©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL

ENGLISH)

GEOMETRY

Progress Check

1. All circles are (congruent/similar).

2. All squares are (similar/congruent).

D Watch Video Solution

3. Two triangles are similar, if their corresponding angles are and their corresponding sides are
4. All congruent triangles are similar True/False.

D Watch Video Solution
5. Give two examples of pair of non - similar figures ?
(Watch Video Solution
6. A straight line drawn ___ to a side of a triangle divides the order two sides proportionality.

D Watch Video Solution

7. Basic Proportionality Theorem is also known

 asD Watch Video Solution
8. Let $\triangle A B C$ be equilateral. If D is a point on $B C$ and $A D$ is the internal bisector of $\angle A$. Using Angle Bisector Theorem, $\frac{B D}{D C}$ is

- Watch Video Solution

9. Find the angle A in
$\triangle A B C$, if $\angle B=60^{\circ}$ and $\angle c=70^{\circ}$

D Watch Video Solution

10. If the median $A D$ to the side $B C$ of a
$\triangle A B C$ is also an angle bisector of $\angle A$ then
$A B$
$\frac{A B}{A C}$ is

D Watch Video Solution
11. ___ is the longest side of the right angled triangle.
(Watch Video Solution

12. The first theorem in mathematics is

is

D Watch Video Solution

13. If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangles is
14. State True or False. Justify them.

Pythagoras Theorem is applicable to all triangles.

D Watch Video Solution

15. A straight line that touches a circle at a
common point is called a

D Watch Video Solution
16. A chord is a subsection of

D Watch Video Solution

17. The lengths of the two tangents drawn
from point to a circle are equal.

D Watch Video Solution

18. No tangent can be drawn from of the
circle.

- Watch Video Solution

19. is a cevian that divides the angle, into two equal halves.

D Watch Video Solution

Exercise 41

1. Check whether the which triangles are similar and find the value of x.

- Watch Video Solution

2. A girl looks the reflection of the top of the
lamp post on the mirror which is 6.6 m away
from the foot of the lamppost. The girl whose height is 1.25 m is standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror
and the lamppost are in a same line, find the height of the lamp post?

- Watch Video Solution

3. A vertical stick of length 6 m casts a shadow

400 cm long on the ground and at the same
time a tower casts a shadow 28 m long. Using similarity, find the height of the tower.

D Watch Video Solution

4. Two triangles QPR and QSR, right angled at
P and S respectively are drawn on the same base $Q R$ and on the same side of $Q R$. If $P R$ and SQ intersect at T, prove that
$P T \times T R=S T \times T Q$.

D Watch Video Solution

5. In the adjacent figure, $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that
$\Delta A B C \sim \triangle A D E$ and hence find the lengths of

AE and DE ?

- Watch Video Solution

6. In the adjacent figure, $\triangle A C B \sim \Delta A P Q$. If $B C=8 \mathrm{~cm}, P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $\mathrm{AP}=2.8 \mathrm{~cm}$,
find $C A$ and $A Q$.

- Watch Video Solution

7. In figure OPRQ is a square and
$\angle M L N=90^{\circ}$. Prove that
(i) $\Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

- Watch Video Solution

8. If $\triangle A B C \sim \triangle D E F$ such that area of
$\triangle A B C$ is $9 \mathrm{~cm}^{2}$ and the area of
$\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $\mathrm{BC}=2.1 \mathrm{~cm}$. Find the length of EF.
9. Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground AC.

Find the value of y .

10. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\left.\frac{2}{3}\right)$.

- Watch Video Solution

11. Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).
12. Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle $A B C$ (scale factor $\frac{6}{4}$).

- Watch Video Solution

13. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{7}{3}$ of the
corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).

D Watch Video Solution

Exercise 42

1. In $\triangle A B C$, D and E are points on the sides

AB and AC respectively such that $D E|\mid B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$,
find the value of x.

- Watch Video Solution

2. ABCD is a trapezium in which $A B|\mid D C$ and P, Q are points on $A D$ and $B C$ respectively, such that $P Q|\mid D C$ if $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$, find AD .

- Watch Video Solution

3. In $\Delta A B C$, D and E are points on the sides
$A B$ and $A C$ respectively. For each of the following cases show that $D E|\mid B C$
(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8$ cm.

D Watch Video Solution

4. In fig. if $P Q \| B C$ and $P R \| C D$ prove that
(i) $\frac{A R}{A D}=\frac{A Q}{A B}(i i) \frac{Q B}{A Q}=\frac{D R}{A R}$.

- Watch Video Solution

5. Rhombus PQRS is inseribed in $\triangle A B C$ such
that $\angle B$ is one of its angle. P, Q and R lie on
$A B, A C$ and $B C$ respectively. If $A B=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the sides PQ, RB of the rhombus.

- Watch Video Solution

6. In trapezlum $A B C D, A B \| D C, E$ and F are points on non-parallel sides $A D$ and $B C$
respectively, such that EF \|| $A B$. Show that
$\frac{A E}{E D}=\frac{B F}{F C}$.

- Watch Video Solution

7. In figure $D E \| B C$ and $C D|\mid E F$. Prove that $A D^{2}=A B \times A F$.

D Watch Video Solution
8. In a $\triangle A B C, \mathrm{AD}$ is the bisector of $\angle A$ meeting side $B C$ at D, if $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $B D$ and $D C$.
9. Check whether $A D$ is bisector of
$\angle A$ of $\triangle A B C$ in each of the following
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=1.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5$
cm.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4$ cm.

- Watch Video Solution

10. In figure $\angle Q P C=90^{\circ}$, PS is its bisector. If
$S T \perp P R$,
prove
that
$S T \times(P Q+P R)=P Q \times P R$.

- Watch Video Solution

11. $A B C D$ is a quadrilateral in which $A B=A D$, the
bisector of $\angle B A C$ and $\angle C A D$ intersect the
sides $B C$ and $C D$ at the points E and F respectively. Prove that EF || BD.

- Watch Video Solution

12. Construct a $\triangle P Q R$ in which the base $\mathrm{PQ}=4.5 \mathrm{~cm}, \angle R=45^{\circ}$ and the median from R to $R G$ is 6 cm .
13. Construct a $\triangle P Q R$ in which $Q R=5 \mathrm{~cm}$, $P=40^{\circ}$ and the median PG from P to QR is
4.4 cm . Find the length of the altitude from P to QR.

D Watch Video Solution

14. Construct a $\triangle P Q R$ such that $\mathrm{QR}=6.5 \mathrm{~cm}$,
$\angle P=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm .
15. Construct a $\triangle A B C$ such that
$A B=5.5 \mathrm{~cm}, \angle C=25^{\circ}$ and the altitude from C to AB s 4 cm .

- Watch Video Solution

16. Draw a triangle $A B C$ of base $B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of
$\angle A$ meets BC at D such that $\mathrm{CD}=4 \mathrm{~cm}$.
17. Draw $\triangle P Q R$ such that $\mathrm{PQ}=6.8 \mathrm{~cm}$, vertical angle is 50° and the bisector of the vertical angle meets the base at D where $\mathrm{PD}=5.2 \mathrm{~cm}$.

D Watch Video Solution

Exercise 43

1. A man goes 18 m due east and then 24 m due north. Find the distance of his current
position from the starting point?

D Watch Video Solution

2. There are two paths that one can choose to go from Sarah's house to James house. One way is to take C street, and the other way requires to take A street and then B street.

How much shorter is the direct path along C
street ? (Using figure).

D Watch Video Solution

3. To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearrest
meter, how many meters would be saved if it were possible to make a way through the pond?

D Watch Video Solution

4. In the rectangle $W X Y Z, X Y+Y Z=17 \mathrm{~cm}$ and $X Z+Y W=26 \mathrm{~cm}$. Calculate the length and
breadth of the rectangle?

- Watch Video Solution

5. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle ?

D Watch Video Solution

6. 5 m long ladder is placed leaning towards a
vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the
distance by which the top of the ladder would
slide upwards on the wall.

D Watch Video Solution
7. The perpendicular PS on the base $Q R$ of $\triangle P Q R$ intersects QR at S , such that $\mathrm{QS}=3 \mathrm{SR}$. Prove that $2 P Q^{2}=2 P R^{2}+Q R^{2}$.

- Watch Video Solution

8. In the adjacent figure, $A B C$ is a right angled
triangle with right angle at B and points D, E trisect BC. Prove that
$8 A E^{2}=3 A C^{2}+5 A D^{2}$.

- Watch Video Solution

Exercise 44

1. The length of the tangent to a circle from a point P, which is 25 cm away from the centre is 24 cm . What is the radius of the circle ?

D Watch Video Solution

2. $\triangle L M N$ is a right angled triangle with
$\angle L=90^{\circ}$. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm . Find the radius of the circle.
3. A circle is inscribed in $\triangle A B C$ having sides 8 $\mathrm{cm}, 10 \mathrm{~cm}$ and 12 cm as shown in figure, Find
$A D, B E$ and $C F$.

- Watch Video Solution

4. $P Q$ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such that $\angle P O R=120^{\circ}$. Find $\angle O P Q$.

D Watch Video Solution

5. A tangent $S T$ to a circle touches it at $B . A B$ is
a chord such that $\angle A B T=65^{\circ}$, Find $\angle A O B$,
where O is the centre of the circle.

- Watch Video Solution

6. In figure, O is the centre of the circle with
radius 5 cm . T is a point such that $\mathrm{OT}=13 \mathrm{~cm}$
and $O T$ intersects the circle E, if $A B$ is the
tangent ot the circle at E , find the length of AB.

7. In two concentric circles, a chord of length

16 cm of larger circle becomes a tangent to
the smaller circle whose radius is 6 cm . Find the radius of the larger circle.

- Watch Video Solution

8. Two circles with centres O and O ' of radii 3 cm and 4 cm , respectively intersect at two points P and Q, such that $O P$ and $O^{\prime} P$ are
tangents to the two circles. Find the length of the common chord PQ.

D Watch Video Solution

9. Show that the angle bisectors of a triangle are concurrent.

D Watch Video Solution

10. In $\triangle A B C$, with $\angle B=90^{\circ}, \mathrm{BC}=6 \mathrm{~cm}$ and
$A B=8 \mathrm{~cm}, D$ is a point on $A C$ such that $A D=2 \mathrm{~cm}$
and E is the midpoint of $A B$. Join D to E and extend it to meet at F. Find BF.

D Watch Video Solution

11. An artist has created a triangular stained glass window and has one strip of small length left before completing the window. She needs to figure out the length of left out portion based on the lengths of the other

sides as shown in the figure .

- Watch Video Solution

12. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?

- Watch Video Solution

13. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.
14. Draw the two tangents from a point which
is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.

- Watch Video Solution

15. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.
16. Draw the two tangents from a point which
is 5 cm away from the centre of a circle of
diameter 6 cm . Also, measure the lengths of the tangents.

D Watch Video Solution

17. Draw a tangent to the circle from the point
P having radius 3.6 cm and centre at 0 . Point P is at a distance 7.2 cm from the centre.

Watch Video Solution

Exercise 45 Multiple Choice Questions

1. If in triangles ABC and EDF, $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
A. $\angle B=\angle E$
B. $\angle E=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

Answer: C

D Watch Video Solution

$$
\text { 2. If } \triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ} \text {, if }
$$

$\triangle L M N-\triangle P Q R$ then the value of $\angle R$ is
A. 40°
B. 70°
C. 30°
D. 110°

Answer: B

D Watch Video Solution

3. If $\triangle A B C$ is an isosceles triangle with
$\angle C=90^{\circ}$ and $\mathrm{AC}=5 \mathrm{~cm}$, then AB is
A. 2.5 cm
B. 5 cm
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer: D

- Watch Video Solution

4. In a given figure, $\mathrm{ST}|\mid \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{QS}=3$
cm . Then the ratio of the area of $\triangle P Q R$ to
the area
of
$\triangle P S T$
is

A. $25: 4$
B. 25: 7
C. 25: 11
D. $25: 13$

Answer: A

D Watch Video Solution

5. The perimeters of two similar triangles
$\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm
respectively. If $\mathrm{PQ}=10 \mathrm{~cm}$, then the length of AB is \qquad .
A. $6 \frac{2}{3} \mathrm{~cm}$
B. $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
C. $66 \frac{2}{3} \mathrm{~cm}$
D. 15 cm

Answer: D
(Watch Video Solution

6. If in $\triangle A B C, \mathrm{DE}| | \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$

 and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ isA. 1.4 cm
B. 1.8 cm
C. 1.2 cm
D. 1.05 cm

Answer: A

D Watch Video Solution

7. In a $\triangle A B C$, Adis the bisector of $\angle B A C$. If
$A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$. The length of
the side $A C$ is
A. 6 cm
B. 4 cm
C. 3 cm
D. 8 cm

Answer: B
8. In the adjacent
$\angle B A C=90^{\circ}$ and $A D \perp B C$ then

A. $B D \cdot C D=B C^{2}$
B. $A B . A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B . A C=A D^{2}$

Answer: C

D Watch Video Solution

9. Two poles of heights 6 m and 11 stand
vertically on a plane ground. If the distance
between their feet is 12 m , what is the distance between their tops?
A. 13 m
B. 14 m
C. 15 m

D. 12.8 m

Answer: A

D Watch Video Solution

10. In the given figure, $P R=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}$,
$P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find
$\angle P Q R$

A. 80°
B. 85°
C. 75°
D. 90°

Answer: D
(Watch Video Solution
11. A tangent is perpendicular to the radius at the
A. centre
B. point of contact
C. infinity
D. chord

Answer: B
12. How many tangents can be drawn to the circle from an exterior point?
A. one
B. two
C. infinity
D. zero

Answer: B
13. The two tangents from an external points P
to a circle with centre at O are PA and PB. If
$\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
A. 100°
B. 110°
C. 120°
D. 130°

Answer: B

D Watch Video Solution

14. In figure $C P$ and $C Q$ are tangents to a circle

 with centre at 0 . ARB is another tangenttouching
the
circle
at
R.
If
$C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the
length of $B R$ is

A. 6 cm
B. 5 cm

C. 8 cm

D. 4 cm

Answer: D

D Watch Video Solution

15. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle then $\angle P O Q$ is

A. 120°
B. 100°
C. 110°
D. 90°

Answer: A

- Watch Video Solution

Unit Exercise 4

1. In the figure, if $B D \perp A C$ and $C E \perp A B$,
prove that
(i) $\triangle A E C \sim \triangle A D B$
(ii) $\frac{C A}{A B}=\frac{C E}{D B}$

- Watch Video Solution

2. In the given figure, $A B\|C D\| E F$. If $A B=6 \mathrm{~cm}$,
$C D=x \mathrm{~cm}, E F=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $D E=y \mathrm{~cm}$. Find
x and y.

- Watch Video Solution

3. O is any point inside a triangle $A B C$. The bisector of $\angle A O B, \angle B O C$ and $\angle C O A$ meet
the sides $A B, B C$ and $C A$ in point D, E and F respectively.

Show
$A D \times B E \times C F=D B \times E C \times F A$

D Watch Video Solution

4. In the figure, $A B C$ is a triangle in which $A B=$
$A C$. Points D and E are points on the side $A B$ and $A C$ respectively such that $A D=A E$. Show
that points B, C, E and D lie on a same circle.

- Watch Video Solution

5. Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of $20 \mathrm{~km} / \mathrm{hr}$ and the second
train travels at $30 \mathrm{~km} / \mathrm{hr}$. After 2 hours, what is the distance between them ?

D Watch Video Solution

6. D is the mid point of side BC and $A E \perp B C$
. If $B C=a, A C=b, A B=c, E D=x, A D=p$ and $A E=h$,
prove that
$(i) b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
$(i i i) b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
7. A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is 4 m from the mirror B, he can see the reflection of the top of the tree. How height is the tree ?
8. An emu which is 8 ft tall standing at the foot of a pillar which is 30 ft height. It walks away
from the pillar. The shadow of the emu falls beyond emu. What is the relation between the length of the shadow and the distance from the emu to the pillar?

D Watch Video Solution

9. Two circles intersect at A and B. From a point P on one of the circles lines PAC and PBD
are drawn intersecting the second circle at C and D. Prove that $C D$ is parallel to the tangent at P.

D Watch Video Solution

10. Let $A B C$ be a triangle and D, E, F are points
on the respective sides $A B, B C, A C$ (or their extensions). Let $\mathrm{AD}: \mathrm{DB}=5: 3, \mathrm{BE}: \mathrm{EC}=3: 2$ and
$A C=21$. Find the length of the line segment $C F$.

D Watch Video Solution

Additional Questions Solved Multiple Choice

 Questions1. If a straight line intersects the sides $A B$ and

AC of a $\triangle A B C$ at D and E respectively and is
parallel to BC , then $\frac{A E}{A C}=\ldots$.
A. $\frac{A D}{D B}$
B. $\frac{A D}{A B}$
c. $\frac{D E}{B C}$
D. $\frac{A D}{E C}$

Answer: B

D Watch Video Solution

2. In $\triangle A B C$, DE is || to BC , meeting AB and
$A C$ at D and E. If $A D=3 \mathrm{~cm}, B D=2 \mathrm{~cm}$ and $A E=$
2.7 cm , then $A C$ is equal to
A. 6.5 cm
B. 4.5 cm
C. 3.5 cm
D. 3.5 cm

Answer: B

D Watch Video Solution

3. In $\triangle P Q R, R S$ is the bisector of $\angle R$.if $\mathrm{PQ}=$ $6 \mathrm{~cm}, \mathrm{QR}=8 \mathrm{~cm}, \mathrm{RP}=4 \mathrm{~cm}$ then PS is equal to
A. 2 cm
B. 4 cm
C. 3 cm
D. 6 cm

Answer: A

- Watch Video Solution

4. In figure , if $\frac{A B}{A C}=\frac{B D}{D C}, \angle B=40^{\circ}$ and $\angle C=60^{\circ}$, then $\angle B A D=\ldots$.
A. 30°
B. 50°
C. 80°
D. 40°

Answer: D

- Watch Video Solution

5. In the figure , the value x is equal to

A. 4.2
B. 3.2
C. 0.8
D. 0.4

Answer: B

D Watch Video Solution

6. In triangles $A B C$ and DEF
$\angle B=\angle E, \angle C=\angle F$, then
A. $\frac{A B}{D E}=\frac{C A}{E F}$
B. $\frac{B C}{E F}=\frac{A B}{F D}$
c. $\frac{A B}{D E}=\frac{B C}{E F}$
D. $\frac{C A}{F D}=\frac{A B}{E F}$

Answer: C

- Watch Video Solution

7. If in a Triangle $\mathrm{ABC} \angle A=60^{\circ}, \angle B=70^{\circ}$ what will $\angle C$ be?
8. A vertical stick 12 m long casts a shadow 8 m
long on the ground. At the same time a tower casts the shadow 40 m long onthe ground. Determine the height of the tower.
A. 40 m
B. 50 m
C. 75 m
D. 60 m

Answer: D

- Watch Video Solution

9. The sides of two similar triangles are in the
ratio $2: 3$, then their areas are in the ratio
A. $9: 4$
B. $4: 9$
C. 2:3
D. $3: 2$

Answer: B

D Watch Video Solution

10. Triangle $A B C$ and $D E F$ ar similar. If their areas are $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively and BC is 8.2 cm then $\mathrm{EF}=\ldots$.
A. 5.47 cm
B. 5.74 cm
C. 6.47 cm
D. 6.74 cm

Answer: B

D Watch Video Solution

11. The perimeters of two similar triangles are

24 cm and 18 cm respectively. If one side of the
first triangle is 8 cm , then the corresponding side of the other triangle is
A. 4 cm
B. 3 cm
C. 9 cm

D. 6 cm

Answer: D

D Watch Video Solution

12. A point P is 26 cm away from the centre O
of a circle and PT is the tangent drawn from P
to circle is 10 cm , then OT is equal to
A. 18 cm
B. 20 cm

C. 18 cm

D. 24 cm

Answer: D

D Watch Video Solution

13. In the figure , if $\angle P A B=120^{\circ}$ then
$\angle B P T=$

A. 120°
B. 30°
C. 40°
D. 60°

Answer: D
(Watch Video Solution
14. If the tangents PA and PB from an external point P to circle with centre O are inclined to each other at an angle of 40°, then $\angle P O A=$
A. 70°
B. 80°
C. 50°
D. 60°
15. In the figure ,PA and PB are tangents to the
circle drawn from an external point P. also CD
is a tangent to the circle at Q . if $\mathrm{PA}=8 \mathrm{~cm}$ and
$C Q=3 \mathrm{~cm}$, then $P C$ is equal to

A. 11 cm
B. 5 cm
C. 24 cm
D. 30 cm

Answer: B

D Watch Video Solution

16. $\triangle A B C$ is a right angled triangle where
$\angle B=90^{\circ}$ and $B D \perp A C$. If $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}$
$=4 \mathrm{~cm}$, then CD is
A. 24 cm
B. 16 cm
C. 32 cm
D. 8 cm

Answer: B

D Watch Video Solution

17. The areas of two similar triangles are $16 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 3 cm , then the corresponding altitude of the other triangle is
A. 6.5 cm
B. 6 cm
C. 4 cm
D. 4.5 cm

Answer: D

D Watch Video Solution

18. The perimeter of two similar triangles
$\triangle A B C$ and $\triangle D E F$ are 36 cm and 24 cm respectively. If $D E=10 \mathrm{~cm}$, then $A B$ is
A. 12 cm

B. 20 cm

C. 15 cm

D. 18 cm

Answer: C

D Watch Video Solution

19. In the given diagram θ is

A. 15°
B. 30°
C. 45°
D. 60°

Answer: B

- Watch Video Solution

20. If AD is the bisector of $\angle A$ then AC is

A. 12
B. 16
C. 18
D. 20

Answer: D

D Watch Video Solution

21. In $\triangle A B C$ and $\triangle D E F, \angle A=\angle E$ and
$\angle B=\angle F$. Then $\mathrm{AB}: \mathrm{AC}$ is
A. DE : DF

B. DE : EF

C. EF: ED
D. DF: EF

Answer: C

D Watch Video Solution

22. Two circles of radius 8.2 cm and 3.6 cm touch each other externally, the distance between their centres is
A. 1.8 cm
B. 4.1 cm
C. 4.6 cm
D. 11.8 cm

Answer: D

D Watch Video Solution

23. In the given diagram $P A$ and $P B$ are tangents drawn from P to a circle with centre
O. $\angle O P A=35^{\circ}$ then a and b is

A. $a=30^{\circ}, b=60^{\circ}$
B. $a=35^{\circ}, b=55^{\circ}$
C. $a=40^{\circ}, b=50^{\circ}$

$$
\text { D. } a=45^{\circ}, b=45^{\circ}
$$

Answer: B

Additional Questions Solved Answer The Following Questions

1. The image of man height 1.8 m , is of length
1.5 cm on the film of a camera. If the film is 3
cm from the camera, how far is the man from
the camera?

- Watch Video Solution

2. A girl of height 120 cm is walking away from
the base of a lamp post at a speed of 0.6 $\mathrm{m} / \mathrm{sec}$. . If the lamp is 3.6 m above the ground level, then find the length of her shadow after 4 seconds.

- Watch Video Solution

3. In $\triangle A B C, \mathrm{AB}=\mathrm{AC}$ and $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{D}$ is a point on the side $A C$ such that $A D=5 \mathrm{~cm}$ and
$\mathrm{CD}=4 \mathrm{~cm}$, show that $\Delta B C D \sim \Delta A B C$ and hence find DB .

- Watch Video Solution

4. The length of three sides of a triangle $A B C$ are $6 \mathrm{~cm} ., 4 \mathrm{~cm}$ and $9 \mathrm{~cm} . \Delta P Q R \sim \Delta A B C$.

One of the lengths of sides of $\triangle P Q R$ is 35 cm . what is the greatest perimeter possible for
$\triangle P Q R ?$

D Watch Video Solution

5. A man sees the top of a tower in a mirror which is at a distance of 87.6 m from the tower.

The mirror is on the ground, facing upward.

The man is 0.4 m away from the mirror and
the distance of his eye level from the ground
is 1.5 m . How tall is the tower ? (The foot of man, the mirror and the foot of the tower lie
along a straight line)

- Watch Video Solution

6. In $\triangle P Q R$, given that S is a point on PQ such that $\mathrm{ST} \| \mathrm{QR}$ and $\frac{P S}{S Q}=\frac{3}{5}$. If $\mathrm{PR}=5.6$ cm , then find PT .
7. In $\triangle A B C, \mathrm{D}$ and E are points on the sides

AB and AC respectively such that $D E|\mid B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$, find the value of x.

- Watch Video Solution

8. In the figure , $\mathrm{AC}|\mid \mathrm{BD}$ and CE$| \mid \mathrm{DF}$. If $\mathrm{OA}=12$
$\mathrm{cm}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$ and $\mathrm{EF}=4.5 \mathrm{~cm}$, then
find FO.

- Watch Video Solution

9. Check whether AD is bisector of $\angle A$ of
$\triangle A B C$ in each of the following .
(i) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$, and $C D=$
2.4 cm
(ii) $A B=6 \mathrm{~cm}, A C=8 \mathrm{~cm}, B D=1.5 \mathrm{~cm}$ and $C D=3$
cm

D Watch Video Solution

10. In a $\Delta A B C, \mathrm{AD}$ is the internal bisector of
$\angle A$, meeting BC at D . If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$
and $D C=3 \mathrm{~cm}$, find $B C$

D Watch Video Solution

11. In the figure, tangent $P A$ and $P B$ are drawn
to a circle with centre O from an external point P. If CD is a tangent to the circle at E and
$\mathrm{AP}=15 \mathrm{~cm}$, find the perimeter of $\triangle P C D$.

D Watch Video Solution

12. $A B C D$ is quadrilateral such that all of its
sides touch a circle. If $A B=6 \mathrm{~cm}, B C=6.5 \mathrm{~cm}$
and $C D=7 \mathrm{~cm}$, then find the length of $A D$.

D Watch Video Solution

13. A man goes 10 m due east and then 24 m
due north. Find the distance of his current position from the starting point?

- Watch Video Solution

14. If in a Triangle $\mathrm{ABC} \angle A=80^{\circ}, \angle B=20^{\circ}$
what will $\angle C$ be?
15. $A B C$ is right - angled triangle at B. Let D and
E be any two point on $A B$ and $B C$ respectively.
Prove that $A E^{2}+C D^{2}=A C^{2}+D E^{2}$

- Watch Video Solution

16. In figure O is any point inside a rectangle ABCD . Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$
17. A lotus is 20 cm above the water surface in
a pond and its stem is partly below the water
surface. As the wind blew, the stem is pushed
aside so that the lotus touched the water 40
cm away from the original position of the
stem. How muc of the stem was below the water surface originally ?

- Watch Video Solution

18. In the figure, $\mathrm{DE} \| \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}$, calculate the value of
(i) $\frac{\text { area of } \triangle A D E}{\text { area of } \triangle A B C}$
(ii) area of trapezium BCED area of $\triangle A B C$

- Watch Video Solution

19. A boy is designing a diamond shaped kite , as shown in the figure where $\mathrm{AE}=16 \mathrm{~cm}, \mathrm{EC}=$ 81 cm. He wants to use a straight cross bar BD. How long should it be?
20. Find the unknown values in each of the following figures . All lengthaar given in centimeters. (All measures are not in scale)

- View Text Solution

21. The internal bisector of $\angle A$ of $\triangle A B C$
meets BC at D and the external bisector of $\angle A$
meets BC produced at E. Prove that $\frac{B D}{B E}=\frac{C D}{C E}$.

D Watch Video Solution

22. $A B C D$ is quadrilateral with $A B$ parallel to
DC. A line drawn parallel to $A B$ meets $A D$ at P and $B C$ at Q. prove that $\frac{A P}{P D}=\frac{B Q}{Q C}$
23. D is the midpoint of the side BC of $\triangle A B C$
. If P and Q are points $o A B$ and on $A C$ such that DP bisects $\angle B D A$ and DQ bisects $\angle A D C$, then prove that $P Q|\mid B C$

D Watch Video Solution

24. $A B C D$ is trapezium with $A B \| D C$. The diagonal $A C$ and $B D$ intersect at E. If $\triangle A E D \sim \triangle B E C$. Prove that $\mathrm{AD}=\mathrm{BC}$.

Thinking Corner

1. Can we draw two tangents parallel to each other on a circle ?

D Watch Video Solution

2. Can we draw two tangents perpendicular to each other on a circle ?
\square
