. $-\frac{3}{7}$

Answer: D

11. Evaluate $\sqrt{20+\sqrt{20+\sqrt{20}}}$
A. -5
B. 5
C. 4
D. -3

Answer: B

D Watch Video Solution

12. If α and β are thr roots of the equation $a x^{2}+b x+c=0$ then
$(\alpha+\beta)^{2}$ is
A. $\frac{-b^{2}}{a^{2}}$
B. $\frac{c^{2}}{a^{2}}$
C. $\frac{b^{2}}{a^{2}}$
D. $\frac{b c}{a}$

Answer: C

13. The roots of the equation $x^{2}-8 x+12=0$ are \qquad
A. Real and equal
B. real and unequal
C. real and irrational
D. unreal

Answer: B

- Watch Video Solution

14. If one root of the equation is the reciprocal of the other root in $a x^{2}+b x+c=0$ then \qquad
A. $a=c$
B. $a=b$
C. $b=c$
D. $c=b$

Answer: A

- Watch Video Solution

15. If α and β are roots of the equation $x^{2}+2 x+8=0$ the the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ is
A. $\frac{1}{2}$
B. 6
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: D

- Watch Video Solution

16. If $\left[\begin{array}{cc}x+y & x-y \\ 7 & 6\end{array}\right]=\left[\begin{array}{cc}10 & 2 \\ 7 & z\end{array}\right]$ then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are
A. $4,6,6$
B. 6,6,4
C. 6,4,6
D. 4,4,6

Answer: C

- Watch Video Solution

17. If $\left[\begin{array}{lll}-1 & -2 & 4\end{array}\right]\left[\begin{array}{c}2 \\ a \\ -3\end{array}\right]=-10$ then the value of "a" is .
A. 2
B. -4
C. 4
D. -2

Answer: D

- Watch Video Solution

18. The matrix A given by $\left(a_{i j}\right)_{2 \times 2}$ if $a_{i j}=i-j$ is
A. $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
C. $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

19. If the order of matrix A is 3×4 and the order of B is 4×3 then the order of $B A$ is \qquad .
A. 3×4
B. 4×4
C. 3×3
D. 4×1

Answer: C

- Watch Video Solution

20. If $\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ x\end{array}\right]=6$ then " x " is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

21. Solve $x+y=7, y+z=4, z+x=1$

- Watch Video Solution

22. Find the HCF of $25 x^{4} y^{7}, 35 x^{3} y^{8}, 45 x^{3} y^{3}$

- Watch Video Solution

23. Find the HCF of $x^{3}+x^{2}+x+1$ and $x^{4}-1$.
24. Find the LCM of $x^{3}+y^{3}, x^{3}-y^{3}, x^{4}+x^{2} y^{2}+y^{4}$

- Watch Video Solution

25. Find the L.C.M of $x^{3}+x^{2}-x-1$ and $x^{3}+3 x^{2}-x-3$

- Watch Video Solution

26. For What value of k , the G.C.D of $\left[x^{2}+x-(2 k+2)\right]$ and $2 x^{2}+k x-12$ is $(x+4) ?$

- Watch Video Solution

27. Simplify

$$
\frac{x^{2}+x-6}{x^{2}+4 x+3}
$$

28. Multiply $\frac{a^{3} b^{2}}{a-1}$ by $\frac{a^{2}-1}{a^{2} b^{3}}$

- Watch Video Solution

29. If $P=\frac{x^{2}-36}{x^{2}-49}$ and $Q=\frac{x+6}{x+7}$ find the value of $\frac{P}{Q}$

- Watch Video Solution

30. Simplify $\frac{x^{2}}{x+y}-\frac{y^{2}}{y+x}$

(Watch Video Solution

31. Find the square root $(x+11)^{2}-44 x$

- Watch Video Solution

32. Find the square root of $x^{4}+\frac{1}{x^{4}}+2$

Watch Video Solution

33. Solve the equation $2 x-1-\frac{2}{x-2}=3$

- Watch Video Solution

34. Find the roots of $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$

- Watch Video Solution

35. Solve $\sqrt{x+5}=2 x+3$ using formula method.

- Watch Video Solution

36. The sum of a number and its reciprocal is $\frac{37}{6}$. Find the number.
37. Determine the nature of the roots of the equation $2 x^{2}+x-1=0$

- Watch Video Solution

38. Find the value of k for which the given equation $9 x^{2}+3 k x+4=0$ has real and equal roots.

- Watch Video Solution

39. If one root of the equation $3 x^{2}-10 x+3=0$ is $\frac{1}{3}$ then the other root is

- Watch Video Solution

40. Form the quadratic equation whose roots are $3+\sqrt{7}, 3-\sqrt{7}$

- Watch Video Solution

41. If α and β are the roots of the equation $3 x^{2}-5 x+2=0$, then find the value of $\alpha^{2} \beta+\alpha \beta^{2}$.

Watch Video Solution

42. Detemine the matrix $A=\left(a_{i j}\right)_{3 \times 2}$ if $a_{i j}=3 i-2 j$

- Watch Video Solution

43. If $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 4 & 5 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 5 \\ 7 & 3 & 1\end{array}\right]$ find $B-A$

- Watch Video Solution

44. Find x if $\left[\begin{array}{lll}2 & x & 3\end{array}\right]\left[\begin{array}{c}0 \\ x \\ -1\end{array}\right]=13$
45. If $A=\left[\begin{array}{cc}1 & 0 \\ 3 & -1 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -2 \\ 4 & 6 & 0\end{array}\right]$ find $B A$

- Watch Video Solution

46. Find the unknowns $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in the given matrix equation.
$\left[\begin{array}{cc}d+1 & 10+a \\ 3 b-2 & a-4\end{array}\right]=\left[\begin{array}{cc}2 & 2 a+1 \\ b-5 & 4 c\end{array}\right]$

- Watch Video Solution

47. Prove that $\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$ and $\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$ are multiplication is inverse to each other.

- Watch Video Solution

48. Solve $x-\frac{y}{5}=6, y-\frac{z}{7}=8, z-\frac{x}{2}=10$
49. Solve : $2(x+3)-10=6(32-3 x)$

- Watch Video Solution

50. Solve: $4 x-7(2-x)=3 x+2$

- Watch Video Solution

51. Solve: $\frac{4 t}{t^{2}-25}=\frac{1}{5-t}$

- Watch Video Solution

52. Find the G.C.D of $x^{3}-10 x^{2}+31 x-30$ and $2 x^{3}-8 x^{2}+2 x+12$
53. The G.C.D of $x^{4}+3 x^{3}+5 x^{2}+26 x+56 \quad$ and $x^{4}+2 x^{3}-4 x^{2}-x+28$ is $x^{2}+5 x+7$ Find their L.C.M.

- Watch Video Solution

54. Find the values of "a" and "b" given that $p(x)=\left(x^{2}+3 x+2\right)\left(x^{2}-4 x+a\right) g(x)=\left(x^{2}-6 x+9\right)\left(x^{2}+4 x+b\right)$ and their G.C.D. is $(x+2)(x-3)$

- Watch Video Solution

55. Find the other polynomial $g(x)$, given that LCM, HCF and $p(x)$ as $(x-1)(x-2)\left(x^{2}-3 x+3\right), x-1 \quad$ and $\quad x^{3}-4 x^{2}+6 x-3$ respectively.

- Watch Video Solution

56. Divide $\frac{2 x^{2}+x-3}{(x-1)^{2}}$ by $\frac{2 x^{2}+5 x+3}{x^{2}-1}$

- Watch Video Solution

57. Simplify $\frac{x-3}{x^{2}-x-6}+\frac{2 x-1}{2 x^{2}+5 x-3}-\frac{2 x+5}{x^{2}+5 x+6}$

- Watch Video Solution

58.

Find
the
square
root
$\left(6 x^{2}+5 x-6\right)\left(6 x^{2}-x-2\right)\left(4 x^{2}+8 x+3\right)$

- Watch Video Solution

59. Solve: $\frac{5 x}{3 x-3}+\frac{6}{x+2}=\frac{5}{3}$

- Watch Video Solution

60. If $m-n x+28 x^{2}+12 x^{3}+9 x^{4}$ is aperfect square, then find the values of m and n.

- Watch Video Solution

61. If $x^{2}+4 x+a$ is a perfect square, find the value of "a" .

- Watch Video Solution

62. Solve $\frac{1}{x+1}+\frac{4}{3 x+6}=\frac{2}{3}$

- Watch Video Solution

63. A two - digit number is such that product of its digits is 14 . If 45 is added to the number, the digits interchange their places. Find the number.
64. A rectangular field is 16 m long and 10 m wide. There is a path of uniform width all around it, having an area of $120 \mathrm{~m}^{2}$. Find the width of the path.

- Watch Video Solution

65. If α and β are the roots of the equation $3 x^{2}-5 x+2=0$, find the value of
(i) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ (ii) $\alpha-\beta$ (iii) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$

- Watch Video Solution

66. If α and β are the roots of the equation $3 x^{2}-6 x+1=0$ form the equation whose roots are (i) $\alpha^{2} \beta, \beta^{2} \alpha$ (ii) $2 \alpha+\beta, 2 \beta+\alpha$

- Watch Video Solution

67. Find X and Y if $X-Y=\left[\begin{array}{ll}2 & 1 \\ 4 & 3 \\ 0 & 6\end{array}\right]$ and $X+Y=\left[\begin{array}{cc}12 & 13 \\ 6 & 5 \\ 4 & 8\end{array}\right]$

- Watch Video Solution

68. Solve for $\mathrm{x}, \mathrm{y}\left[\begin{array}{l}x^{2} \\ y^{2}\end{array}\right]+3\left[\begin{array}{c}2 x \\ -3 y\end{array}\right]=\left[\begin{array}{c}-5 \\ -18\end{array}\right]$

(D) Watch Video Solution

69. If $A=[320140005]$, show that $A^{2}-7 A+10 I_{3}=O$.

- Watch Video Solution

70.

Verify
that $(A B)^{T}=B^{T} A^{T}$
if
$A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 4 & 1 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ 3 & -3 \\ 2 & 6\end{array}\right]$

- Watch Video Solution

71. Draw the graph of $y=x^{2}$ and hence solve $x^{2}-4 x-5=0$

- Watch Video Solution

72. Draw the graph of $y=2 x^{2}+x-6$ and hence solve $2 x^{2}+x-10=0$

- Watch Video Solution

