# ©゙ doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - FULL MARKS MATHS (TAMIL ENGLISH) 

## NUMBERS AND SEQUENCES

Progress Check

1. Find $q$ and $r$ for the following pairs of integers $a$ and $b$
satisfying $a=b q+r$.
$a=13, b=3$

D Watch Video Solution
2. Euclid's division algorithm is a repeated application of division lemma until we get remainder as :

## - Watch Video Solution

3. The H.C.F of two equal positive integers $k, k$ is :

## - Watch Video Solution

4. Every natural number except ...... can be expressed as

## - Watch Video Solution

5. In how many ways a composite number can be written as product of power of primes?

## Watch Video Solution

6. The number of divisors of any prime number is

## - Watch Video Solution

7. Let m divides n . Then G.C.D and L.C.M. of $\mathrm{m}, \mathrm{n}$ are ...... and

## - Watch Video Solution

8. The HCF of numbers of the form $2^{m}$ and $3^{n}$ is $\qquad$ .

## - Watch Video Solution

9. Two integers $a$ and $b$ are congruent modulo $n$ if

## - Watch Video Solution

10. The set of all positive integers which leave remainder 5 when divided by 7 are $\qquad$

## - Watch Video Solution

11. The positive values of k such that $(k-3) \equiv 5(\bmod 11)$ are... .

## - Watch Video Solution

> 12. If $59 \equiv 3(\bmod 7), 46 \equiv 4(\bmod 7)$ then $105 \equiv \ldots(\bmod 7)$,
> $13 \equiv \ldots(\bmod 7), 413 \equiv \ldots(\bmod 7), 368 \equiv \ldots(\bmod 7)$
13. The remainder when $7 \times 13 \times 19 \times 23 \times 29 \times 31$ is divided by 6 is :

## - Watch Video Solution

14. Fill in the blanks for the following sequences
$7,13,19, \ldots$

## - Watch Video Solution

15. A sequence is a function defined on the set of

## - Watch Video Solution

16. The $n^{\text {th }}$ term of the sequence $0,2,6,12,20, \ldots .$. Can be expressed as

## - Watch Video Solution

17. Say True or False

All sequences are functions .

## D Watch Video Solution

18. The difference between any two consecutive terms of an A.P.
is ....

- Watch Video Solution

19. If a and $d$ are the first term and common difference of an A.P. then the $8^{\text {th }}$ term is .....

## D Watch Video Solution

20. If $t_{n}$ is the $n^{\text {th }}$ term of an A.P., then $t_{2 n}-t_{n}$ is .....

## - Watch Video Solution

21. The common difference of a constant A.P. is

## - Watch Video Solution

22. If a and $I$ are first and last terms of an A.P. then the number of terms is ....

## (D) Watch Video Solution

23. If every term of an A.P. is multiplied by 3 , then the common difference of the new A.P. is .....

## D Watch Video Solution

24. Three numbers $a, b$ and $c$ will be in A.P. if and only if $\qquad$ .

## D Watch Video Solution

25. The sum of terms of a sequence is called
26. A series have finite number of terms then it is called

## D Watch Video Solution

27. A series whose terms are in ...... is called Arithmetic series.

## - Watch Video Solution

28. If the first and last terms of an A.P. are given, then the formula to find the sum is

## - Watch Video Solution

29. State True or False Justify.
(i) The $n^{t h}$ term of any A.P. is of the form $\mathrm{pn}+\mathrm{q}$ where p and q
are some constants.
(ii) The sum to nth term of any A.P. is of the form $p n^{2}+q n+r$, where p,q,r are some constants.

## - View Text Solution

30. A G.P. is obtained by multiplying ......... to the preceding term.

## - Watch Video Solution

31. The ratio between any two consecutive terms of the G.P. is ......
and it is called ......

## - Watch Video Solution

32. Fill in the blanks, if the term are in G.P. $\frac{1}{8}, \frac{3}{4}, \frac{9}{2}, \ldots$

## - Watch Video Solution

33. If first term $=a$, common ratio $=r$, then find the value of $t_{9}$ and $t_{27}$.

## - Watch Video Solution

34. If G.P if $t_{1}=\frac{1}{5}$ and $t_{2}=\frac{1}{25}$ then the common ratio is

## - Watch Video Solution

35. A series whose terms are in Geometric progression is called
36. When $r=1$, the formula for finding sum to n terms of a G.P. is

## - Watch Video Solution

37. When $r \neq 1$, the formula for finding sum to n terms of a G.P. is S ........

## - Watch Video Solution

38. Sum to infinite number of terms of a G.P. is ....

## - Watch Video Solution

39. For what values of $r$, does the formula for infinite G.P. valid ?
40. Is the series $3+33+333+\ldots$. a Geometric series ?

## - Watch Video Solution

41. The value of $r$, such that $1+r+r^{2}+r^{3} \ldots=\frac{3}{4}$ is ...

## - Watch Video Solution

42. The sum of cubes of first $n$ natural numbers is ........of the first n natural numbers.
43. The average of first 100 natural number is $\qquad$ .

## - Watch Video Solution

44. The sum of first n odd natural numbers is always an odd number.

## - Watch Video Solution

## Exercise 21

1. Find all positive integers which when divided by 3 leaves remainder 2.
2. A man has 532 flower pots. He wants to arrange them the rows such that each row contains 21 flowers pots. Find the number of completed rows and how many flower pots are left over.

## - Watch Video Solution

3. Prove that the product of two consecutive positive integers is divisible by 2 .

## - Watch Video Solution

4. When the positive integers be $a, b$ and $c$ divided by 13 , the respective remainders are 9,7 and 10 . Show that $a+b+c$ is divided by 13.
5. Prove that the square of any integer leaves the remainder either 0 or 1 when divided by 4 .

## - Watch Video Solution

6. Use Euclid Division Algorithm to find the Highest Common Factor (H.C.F) of

340 and 412

## D Watch Video Solution

7. Find th largest number which divides 1230 and 1926 leaving remainder 12 in each case.
8. If $d$ is the Highest Common Factor of 32 and 60 , find $x$ and $y$ satisfying $d=32 x+60 y$.

## - Watch Video Solution

9. A positive integer when divided by 88 gives the remainder 61 .

What will be the remainder when the same number is divided by 11?

## D Watch Video Solution

10. Prove that two consecutive positive integers are always coprime.

## Exercise 22

1. For what values of natural number $\mathrm{n}, 4^{n}$ can end with the digit $6 ?$

## D Watch Video Solution

2. If $m, n$ are natural numbers, for what values of $m$, does $2^{n} \times 5^{m}$ ends in $5 ?$

## - Watch Video Solution

3. Find the H.C.F of 252525 and 363636 .
4. If $13824=2^{a} \times 3^{b}$ then find $a$ and $b$.

## D Watch Video Solution

5. If $p_{1}^{x_{1}} \times p_{2}^{x_{2}} \times p_{3}^{x_{3}} \times p_{4}^{x_{4}}=11340$ where $p_{1}, p_{2}, p_{3}, p_{4}$ are primes in ascending order and $x_{1}, x_{2}, x_{3}, x_{4}$ are integers, find the value of $p_{1}, p_{2}, p_{3}, p_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$.

## - Watch Video Solution

6. Find the L.C.M. and H.C.F. of 408 and 170 by applying the fundamental theoram of arithmetic.
7. Find the greatest number consisting of 6 digits which is exactly divisible by $24,15,36$ ?

## - Watch Video Solution

8. What is the smallest number that when divided by three numbers such as 35 , 56 and 51 leaves remainder 7 in each case?

## - Watch Video Solution

Exercise 23

1. Find the least positive value of $x$ such that
$89 \equiv(x+3)(\bmod 4)$
2. If x s congruent to 13 modulo 17 then $7 x-3$ is congruent to which number modulo 17 ?

## D Watch Video Solution

3. Solve $5 x=4(\bmod 6)$

## D Watch Video Solution

4. Solve $3 x-2=0(\bmod 11)$

## D Watch Video Solution

5. What is the time 100 hours after 7 a.m.?
6. What is the time 15 hours before 11 p.m.?

## - Watch Video Solution

7. Today is Tuesday. My uncle will come after 45 days. In which day my uncle will be coming?

## D Watch Video Solution

8. Prove the $2^{n}+6 \times 9^{n}$ is always divisible by 7 for any positive integer $n$.
9. Find the remainder when $2^{81}$ is divided by 17.

## - Watch Video Solution

10. The duration of flight travel from Chennai to London through British Airlines is approximately 11 hours. The airplanes begin its journey on Sunday at 23:30 hours. If the time at Chennai is four and half hours ahead to that of London's time, then find the time at London, when will the flight lands at London Airport.

## - Watch Video Solution

## Exercise 24

1. Find the next terms of the following sequence. $8,24,72, \ldots$

## D Watch Video Solution

2. Find the first four terms of the sequences whose nth terms are given by
$a_{n}=n^{3}-2$

D Watch Video Solution
3. Find the nth terms of the following sequences
$2,5,10,17, \ldots$
4. Find the indicated terms of the sequences whose nth terms are given by
$a_{n}=\frac{5 n}{n+2}, a_{6}$ and $a_{13}$

## - Watch Video Solution

5. Find the $a_{8}$ and $a_{15}$ whose nth term is
$a_{n}=\begin{aligned} & \frac{n^{2}-1}{n+3}, \mathrm{n} \text { is even, } n \in N \\ & \frac{n^{2}}{2 n+1}, \mathrm{n} \text { is odd, } n \in N\end{aligned}$

## - Watch Video Solution

6. If $a_{1}=1, a_{2}=1$ and $a_{n}=2 a_{n-1}+a_{n-2}, n \geq 3, n \in N$, then find the first six terms of the sequence.
7. Check whether the following sequences are in A.P.
$a-3, a-5, a-7, \ldots$

## (D) Watch Video Solution

2. First term a and common difference $d$ are given below. Find the corresponding A.P.,
$a=5, d=6$

## - Watch Video Solution

3. Find the first term and common difference of the Arithmetic

Progressions whose nth terms are given below
$t_{n}=-3+2 n$

## (D) Watch Video Solution

4. Find the 9th term of A.P. $-11,-15,-19, \ldots$

## D Watch Video Solution

5. Which term of an A.P. $16,11,6,1, \ldots$ is -54 ?

## - Watch Video Solution

6. Find the middle term(s) of an A.P. $9,15,21,27, \ldots, 183$

- Watch Video Solution

7. If nine times ninth term is equal to the fifeen times fifteenth term, show that six times twenty fourth is zero.

## - Watch Video Solution

8. If $3+k, 18-k, 5 k+1$ are in A.P. then find $k$,

## (D) Watch Video Solution

9. Find the $x, y$, and $z$, given that the number $x, 10, y, 24, z$ are in A.P.
10. In a threatre, there are 20 seats in the front row and 30 rows were alloted. Each successive row contains two additional seats than its front row. How many seats are there in the last row?

## - Watch Video Solution

11. The sum of the three consecutive terms that are in A.P. is 27 and their product is 288 . Find the three terms.

## - Watch Video Solution

12. The ratio of 6 th and 8 th term of an A.P. is 7.9. Find the ratio of 9th to 13th term.
13. In a winter season let us take the temperature of Ooty from

Monday to Friday to be in A.P. The sum of temperature from
Monday to Wednesday is $0^{\circ} \mathrm{C}$ and the sum of the temperature from Wednesday to Friday is $18^{\circ} \mathrm{C}$. Find the temperature on each of the five days.

## - Watch Video Solution

14. Priya earned $₹ 15,000$ in the first month. Therefore her salary inceased by ₹1500 per year. Her expenses are ₹ 13,000 during the first year and the expenses inceases by ₹900 per year. How long will it take for her to save ₹20,000 per month.

## - Watch Video Solution

1. Find the sum of the following
$3,7,11, \ldots$ upto to 40 terms.

## - Watch Video Solution

2. How many consecutive odd integers beginning with 5 will sum to 480 ?

## - Watch Video Solution

3. Find the sum of the first 28 terms of an A.P. whose nth term is

4n-3.

- Watch Video Solution

4. The sum of first $n$ terms of a certain series is given as $2 n^{2}-3 n$. Show that the series is an A.P.

## - Watch Video Solution

5. The 104th term and 4 th term of an A.P. are 125 and 0 . Find the sum of first 35 terms.

## D Watch Video Solution

6. Find the sum of all odd integers less than 450.
7. Find the sum of all natural numbers between 602 and 902 which are not divisible by 4 .

## - Watch Video Solution

8. Raghu wish to buy a laptop. He can buy it by paying ₹ 40,000 cash or by giving it in 10 installments as ₹4800 in the first month, ₹ 4750 in the second month, ₹ 4700 in the third month and so on. If he pays the money inn this fashion, find total amount paid in 10 installments.

## - Watch Video Solution

9. A man repays a loan of ₹ 65,000 by paying $₹ 400$ in the first month and then inceasing the payment by ₹300 every month.

How long will it take for him to clear the loan?

## - Watch Video Solution

10. A brick staircase has a total of 30 steps. The bottom step requires 100 bricks. Each successive step requires two bricks less than the previous step.

How many bricks are required to build the stair case?

## - Watch Video Solution

11. If $S_{1}, S_{2}, S_{3}, \ldots, S_{m}$ are the sums of n terms of m A.P.'s whose first terms are $1,2,4, \ldots, m$ and whose common differences are $1,3,5, \ldots,(2 m-1)$ repectively, then show that $S_{1}+S_{2}+S_{3}+\ldots+S_{n}=\frac{1}{2} m n(m n+1)$
12. 

Find
the
$\left[\frac{a-b}{a+b}+\frac{3 a-2 b}{a+b}+\frac{5 a-3 b}{a+b}+\ldots+\right.$ to 12 terms $]$
sum

## - Watch Video Solution

Exercise 27

1. Which of following sequences are in G.P.
$1,-5,25,-125, \ldots$

## - Watch Video Solution

2. Write the first three terms of the G.P. whose first term and the common ratio are given below.
$a=6, r=3$

## (D) Watch Video Solution

3. In a G.P. $729,243,81, \ldots$ find $t_{7}$

## - Watch Video Solution

4. Find x so that $x+6, x+12$ and $x+15$ are consecutive terms of Geometric Progressions.

## - Watch Video Solution

5. Find the number of terms in the following G.P.
$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots, \frac{1}{2187}$
6. In a G.P. the 9th term is 32805 and 6th term is 1215 . Find the 12th term.

## - Watch Video Solution

7. Find the 10th term of G.P. whose 8th term is 768 and the common ratio is 2 .

## - Watch Video Solution

8. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then show that $3^{a}, 3^{b}, 3^{c}$ are in G.P.
(D) Watch Video Solution
9. In a G.P. the product of three consecutive term is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$. Find the three terms.

## - Watch Video Solution

10. A man joined a company as Assistant Manager. The company gave him a starting salary of ₹ 60,000 and agreed to incease his salary $5 \%$ annually. What will be his salary after 5 years.

## - Watch Video Solution

11. Sivamani is attending an interview for a job and the company
gave two offers to him Offer A: ₹20,000 to start with followed by a guaranted annual increase of $6 \%$ for the first 5 years.

Offer B: ₹22,000 to start with followed by a guaranteed annual increase of $3 \%$ for the first 5 years. what is this salary in the 4th year with respect to the Offer A and $B$ ?

## - Watch Video Solution

12. If $a, b, c$ are three consecutive terms of an A.P. and $x, y, z$ are three consecutive terms of a G.P. then prove that $x^{b-c} \times y^{c-a} \times z^{a-b}=1$

## - Watch Video Solution

1. Find the sum of first $n$ terms of the G.P.
$5,-3, \frac{9}{5},-\frac{27}{25}, \ldots$

## - Watch Video Solution

2. Find the sum of first six terms of the G.P. $5,15,45, \ldots$

## - Watch Video Solution

3. Find the first term of the G.P. whose common ratio 5 and whose sum to the 6 terms is 46872 .
4. Find the sum of infinity of
$21+14+\frac{28}{3}+\ldots$

## - Watch Video Solution

5. If the first term of an infinite G.P. is 8 and its sum to infinity is $\frac{32}{3}$ then find the common ratio.

## - Watch Video Solution

6. Find the sum to $n$ terms of the series
$0.4+0.44+0.444+\ldots$ to n terms.

- Watch Video Solution

7. Find the sum of the Geometric series $3+6+12+\ldots 1536$.

## - Watch Video Solution

8. Kumar writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with the instruction that they continue the process similarly.

Assuming that the process is unaltered and it costs ₹ 2 to mail one letter, find the amount spent on postage when 8th set of letters is mailed.

## - Watch Video Solution

9. Find the rational form of the number $\overline{0.123}$.
10. 

$$
S_{n}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+y^{2} x+y^{3}\right)+\ldots n
$$ terms then

prove that
$(x-y) S_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2} y^{n}-1}{y-1}\right]$.

## - Watch Video Solution

## Exercise 29

1. Find the sum of the following series
$1+2+3+\ldots+60$

## - Watch Video Solution

2. 

If
$1+2+3+\ldots+k=325$, then find $1^{3}+2^{3}+3^{3}+\ldots+k^{3}$.

## - Watch Video Solution

3. If $1^{3}+2^{3}+3^{3}+\ldots+k^{3}=44100$ then find $1+2+3+\ldots+k$.

## D Watch Video Solution

4. How many terms of the series $1^{3}+2^{3}+3^{3}+\ldots$ should be taken to get the sum 14400?

- Watch Video Solution

5. The sum of the squares of the first n natural numbers is 285 , while the sum of their cubes is 2025 . Find the values of $n$.

## - Watch Video Solution

6. Rakha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}$...

24 cm . How much area can be decorated with these colour papers?

## D Watch Video Solution

7. Find the sum of the series

$$
\left(2^{3}-1^{3}\right)+\left(4^{3}-3^{3}\right)+\left(6^{3}-5^{3}\right)+\ldots \text { to } \mathrm{n} \text { terms }
$$

1. Euclid's division lemma states that for positive integers a and b , there exist unique integers q and r such that $a=b q+r$, where $r$ must satisfy.
A. $1<r<b$
B. $0<r<b$
C. $0 \leq r<b$
D. $0<r \leq b$

## Answer: C

2. Using Euclid's division lemma, if the cube of any positive integers is divided by 9 then the possible remainders are $\qquad$ .
A. $0,1,8$
B. 1,4,8
C. 0,1,3
D. 1,3,5

## Answer: A

## - Watch Video Solution

3. If the H.C.F. of 65 and 117 is expressible in the form of
$65 m-117$, then the value of $m$ is
A. 4
B. 2
C. 1
D. 3

## Answer: B

## - Watch Video Solution

4. The sum of the exponents of the prime factors in the prime factorization of 1729 is :
A. 1
B. 2
C. 3
D. 4

## Answer: C

## - Watch Video Solution

5. The least number that is divisible by all the numbers from 1 to

10 (both inclusive) is
A. 2025
B. 5220
C. 5025
D. 2520

## Answer: D

$6.7^{4 k}={ }_{-}(\bmod 100)$
A. 1
B. 2
C. 3
D. 4

## Answer: A

## - Watch Video Solution

7. Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then $F_{5}$ is
A. 3
B. 5
C. 8
D. 11

## Answer: D

## - Watch Video Solution

8. The common difference of a constant A.P. is ......
A. 4551
B. 10091
C. 7881
D. 13531

## Answer: C

9. If 6 times of 6 th term of an A.P. is equal to 7 times term, then the 13th term of the A.P. is
A. 0
B. 6
C. 7
D. 13

## Answer: A

## (D) Watch Video Solution

10. An A.P. consists of 31 terms. If its 16 th terms is $m$, then the sum of all the terms of this A.P. is
A. 16 m
B. 62 m
C. 31 m
D. $\frac{31}{2} \mathrm{~m}$

## Answer: C

## - Watch Video Solution

11. In an A.P., the first terms is 1 and the the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120 ?
A. 6
B. 7
C. 8
D. 9

## Answer: C

## - Watch Video Solution

12. If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\ldots+2^{0}$ which of the following is true?
A. B is $2^{64}$ more than A
B. $A$ and $B$ are equal
C. $B$ is larger than $A$ by 1
D. $A$ is larger than $B$ by 1

## Answer: D

13. The next term of the sequences $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$
A. $\frac{1}{24}$
B. $\frac{1}{27}$
C. $\frac{2}{3}$
D. $\frac{1}{81}$

## Answer: B

## - Watch Video Solution

14. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
A. a Geometric progression
B. an Arithmetic progression
C. neither an Arithmetic progression nor a Geometric progression
D. a constant sequence.

## Answer: B

## - Watch Video Solution

15. 

The
value
$\left(1^{3}+2^{3}+3^{3}+\ldots+15^{3}\right)-(1+2+3+\ldots+15)$ is
of
A. 14400
B. 14200
C. 14280

## Answer: C

## - Watch Video Solution

## Unit Exercise

1. Prove that $n^{2}-n$ divisible by 2 for every positive integer n .

## D Watch Video Solution

2. A milk man has 175 litres of cow's milk and 105 litres of buffalow's milk. He wishes to sell the milk by filling the two type of milk is cans of equal capacity. Calculate the following

Capacity of a can.

## - Watch Video Solution

3. When the positive integer $a, b, c$ and are divided by 13 the respective remainders are 9,7 and 10 . Find the remainder when $a+2 b+3 c$ is divided by 13.

## D Watch Video Solution

4. Show that 107 is of the form $4 q+3$ for any integer $q$.

## D Watch Video Solution

5. If $(m+1)$ th term of an A.P. is twice the $(n+1)$ th term, then prove that $(3 m+1)$ th term is twice the $(m+n+1)$ th term
6. Find the 12 th term from the last term of the A. P. $-2,-4,-6, \ldots,-100$.

## - Watch Video Solution

7. Two A.P.'s have the same common difference. The first term of one A.P. is 2 and that of the other is 7 . Show that the difference between their 10th terms is the same as the difference between their 21th terms, which is the same as the difference between any two corresponding terms.

## - Watch Video Solution

8. Find the G.P. in which the 2 nd term is $\sqrt{6}$ and the 6 th term is
$9 \sqrt{6} ?$

## - Watch Video Solution

9. The value of a motor cycle depreciates at the rate of $15 \%$ per year. What will be the value of the motor cycle 3 year hence, which is now purchased for ₹ 45,000 ?

## - Watch Video Solution

10. The value of a motor cycle depreciates at the rate of $15 \%$ per year. What will be the value of the motor cycle 3 year hence, which is now purchased for ₹ 45,000 ?

## - Watch Video Solution

1. The sum of the exponents of the prime factors in the prime factorisation of 504 is $\qquad$
A. 3
B. 2
C. 1
D. 6

## Answer: D

## - Watch Video Solution

2. If two positive integers $a$ and $b$ are expressible in the form $a=p q^{2}$ and $b=p^{3} q, p, q$, being prime numbers, then L.C.M. of $(a, b)$ is
A. pq
B. $p^{2} q^{2}$
C. $p^{3} q^{3}$
D. $p^{3} q^{2}$

## Answer: D

## - Watch Video Solution

3. If n is a natural number then $7^{3 n}-4^{3 n}$ is always divisible by
A. 11
B. 3
C. 33
D. both 11 and 3

## Answer: D

## - View Text Solution

4. The value of x when $200 \equiv x(\bmod 7)$ is
A. 3
B. 4
C. 54
D. 12

## Answer:

5. The common difference of the A.P. $\frac{1}{2 b}, \frac{1-6 b}{2 b}, \frac{1-2 b}{2 b}$ is
A. $2 b$
B. $-2 b$
C. 3
D. -3

## Answer: D

## D Watch Video Solution

6. Which one of the following is not true?
A. A sequence is a real valued function defined on $N$.
B. Every function represents a sequence.
C. A sequence may have infinitely many terms.
D. A sequence may have a finite number of terms

## Answer: B

## - Watch Video Solution

7. The 8th term of the sequence $1,1,2,3, \ldots . .$. is $\qquad$
A. 25
B. 24
C. 23
D. 21

Answer: D
8. The next term of $\frac{1}{20}$ in the sequence $\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}$ is.
A. $\frac{1}{24}$
B. $\frac{1}{22}$
C. $\frac{1}{30}$
D. $\frac{1}{18}$

## Answer: C

## - View Text Solution

9. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{I}, \mathrm{m}$ are in A.P, then the value of $a-4 b+6 c-4 l+m$
is.
A. 1
B. 2
C. 3
D. 0

## Answer: D

## - Watch Video Solution

10. If $a, b, c$ are in A.P. then $\frac{a-b}{b-c}$ is equal to
A. $\frac{a}{b}$
B. $\frac{b}{c}$
C. $\frac{a}{c}$
D. 1
11. If the $n^{\text {th }}$ term of a sequence is $100 \mathrm{n}+10$, then the sequence
is ...........
A. an A.P.
B. a G.P.
C. a constant sequence
D. neither A.P. nor G.P.

## Answer: A

(D) Watch Video Solution
12. If $a_{1}, a_{2}, a_{3}, \ldots . . . . . .$. Are in A.P. such that $\frac{a_{4}}{a_{7}}=\frac{3}{2}$, then the $13^{\text {th }}$ term of the A.P. is $\qquad$
A. $\frac{3}{2}$
B. 0
C. $12 a_{1}$
D. $14 a_{1}$

## Answer: B

## (D) Watch Video Solution

13. If the sequence $a_{1}, a_{2}, a_{3}, \ldots . . . .$. Is an A.P., then the sequence $a_{5}, a_{10}, a_{15}, \ldots \ldots .$. Is $\qquad$
A. a G.P.
B. an A.P.
C. neither A.P. nor G.P.
D. a constant sequence.

## Answer: B

## D Watch Video Solution

14. If $k+2,4 k-6,3 k-2$ are the 3 consecutive terms of an A.P, then the value of kis......
A. 2
B. 3
C. 4
D. 5

## - Watch Video Solution

15. If $a, b, c, I, m, n$ are in A.P, then $3 a+7,3 b+7,3 c+7,3 I+7,3 m$
$+7,3 n+7$ form
A. a G.P.
B. an A.P.
C. a constant sequence
D. neither A.P. nor G.P.

## Answer: A::B

- Watch Video Solution

16. If the third term of a G.P. is 2 , then the product of first 5 terms is $\qquad$
A. $5^{2}$
B. $2^{5}$
C. 10
D. 15

## Answer: B

## - Watch Video Solution

17. If $a, b, c$ are in G.P. then $\frac{a-b}{b-c}$ is equal to
A. $\frac{a}{b}$
B. $\frac{b}{a}$
C. $\frac{a}{c}$
D. $\frac{c}{b}$

## Answer: A

## D Watch Video Solution

18. If $x, 2 x+2,3 x+3$, are in G.P., then $5 x, 10 x+10,15 x+15$, form ....
A. an A.P.
B. a G.P.
C. a constant sequence
D. neither A.P. nor G.P.

## Answer: B

19. The sequence, $-3,-3,-3, \ldots . . . .$. Is
A. an A.P. Only
B. a G.P. only
C. neither A.P. nor G.P.
D. both A.P. and G.P.

## Answer: D

## - Watch Video Solution

20. If the product of the first four consecutive terms of a G.P is

256 and if the common ratio is 4 and the first term is positive, then its 3 rd term is $\qquad$
A. 8
B. $\frac{1}{16}$
C. $\frac{1}{32}$
D. 16

## Answer: A

## D Watch Video Solution

21. In a G.P. $t_{2}=\frac{3}{5}$ and $t_{3}=\frac{1}{5}$. The the common ratio is
A. $\frac{1}{5}$
B. $\frac{1}{3}$
C. 1
D. 5

## - Watch Video Solution

22. If $x \neq 0$, then $1+\sec x+\sec ^{2} x+\sec ^{3} x+\sec ^{4} x+\sec ^{5} x$ is equal to
A. $(1+\sec x)\left(\sec ^{2} x+\sec ^{3} x+\sec ^{4} x\right)$
B. $(1+\sec x)\left(1+\sec ^{2} x+\sec ^{4} x\right)$
C. $(1-\sec x)\left(\sec x+\sec ^{3} x+\sec ^{5} x\right)$
D. $(1+\sec x)\left(1+\sec ^{3} x+\sec ^{4} x\right)$

## Answer: B

- Watch Video Solution

23. If the $n$th term of an A.P. is $t_{n}=3-5 n$, then the sum of the first $n$ terms is $\qquad$
A. $\frac{n}{2}[1-5 n]$
B. $n(1-5 n)$
C. $\frac{n}{2}(1+5 n)$
D. $\frac{n}{2}(1+n)$

## Answer: A

## - Watch Video Solution

24. The common ratio of the G.P. $a^{m-n}, a^{m}, a^{m+n}$ is
A. $a^{m}$
B. $a^{-m}$
C. $a^{n}$
D. $a^{-n}$

## Answer: C

## - Watch Video Solution

25. If $1+2+3+\ldots \ldots+n=\mathrm{k}$ then $1^{3}+2^{3}+\ldots \ldots+n^{3}$ is equal to
A. $k^{2}$
B. $k^{3}$
C. $\frac{k(k+1)}{2}$
D. $(k+1)^{3}$

## Additional Question Solved li Answer The Following

1. Show that the square of any positive integer of the form 3 m or $3 m+1$ for some integer $n$.

## (D) Watch Video Solution

2. If the H.C.F. of 65 and 117 is expressible in the form of $65 m-117$, then the value of $m$ is
(D) Watch Video Solution
3. Compute x such that $5^{4} \equiv x(\bmod 8)$
4. The first term of an A.P. is 6 and the common difference is 5 .

Find the A.P. and its general term.

## - Watch Video Solution

5. Which term of the arithmetic sequence $24,23\left(\frac{1}{4}\right), 21\left(\frac{3}{4}\right), \ldots$. is 3 ?

## - Watch Video Solution

6. Find $n$ so that the $n$th terms of the following two A.P.'s are the
same.
$1,7,13,19, \ldots . . . .$. And 100,95, $90, . . . . . .$.
7. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., show that $(a-c)^{2}=4\left(b^{2}-a c\right)$.

## - Watch Video Solution

8. Find the sum of the first 30 terms of an A.P. whose nth term is $3+2 n$.

- Watch Video Solution

9. Find the sum of the firt 40 terms of the series $1^{2}-2^{2}+3^{2}-4^{2}+\ldots \ldots \ldots$.

## - Watch Video Solution

10. The sum of first $n$ terms of a certain series is given as $3 n^{2}-2 n$. Show that the series is an arithmetic series.

## - Watch Video Solution

11. If a clock strickes once at 1 o'clock, twice at 2 'clock, thrice at 3
o'clock and so on. How many times will it strikes in day?

## D Watch Video Solution

12. If the 4th and 7th term of Geometrics Progressions are 54 and 1458 respectively, find the Geometric Progression.

- Watch Video Solution

13. Which term of the geometric sequence,
(i) $5,2, \frac{4}{5}, \frac{8}{25}, \ldots .$. Is $\frac{128}{15625}$ ?

## - Watch Video Solution

14. How many consecutive terms starting from the first term of the scries $2+6+18+\ldots$ would sum to 728 ?

## - Watch Video Solution

15. A geometric series consists of four terms and has a positive
common ratio. The sum of the first two terms is 9 and sum of the last two terms is 36 . Find the series.
16. Suppose that five people are ill during the first week of an epidemic and each sick person spreads the contagious disease to four other people by the end of the second week and so on.

By the end of 15th week, how many people will be affected by the epidemic?

## - Watch Video Solution

17. A gardener wanted to reward a boy for his good deeds by
giving some mangoes. He gave the boy two choices. He could
either have 1000 mangoes at once or he could get 1 mango on the first day, 2 on the second day, 4 on the third day, 8 mangoes on the fourth day and so on for ten days. Which option should the boy choose to get the maximum number of mangoes?

## D Watch Video Solution

18. Find the value of $k$ if
$1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots .+k^{3}=2025$

## - Watch Video Solution

19. If $1^{3}+2^{3}+3^{3}+\ldots \ldots . .+k^{3}=8281$, then find $1+2+3+$ ....... +k .

## - Watch Video Solution

20. Find the sum of all 11 term of an AP whose middle most term in 30.

- Watch Video Solution

1. Use Euclid's division algorithim to find the HCF of 867 and 255.

## - Watch Video Solution

2. Find the least positive value of x if $5 x \equiv 2(\bmod 13)$

## - Watch Video Solution

3. Find the 40th term of A.P. whose 9th term is 465 and 20th term is 388.
4. Find the three consecutive terms in an A.P. whose sum is 18 and the sum of their squares is 140 .

## - Watch Video Solution

5. If $m$ times the $m^{t h}$ term of an A.P. is equal to $n$ times its $n^{\text {th }}$ term, then show that the $(m+n)$ th term of the A.P. is zero.

## - Watch Video Solution

6. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., show that $(a-c)^{2}=4\left(b^{2}-a c\right)$.

## - Watch Video Solution

7. The ratio of the sum of $m$ and $n$ terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{t h}$ and $n^{t h}$ term is $2 m-1: 2 n-1$.

## - Watch Video Solution

8. A construction company will be penalised each day for delay in construction of a bridge. The penalty will be Rs 4000 for the first day and will increase by Rs 1000 for each following day. Based on its budget, the company can afford to pay a maximum of Rs $1,65,000$ towards penalty. Find the maximum number of days by which the construction of work can be delayed.

## - Watch Video Solution

9. If the product of three consecutive terms in G.P. is 216 and sum of their products in pairs is 156 , find them.

## - Watch Video Solution

10. If $a, b, c, d$ are in a geometric sequences, then show that
$(a-b+c)(b+c+d)=a b+b c+c d$.

## - Watch Video Solution

11. Find the sum of the first n terms of the series $0.4+0.94+$ $0.994+\ldots$
12. Find the total area of 12 squares whose sides are $12 \mathrm{~cm}, 13$
$\mathrm{cm}, . .23 \mathrm{~cm}$ respectively.

- Watch Video Solution

