© ${ }^{\prime}$ doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 10 (UNSOLVED)

Part I

1. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function
$f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
A. Many - one function
B. Identify function
C. One-to-one function
D. Into function

Answer:

- Watch Video Solution

2. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are
A. $(-1,2)$
B. $(2,-1)$
C. $(-1,-2)$
D. $(1,2)$

Answer:

3. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
A. 2025
B. 5220
C. 5025
D. 2520

Answer:

- Watch Video Solution

4. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$ are in A.P. then the sequence
$t_{6}, t_{12}, t_{18}, \ldots$ is
A. a Geometric progression
B. an Arithmetic progression
C. neither an Arithmetic progression nor a Geometric progression
D. a constant sequence

Answer:

- Watch Video Solution

5. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives
A. $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
B. $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
C. $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
D. $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$

Answer:

- Watch Video Solution

6. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
A. 100,120
B. 10,12
C. $-120,100$
D. 12,10

Answer:

7. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $\mathrm{AC}=5$ cm , then $A B$ is
A. 2.5 cm
B. 5 cm
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer:

- Watch Video Solution

8. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
A. 0 sq. units
B. 25 sq. units
C. 5 sq. units
D. none of these

Answer:

- Watch Video Solution

9. The value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ is equal to
A. $\tan ^{2} \theta$
B. 1
C. $\cot ^{2} \theta$
D. 0

- Watch Video Solution

10. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is
A. 1:2
B. 1: 4
C. 1:6
D. 1:8

Answer:

11. If the mean and coefficient of variation of a data are 4 and 87.5 \% then the standard deviation is
A. 3.5
B. 3
C. 4.5
D. 2.5

Answer:

- Watch Video Solution

12. If α and β are the roots of the equation $x^{2}+2 x+8=0$ then the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ is \qquad
A. $\frac{1}{2}$
B. 6
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

Answer:

D Watch Video Solution

13. If the points $(k, 2 k),(3 k, 3 k)$ and $(3,1)$ are collinear. Then k
is
A. $\frac{1}{3}$
B. $\frac{-1}{3}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

- Watch Video Solution

14. If the variance of $14,18,22,26,30$ is 32 then the variance is $28,36,44,52,60$ is
A. 64
B. 128
C. $32 \sqrt{2}$
D. 32

Answer:

1. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (C) a set in roster form, wherever possible. $\{(x, y) \mid y=x+3, x, y$ are natural number $<10\}$

- Watch Video Solution

2. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x^{5}$ and $g(x)=x^{4}$ then check if f, g are one-one and fog is one-one?

D Watch Video Solution

3. Find the first five terms of the following sequence.

$$
a_{1}=1, a_{2}=1, a_{n}=\frac{a_{n-1}}{a_{n-2}+3}, n \geq 3, n \in N
$$

(D) Watch Video Solution

4. If $1^{3}+2^{3}+3^{3}+\ldots+k^{3}=44100$ then find $1+2+3+\ldots+k$.

- Watch Video Solution

5. Find the LCM of each pair of the following polynomials $a^{2}+4 a-12, a^{2}-5 a+6$ whose GCD is a-2

- Watch Video Solution

6. Find the value of ' k ' for which the roots of the following equations are real and equal

$$
k x^{2}+(6 k+2) x+16=0
$$

7. Find the value of a, b, c, d, x, y from the following matrix equation.
$\left(\begin{array}{ll}d & 8 \\ 3 b & a\end{array}\right)+\left(\begin{array}{ll}3 & a \\ -2 & -4\end{array}\right)=\left(\begin{array}{ll}2 & 2 a \\ b & 4 c\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ -5 & 0\end{array}\right)$

D Watch Video Solution

8. To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearrest meter, how many meters would be saved if it were possible to make a way through the pond?

- Watch Video Solution

9. If the points $A(-3,9), B(a, b)$ and $C(4,-5)$ are collinear and if $a+b=1$, find the a and b.

- Watch Video Solution

10. Prove that $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}=2 \operatorname{cosec} A$.

- Watch Video Solution

11. The probability that atleast one of A and B occur is 0.6 . If A and B occur simultaneously with probability 0.2 , then find $P(\bar{A})+P(\bar{B})$.

D Watch Video Solution
12. If $\mathrm{n}=10, \bar{x}=12$ and $\sum x^{2}=1530$, then calculate the coefficient of variation.

- Watch Video Solution

13. Find the volume of the largest right circular cone that can be cut out of a cube whose edge is 14 cm .

- Watch Video Solution

14. Find the sum of the firt 40 terms of the series
$1^{2}-2^{2}+3^{2}-4^{2}+$

- Watch Video Solution

1. Find x if $g f f(x)=f g g(x)$, given $f(x)=3 x+1$ and $g(x)=x+3$.

- Watch Video Solution

2. In a G.P. the product of three consecutive term is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$. Find the three terms.

- Watch Video Solution

3. The $13^{\text {th }}$ term of an A.P is 3 and the sum of first 13 terms is

234 . Find the common difference and the sum of first 21 terms .
4.

$$
S_{n}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+y^{2} x+y^{3}\right)+\ldots n
$$

terms then prove that
$(x-y) S_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2} y^{n}-1}{y-1}\right]$.

- Watch Video Solution

5. Two woman together took 100 eggs to a market, one had more than the other. Both sold tham for the same sum of the money. The first then said to the second, "If 1 had your eggs, I would have earned ₹15", to which the second replied: "If 1 had your eggs, I would have earned ₹ $6 \frac{2}{3}$?. How many eggs did each had in the beginning?

- Watch Video Solution

6. If the roots of $(a-b) x^{2}+(b-c) x+(c-a)=0$ are real and equal, then prove that b, a, c are in arithmetic progression.

- Watch Video Solution

7. A circle is inscribed in $\triangle A B C$ having sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm as shown in figure, Find $A D, B E$ and $C F$.

- Watch Video Solution

8. If $\sin \theta\left(1+\sin ^{2} \theta\right)=\cos ^{2} \theta$, then prove that $\cos ^{6} \theta-4 \cos ^{2} \theta+8 \cos ^{2} \theta=4$

- Watch Video Solution

9. A toy is in the shape of a cylinder surmounted by a hemisphere . The height of the toy is 25 cm . Find the total surface area of the toy is its common diameter is 12 cm .

- Watch Video Solution

10. Find the coefficient of variation of $24,26,33,37,29,31$.
11. The probability that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ can solve a problem are $\frac{4}{5}, \frac{2}{3}$ and $\frac{3}{7}$ respectively. The probability of the problem being solved by A and B is $\frac{8}{15}$, B and C is $\frac{2}{7}, A$ and C is $\frac{12}{35}$. The probability of the problem being solved by all the three is $\frac{8}{35}$. find the probability that the problem can be solved by atleast one of them.

- Watch Video Solution

12. Verify that $(A B)^{T}=B^{T} A^{T}$ if $A=\left(\begin{array}{lll}2 & 3 & -1 \\ 4 & 1 & 5\end{array}\right)$ and
$B=\left(\begin{array}{cc}1 & 2 \\ 3 & -3 \\ 2 & 6\end{array}\right)$

- Watch Video Solution

13. A function $f(-3,7) \rightarrow R$ is defined as follows
$f(x)=\left\{\begin{array}{ll}4 x^{2}+1 & -3 \leq x<2 \\ 3 x-2 & 2 \leq x \leq 4 \\ 2 x+3 & 4<x<7\end{array}\right\}$
Find (i) $5 \mathrm{f}(1)-3 \mathrm{f}(-2)$ (ii) $3 \mathrm{f}(-3)+4 \mathrm{f}$ (iii) $\frac{7 f(3)-f(-1)}{2 f(6)-f(1)}$

D Watch Video Solution

Part Iv

1. Construct a $\triangle P Q R$ such that $\mathrm{QR}=6.5 \mathrm{~cm}, \angle P=60^{\circ}$ and the altitude from P to $Q R$ is of length 4.5 cm .

D Watch Video Solution

2. Draw the graph of $y=x^{2}+x$ and hence solve $x^{2}+1=0$.
