© 'doubtnut
 India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDER AVASTHI CHEMISTRY (ENGLISH)

ELECTROCHEMISTRY

Level 01

1. A cell reaction would be spontaneous if the cell potential and $\triangle_{r} G$ are respectively:
A. positive and negative
B. negative,negative
C. zero,zero
D. positive,zero
2. which of the following statement is correct?
A. cathode is -ve terminal in both ,galvanic and electrolytic cells
B. Anode is +ve terminal in both,galvanic and electrolytic cells
C. cathode and anode are -ve terminal in electrolytic and galvanic cell respectively.
D. Cathode and anode are + ve terminal in electroytic and galvanic cell respectively.

Answer: c

- Watch Video Solution

3. Electrolytes when dissolved in water dissociate into ions because:
A. (a) they are unstable
B. (b) the water dissolves it.
C. (c) the force of repulsion increases
D. (d) the force of electrostatic attraction is broken down by water.

Answer: d

D Watch Video Solution

4. The electric charge required for electrode deposition of one gramequivalent of a substance is :
A. (a) one ampere per second
B. (b) 96500 coulombs per second
C. (c) one ampere for one hour
D. (d) charge on one mole of electrons

Answer: D

5. The amount of an ion liberated on an electrode during electrolysis does not depend upon:
A. (a) conductance of the solution
B. (b) current strength
C. (c) time
D. (d) electrochemical equivalent of the element

Answer: A

- Watch Video Solution

6. How many electrons are there in one coulomb of electricity?
A. 6.023×10^{23}
B. 1.64×10^{-24}
C. 6.24×10^{18}
D. 6.24×10^{-24}

Answer: C

- Watch Video Solution

7. How many coulombs are provided by a current 0.010 mA in the calculator battery that can operate for 1000 hours?
A. 1
B. 10
C. 0.01
D. 36

Answer: D

- Watch Video Solution

8. How many minutes are required to deliver 3.21×10^{6} coulombs using a current of 500 A used in the commercial production of chlorine?
A. 8.3
B. 5.3×10^{4}
C. 6420
D. 107

Answer: D

- Watch Video Solution

9. Passage of a current for 548 seconds through a siver coulometer results in the deposition of 0.746 g of silver.What is the current (in A)?
A. 1.22
B. 1.16
C. 1.07
D. 1

Answer: A

- Watch Video Solution

10. Electrolysis can be used to determine atomic masses. A current of 0.550 A deposits 0.55 g of a certain metal in 100 minutes. Calculate the atomic mass of the metal if eq. mass=molar Mass/3
A. 100
B. 45
C. 48.25
D. 144.75

Answer: C

- Watch Video Solution

11. Beryllium occurs naturally in the form of beryl. The metal is produced from its ore by electrolysis after the ore has been converted to the oxide and then to the chloride.How many grams of $\mathrm{Be}(\mathrm{s})$ is deposited form a BeCl_{2} solution by a current of 5.0 A that flows for 1.0 h ? (Atomic weight:Be=9)
A. (a) 0.84
B. (b) 1.68
C. (c) 1.42
D. (d) 1.08

Answer: A

- Watch Video Solution

12. How many minutes will it take to plate out 5.2 g of Cr from a $C r_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution using a current of 9.65 A ? (Atomic mass: $\mathrm{Cr}=52.0$)
B. 50
C. 100
D. 103

Answer: B

- Watch Video Solution

13. Calculate the current (in mA) required to deposite 0.195 g of platinum metal in 5.0 hours from a solution of $\left[\mathrm{PtCl}_{6}^{2-}\right.$:(Atomic mass:Pt=195)
A. 310
B. 31
C. 21.44
D. 5.36

Answer: C

14. How many Faradays are required to reduce 0.25 g of $\mathrm{Nb}(\mathrm{V})$ to the metal?
A. 2.7×10^{-3}
B. 1.3×10^{-2}
C. 2.7×10^{-2}
D. 7.8×10^{-3}

Answer: B

- Watch Video Solution

15. One gm metal M^{3+} was discharged by the passage of 1.81×10^{23} electrons.What is the atomic mass of metal?
A. (a) 33.35
B. (b) 133.4
C. (c) 66.7
D. (d) None of these

Answer: D

- Watch Video Solution

16. Total charge required to convert three moles of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ to MnO_{4}^{-2} in present of alkaline medium
A. (a) 5 F
B. (b) 10 F
C. (c) 20 F
D. (d) None of these

Answer: C

17. The electrolytic decomposition of dilute sulphuric acid with platinum electrode, cathodic reaction is :
A. (a) reduction of H^{+}
B. (b) oxidation of SO_{4}^{2-}
C. (c) reduction SO_{3}^{2-}
D. (d) oxidation of $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

18. Which one of the following metals can not be obtained on electrolysis of aqueous solution of its salts?
A. (a) Mg
B. (b) Ag
C. (c) Cu
D. (d) Cr

Answer: A

- Watch Video Solution

19. A solution of sodium sulphate in water is electrolysed using inert electrodes, The products at the cathode and anode are respectively.
A. H_{2}, O_{2}
B. $\mathrm{O}_{2}, \mathrm{H}_{2}$
C. $\mathrm{O}_{2}, \mathrm{Na}$
D. $\mathrm{H}_{2}, \mathrm{~S}_{2} \mathrm{O}_{8}^{2-}$

Answer: D

- Watch Video Solution

20. The passage of current through a solution of certain electrolyte results in the evolution of $\mathrm{H}_{2}(\mathrm{~g})$ at cathode and $\mathrm{Cl}_{2}(\mathrm{~g})$ at anode. The electrolytic solution is :
A. water
B. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. aq. NaCl
D. aq. CuCl_{2}

Answer: C

- Watch Video Solution

21. when an aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is electrolysed the product at anodes is :
A. H^{-}
B. OH^{-}
C. SO_{4}^{2-}
D. O_{2}

Answer: D

- Watch Video Solution

22. An aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is electrolysed using Pt electrodes.

The products at the cathode and anode are respectively:
A. $\mathrm{H}_{2}, \mathrm{SO}_{2}$
B. $\mathrm{O}_{2}, \mathrm{NaOH}$
C. H_{2}, O_{2}
D. $O_{2}, S O_{2}$

Answer: C

23. The electrolysis of a solution resulted in the formation of $H_{2}(\mathrm{~g})$ at the cathode and $\mathrm{Cl}_{2}(\mathrm{~g})$ at anode. The solution is :
A. water
B. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
C. highly concentrated $\mathrm{NaCl}(\mathrm{aq})$ solution
D. $\mathrm{CuCl}_{2}(a q)$

Answer: B

- Watch Video Solution

24. If Pt is used as cathode in the electrolysis of aqueous NaCl solution, the ion reduced at cathode is :
A. H^{+}
B. Na^{+}
C. OH^{-}
D. Cl^{-}

Answer: A

- Watch Video Solution

25. A dilute aqueous solution of CuSo_{4} is electrolysed using platinum electrods. The products at the anode and cathode are:
A. $\mathrm{O}_{2}, \mathrm{H}_{2}$
B. $\mathrm{H}_{2}, \mathrm{O}_{2}$
C. O_{2}, Cu
D. $S_{2} O_{8}^{2-}, H_{2}$

Answer: C

- Watch Video Solution

26. what products are formed during the electrolysis of concentrated aqueous solution of sodium chloride?
(I) Cl_{2} (g) at anode (II) NaOH (aq) (III) H_{2} (g) At cathode
A. I only
B. I and II only
C. I and III only
D. I,II and III

Answer: D

- Watch Video Solution

27. Which of the following aqueous solution produces metal after electrolysis?
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. KMnO_{4}
C. $\mathrm{CH}_{3} \mathrm{COONa}$
D. CuCl_{2}

Answer: D

- Watch Video Solution

28. How much time is required for complete decomposition of 4 moles of water using 4 ampere?
A. $3.86 \times 10^{5} \mathrm{sec}$
B. $1.93 \times 10^{5} \mathrm{sec}$
C. 96500sec
D. 48250 sec

Answer: B

29. An aqueous solution containing 1 M each of $\mathrm{Au}^{3+}, \mathrm{Cu}^{2+}, \mathrm{Ag}^{+}, \mathrm{Li}^{+}$ is being electrolysed by using inert electrodes. The value of standard potentials are :

$$
\begin{aligned}
& E_{A g^{+} / A g}^{\circ}=0.80 V, E_{C u^{+} / C u}^{\circ}=0.34 V \\
& E_{A u^{+3} / A u}^{\circ}=1.50, E_{L i^{+} / L i}^{\circ}=-3.03 V
\end{aligned}
$$

and
will increasing voltage, the sequence of deposition of metals on the cathode will be :
A. $L i, C u, A g, A u$
B. $C u, A g, A u$
C. $A u, A g, C u$
D. $A u, A g, C u, L i$

Answer: C

30. If 0.50 L of a $0.60 \mathrm{M} \mathrm{SnSo}_{4}$ solution is electrolysed for a period of 30.0min using a current of 4.60 A. If inert electrods are used, what is the final concentration of Sn^{2+} remaining in the solution?[at.mass of $\mathrm{Sn}=119$]
A. 0.342 M
B. 0.544 M
C. 0.389 M
D. 0.514 M

Answer: D

- Watch Video Solution

31. A 100.0 mL dilute solution of Ag^{+}is electrolysed for 15.0 minutes with a current of 1.25 mA and the silver is removed completely. What was the initial $\left[A g^{+}\right]$?
A. 2.32×10^{-1}
B. 2.32×10^{-4}
C. 2.32×10^{-3}
D. 1.16×10^{-4}

Answer: D

- Watch Video Solution

32. A 250.0 mL sample of a $0.20 \mathrm{M} \mathrm{Cr}^{3+}$ is electrolysed with a current of 96.5 A. If the remaining $\left[\mathrm{Cr}^{3+}\right]$ is 0.1 M , the duration of process is:
A. 25 sec
B. 225 sec
C. 150sec
D. 75 sec

Answer: D

33. The element indium is to be obtained by electrolysis of a molten halide of the element. Passage of a current of 3.20 A for a period of 40.0 min results in formation of 3.05 g of In . what is the oxidation state of indium in the halide melt? (Atomic mass of $\mathrm{In}=114.8$)
A. 3
B. 2
C. 5
D. 1

Answer: A

- Watch Video Solution

34. An electrolysis of a oxytungsten complex ion using 1.10 A for 40 min produces 0.838 g of tungsten. What is the charge on tungsten in the material? (Atomic mass of $\mathrm{W}=184$)
A. 6
B. 2
C. 4
D. 1

Answer: A

- Watch Video Solution

35. In the electrolysis of aqueous NaCl , what volume of $\mathrm{Cl}_{2}(\mathrm{~g})$ is produced in the time that it takes to liberate 5.0 liter of $\mathrm{H}_{2}(\mathrm{~g})$? Assume that both gases are measured at STP.
A. 5
B. 2.5
C. 7.5
D. 10

- Watch Video Solution

36. How many grams of Cr are deposited in the electrolysis of solution of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ in the same time that it takes to deposite 0.54 g of Ag in a silver coulometer arranged in series with the $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ cell? (Atomic mass: $\mathrm{Cr}=52.0, \mathrm{Ag}=108$)
A. 0.0866
B. 0.0288
C. 0.173
D. 0.22

Answer: A

37. In the electolysis of a CuSO_{4} solution, how many grams of Cu are plated out on the cathode in the time that it takes to liberate 5.6 litre of $O_{2}(\mathrm{~g})$, measured at 1 atm and 273 K , at the node?
A. 31.75
B. 14.2
C. 4.32
D. None of these

Answer: A

- Watch Video Solution

38. Ammonium perchlorate, $\mathrm{NH}_{4} \mathrm{ClO}_{4}$, used in the solid fuel in the booster rockets on the space shuttle, is prepared from sodium perchlorate, NaClO_{4}, which is produced commercially by the electrolysis of a hot, stirred solution of sodium chloride. How many faradays are
required to produce 1.0 kg of sodium perchlorate?
$\mathrm{NaCl}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaClO}_{4}+4 \mathrm{H}_{2}$
A. 40.3
B. 18.3
C. 31.6
D. 65.3

Answer: D

- Watch Video Solution

39. In the commercial preparation of aluminum,aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ is electrolysed at $1000^{\circ} \mathrm{C}$. How many coulombs of electricity are required to give 54 kg of aluminum ? Assume following reaction takes place at cathode:

$$
A l^{3+}+3 e^{-\rightarrow} A l
$$

$$
\text { A. } 17.3 \times 10^{8}
$$

B. 3.21×10^{7}
C. 1.82×10^{4}
D. 57.6×10^{7}

Answer: D

- Watch Video Solution

40. When molten lithium chloride (LiCl) is electrolysed, lithium metal is formed at the cathode. If current efficiency is 75% then how many grams of lithium are liberated when 1930 C charge pass through the cell?
(Atomic mass of Li=7)
A. 0.105
B. 0.12
C. 0.28
D. 0.24

D Watch Video Solution

41. Sodium metal is produced commercial by the electrolysis of molten sodium chloride and chlorine is produced as a by product. How many litres of chlorine at 1.8 atm and $27^{\circ} \mathrm{C}$ will be produced if a current of $1.0 \times 10^{3} \mathrm{~A}$ is passed through $\mathrm{NaCl}(\mathrm{I})$ for 9.65 h ?
A. 2463
B. 460
C. 1800
D. 1231.6

Answer: A

42. $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$, can be produced by the electrolysis of water. What total volume (in L) of O_{2} and H_{2} are produced at 1 atm and 273 K when a current of 30 A is passed through a $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ solution for 193 min ?
A. 120.96
B. 40.32
C. 60.48
D. 80.64

Answer: C

- Watch Video Solution

43. The cost of $2 \mathrm{Rs} / \mathrm{kWh}$ of operating an electric motor for 10 hours takes 10amp at 110 V is:
A. 79200 Rs
B. 22000 Rs
C. 220Rs
D. 22Rs

Answer: D

D Watch Video Solution

44. A 1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is electrolysed. Select correct statement in respect of products obtain at anode and cathode respectively:

Given : $2 \mathrm{SO}_{4}^{2-} \rightarrow \mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 e^{-}, E^{\circ}=-2.01 V$
$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}^{+}(a q)+1 / 2 \mathrm{O}_{2}(g)+2 e^{-}, E^{\circ}=-1.23 V$
A. concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remain constant, $\mathrm{H}_{2}, \mathrm{O}_{2}$
B. concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remain constant, $\mathrm{O}_{2}, \mathrm{H}_{2}$
C. concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remain constant, $\mathrm{O}_{2}, \mathrm{H}_{2}$
D. concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remain constant, $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}, \mathrm{H}_{2}$

Answer: B

45. Cadmium amalgam is prepared by electrolysis of a sodium of CdCl_{2} using a mercury cathode. How long should a current of 4 A be passed in order to prepare 10% by mass Cd in $\mathrm{Cd}-\mathrm{Hg}$ amalgam on cathode of 4.5 g Hg ? (atomic mass of $\mathrm{Cd}=112$)
A. 400 sec
B. 215.40 sec
C. 861.6 sec
D. 4308.8 sec

Answer: D

- Watch Video Solution

46. Use of electrolysis is .
A. electrorefining
B. electroplating
C. both (a) and (b)
D. None of these

Answer: C

- Watch Video Solution

47. When a solution of $\mathrm{AgNO}_{3}(1 \mathrm{M})$ is electrolysed using Pt anode and Cu cathode, the products at two electrodes are? $E_{c u^{2+} \mid c u}^{\circ}=+0.34 \mathrm{~V}, E_{O_{2}, H^{+} \mid H_{2} \mathrm{O}}^{\circ}=+1.23 \mathrm{~V}, E_{a g+\mid A g}^{\circ}=+0.8 \mathrm{~V}$
A. $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}$ at anode, $\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$ at cathode
B. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}$ at anode, $\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}$ at cathode
C. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}$ at anode, $\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$ at cathode
D. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}$ at anode, $\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$ at cathode

Answer: C

48. Which of the following statement is correct about Galvanic cell?
A. (a) It converts chemical energy into electrical energy
B. (b) It converts electrical energy into chemical energy.
C. (c) It converts metal from its free state to the combined state.
D. (d) It converts electrolyte into individual ions.

Answer: A

- Watch Video Solution

49. E° for $C l_{2}(\mathrm{~g})+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$ is $1.36 \mathrm{~V}, E^{\circ}$ for Cl^{-}
$\rightarrow 1 / 2 c l_{2}(\mathrm{~g})+e^{-}$is:
A. 1.36 V
B. -1.36 V
C. -0.68
D. 0.68 V

Answer: B

- Watch Video Solution

50. when two half-cells of electrode potential of E_{1} and E_{2} are combined to form a half cell of electrode potential E_{3}, then
(when $n_{1}, n_{2} \operatorname{and} n_{3}$ are no. of electrons exchanged in first second and combined half-cells:
A. $E_{3}=E_{2}-E_{1}$
B. $E_{3}=\frac{E_{1} n_{1}+E_{2} n_{2}}{n_{3}}$
C. $E_{3}=\frac{E_{1} n_{1}+E_{2} n_{2}}{n_{3}^{2}}$
D. $E_{3}=E_{1}-E_{2}$

Answer: B

51. The function of a salt bridge is to :
A. (a) maintain electrical neutrality of both half cells
B. (b) increases the cell potential at the positive electrode
C. (c) decrease the cell potential at the negative electrode
D. (d) eliminate the impurities present in the electrolyte

Answer: A

- Watch Video Solution

52. Saturated solution of KNO_{3} with agar-agar is used to make 'salt bridge' because:
A. size of K^{+}is greater than that of NO_{3}^{-}
B. velocity of NO_{3}^{-}is greater than that of K^{+}
C. velocity of K^{+}and NO_{3}^{-}are nearly the same
D. both velocity and size of K^{+}and NO_{3}^{-}ions are nearly same

Answer: C

- Watch Video Solution

53. A salt bridge may contain:
A. (a) a saturated solution of KCl and agar-agar
B. (b) a saturated solution of KNO_{3} and agar-agar
C. (c) a saturated solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and agar-agar
D. (d) all of these

Answer: D

54. The nature of curve of $E_{\text {cell }}^{\circ}$ vs. $\log K_{c}$ is :
A. straight line
B. parabola
C. hyperbola
D. elliptical curve

Answer: A

- Watch Video Solution

55. Consider the following equations for a cell reaction
$A+B \Leftrightarrow C+D, E^{\circ}=x \mathrm{volt}, K_{e q}=K_{1}$
$2 A+2 B \Leftrightarrow 2 C+2 D, E^{\circ}=y$ volt, $K_{e q}=K_{2}$ then:
A. (a) $x=y, k_{1}+k_{2}$
B. (b) $x=2 y, K_{1}=2 K_{2}$
C. (c) $x=y, K_{1}^{2}=K_{2}$
D. (d) $x^{2}=y, K_{1}^{2}=K_{2}$

Answer: C

- Watch Video Solution

56. Which graph correctly correlates $E_{\text {cell }}$ as a function of concentration for the cell
$Z n(s)+2 A g^{+}(a q) \rightarrow Z n^{2+}(a q)+2 A g(s), E_{\text {cell }}^{\circ}=1.56 \mathrm{~V}$
y-axis: $E_{\text {cell }}$, X-axis: $\log _{10} \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$

D. (d)

Answer: B

- Watch Video Solution

57. The Nernst equation $\mathrm{E}=E^{\circ}-\mathrm{RT} / \mathrm{nF}$ in Q indicates that the Q will be equal to equilibrium constant K_{c} when:
A. $\mathrm{E}=E^{\circ}$
B. $\mathrm{RT} / \mathrm{nF}=1$
C. E=zero
D. $E^{\circ}=1$

- Watch Video Solution

58. The cell reaction $2 \mathrm{Ag}^{+}(a q)+H_{2}(g) \rightarrow 2 H^{+}(a q)+2 \mathrm{Ag}(s)$,best represented by :
A. $A g(s)\left|A g^{+}(\mathrm{aq})\right|\left|H^{+}(a q)\right| H_{2}(g) \mid P t(s)$
B. $P t(s)\left|H_{2}(g)\right| H^{+}(a q)| | A g^{+}(a q) \mid A g(s)$
C. $A g(s)\left|A g^{+}(\mathrm{aq})\right|\left|H_{2}(g)\right| H^{+}(a q) \mid P t(s)$
D. $A g^{+}(\mathrm{aq})|A g(s)|\left|H_{2}(g)\right| H^{+}(a q)$

Answer: B

- Watch Video Solution

59.

$\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)+\mathrm{cu}(s) \rightarrow \mathrm{cu}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)+2 \mathrm{Hg}(l)$,best

represented by :

A. $c u(s)\left|c u^{2+}(a q)\right|\left|H g_{2} C l_{2}(s)\right| H g(l)$
B. $c u(s)\left|c u^{2+}(a q)\right||H g(l)| H g C l_{2}(s)$
C. $c u(s)\left|c u^{2+}(a q)\right|\left|C l^{-}(a q)\right| H g_{2} C l_{2}(s)|H g(l)| P t(s)$
D. $H g_{2} C l_{2}(s)\left|C l^{-}(a q)\right|\left|C u^{2+}(a q)\right| C u(s)$

Answer: C

(-) Watch Video Solution

60.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{Fe}^{2+}(a q) \rightarrow 6 \mathrm{Fe}^{3+}(a q)+2 \mathrm{Cr}^{3+}(a q)+7 I
$$ is best represented by:

A. $P t(s)\left|F e^{2+}(a q), \mathrm{Fe}^{3+}(a q)\right|\left|C r_{2} O_{7}^{2-}(a q), C r^{3+}(a q)\right| \operatorname{Pt}(s)$
B. $\mathrm{Pt}(\mathrm{s})\left|C r_{2} \mathrm{O}_{7}^{2-}(a q), \mathrm{Cr}^{+3}(a q)\right|\left|F e^{3+}(a q), F e^{+2}(a q)\right| P t(s)$
C. $\mathrm{Fe}^{2+}(a q)\left|F e^{3+}(a q)\right|\left|C r_{2} O_{7}^{2-}(a q)\right| C r^{3+}(a q)$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)\left|C r^{3+}(a q)\right|\left|F e^{3+}(a q)\right| F e^{2+}(a q)$

Answer: A

- Watch Video Solution

61. Select the correct cell reaction of the cell $A g(s)\left|A g^{+}(a q) \| c u^{2+}(a q)\right| c u(s):$
A. $2 A g(s)+c u(s) \rightarrow c u^{+2}(a q)+2 A g^{+}(a q)$
B. $c u(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{cu}^{2+}(a q)+2 \mathrm{Ag}(s)$
C. $2 A g(s)+c u^{2+}(a q) \rightarrow c u(s)(a q)+2 A g^{+}(a q)$
D. $c u^{2+}(a q)+2 A g^{+}(a q) \rightarrow 2 A g(s)+c u(s)$

Answer: C

- Watch Video Solution

62. Select the correct cell reaction of the cell

$$
P t(s)\left|C l_{2}(g)\right| C l^{-}(a q) \| A g^{+}(a q) \mid A g(s):
$$

A. $C l_{2}(g)+A g^{+}(a q) \rightarrow A g(s)+2 C l^{-}(a q)$
B. $C l_{2}(g)+A g(s) \rightarrow 2 C l^{-}(a q)+A g^{+}(a q)$
C. $2 \mathrm{Cl}^{-}(a q)+2 A g^{+}(a q) \rightarrow 2 A g(s)+C l_{2}(g)$
D. $A g C l(s) \rightarrow A g^{+}(a q)+C l^{-}(a q)$

Answer: C

- Watch Video Solution

63. Standard electrode potential of SHE at 298 K is :
A. 0.05 V
B. 0.10 V
C. 0.50 V
D. 0.00 V

Answer: D

- Watch Video Solution

64. The e.m.f of the following galvanic cells:
A. $Z n\left|z^{2+}(1 M)\right|\left|C u^{2+}(1 M)\right| C u$
B. $Z n\left|z^{2+}(0.1 M)\right|\left|C u^{2+}(1 M)\right| C u$
C. $Z n\left|z^{2+}(1 M)\right|\left|C u^{2+}(0.1 M)\right| C u$
D. $Z n\left|z^{2+}(0.1 M)\right|\left|C u^{2+}(0.1 M)\right| C u$

Answer: D

Watch Video Solution

65. Based on the cell notation for a spontaneous reaction, at the anode:
$A g(s)|A g C l(s)| C l^{-}(a q)| | B r^{-}(a q)\left|B r_{2}(l)\right| C(s)$
$\mathrm{A} . \mathrm{AgCl}$ gets reduced
B. Ag gets oxidized
C. Br^{-}gets oxidized
D. $B r_{2}$ gets reduced

Answer: B

- Watch Video Solution

66. Given the listed standard electrode potentials, what is E° for the cell:
$\left.\left.4 \mathrm{BiO}^{+}(a q)+3 \mathrm{~N}_{2} \mathrm{H}_{5}^{+}(a q) \rightarrow 4 \mathrm{Bi}(s) 3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}\right) l\right)+7 \mathrm{H}^{+}(a q)$
$N_{2}(g)+5 H^{+}(a q)+4 e^{-} \rightarrow N_{2} H_{5}^{+}(a q), E^{\circ}=+0.23 V$
$\mathrm{BiO}^{+}(a q)+2 \mathrm{H}^{+}(a q)+3 e^{-} \rightarrow \mathrm{Bi}(s)+\mathrm{H}_{2} \mathrm{O}(l), E^{\circ}=+0.32 V$
A. 0.55
B. 0.34
C. 1.88
D. 0.09

D Watch Video Solution

67. what is the standard electrode potential for the reduction of HClO ?
$\mathrm{HClO}(a q)+\mathrm{H}^{+}\left(a q+2 e^{-} \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\right.$
Given: $C r^{2}(a q) \rightarrow C r^{3+}(a q)+e^{-}, E^{\circ}=0.41 V$
$\mathrm{HClO}(a q)+\mathrm{H}^{+}(a q)+2 \mathrm{Cr}^{2+}(a q) \rightarrow 2 \mathrm{Cr}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l), E^{\circ}=1.80$
A. 1.39
B. 1.54
C. 1.22
D. 0.9

Answer: A

- Watch Video Solution

68. The E° for the following cell is +0.34 V . $\operatorname{In}(s)\left|\operatorname{In}(O H)_{3}(a q)\right|\left|S b O_{2}^{-}(a q)\right| S b(s)$.

Using $E^{\circ}=-1.0 \mathrm{~V}$ for the $\operatorname{In}(\mathrm{OH})_{3} \mid \operatorname{In}$, couple, calculate E° for the $\mathrm{SbO}_{2}^{-} \mid$Sbhalf-reaction:
A. -1.34
B. 0.66
C. 0.82
D. -0.66

Answer: D

- Watch Video Solution

69. From the fllowing half-cell reactions and their standard potentials ,what is the smallest possible standard e.m.f for spontaneous reactions?

$$
\mathrm{PO}_{4}^{3-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \rightarrow \mathrm{HPO}_{3}^{2-}+3 \mathrm{OH}^{-}(a q), E^{\circ}=-1.05 \mathrm{~V}
$$

$$
\mathrm{PbO}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \rightarrow \mathrm{PbO}(s)+2 \mathrm{OH}^{-}(a q), E^{\circ}=+0.28 \mathrm{~V}
$$

70. Determine which substance is the best reducing agent.
A. HPO_{3}^{2-}
B. PO_{4}^{3-}
C. IO^{-}
D. IO_{3}^{-}

Answer: A

- Watch Video Solution

71. Which substance is the best oxidizing agent ?
A. IO_{3}^{-}
B. IO^{-}
C. PbO
D. PO_{4}^{3-}

Answer: A

- Watch Video Solution

72. Consider the following half-cell reaction and associated standerd halfcell potentials and determine the maximum voltage thatr can be obtained by combination resulting in spontenous process :
$A u B r_{4}^{-}(a q)+3 e^{-} \rightarrow A u(s)+4 B R^{-}(a q), E^{\circ}=-086 V$
$E u^{3+}(a q)+e^{-} \rightarrow E u^{2+}(a q), E^{\circ}=-043 V$
$S n^{2+}(a q)+2 e^{-} \rightarrow S n(s), E^{\circ}=-0.14 V$
$\mathrm{IO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 e^{-} \rightarrow \mathrm{I}^{-}(a q)+2 \mathrm{OH}^{-}, E^{\circ}=+0.49 \mathrm{~V}$
A. +0.72
B. +1.54
C. +1.00
D. +1.35

Answer: D

- Watch Video Solution

73. The position of some metals in the electrochemical series in dectreasing electropositeve character is given as
$M g>A l>Z n>C u>A g$. What will happen if a copper spoon is used to stir a solution of aluminimum nitrate ?
A. The spoon gets coated with aluminium
B. Aan alloy of aluminium and copper is formed
C. No reaction occurs
D. The solution starts turning blue

Answer: C

- Watch Video Solution

74. Zn can displace :
A. (a) Mg from its aqueous solution
B. (b) Cu from its aqueous solution
C. (c) Na from its aqueous solution
D. (d) Al from its aqueous solution

Answer: B

- Watch Video Solution

75. Based on the following information arrange four metals A, B, C and D in order of decreasing ability to act as reducing agents :
(I) Only A,B, and C react with 1 MHCl to give $\mathrm{H}_{2}(\mathrm{~g})$
(II) When C is added to solutions of the other metal ions, metallic B and

D are formed
(III) Metal C does not reduced A^{n+}
A. $C>A>B>D$
B. $C>A>D>B$
C. $A>C>D>B$
D. $A>C>B>D$

Answer: D

- Watch Video Solution

76. When an aqueous solution of CuSO_{4} is stirred with a silver spoon then :
A. (a) Cu^{+}will be formed
B. (b) $A g^{+}$will be formed
C. (c) $C u^{2+}$ will be deposited
D. (d) None of these
77. Based on the following informations arrange four metals, A, B, C and D in order of increasing ability to act as reducing agents :
(I) Only C react with 1 M HCl to give H_{2} (g)
(II) When A is added to solution of the other metal ions, metallic D is formed but not B or C
A. (a) $D>A>C>B$
B. (b) $A>D>C>B$
C. (c) $B>D>A>C$
D. (d) $D>A>B>C$

Answer: D

- Watch Video Solution

78. In the reaction :
$4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{Fe}^{3+}(a q)+6 \mathrm{O}^{2-}(a q)$
which of the following statement is incorrect ?
A. (a) It is a redox reaction
B. (b) Fe is reducing agent
C. (c) O_{2} is an oxidizing agent
D. (d) Fe is reducing to Fe^{3+}

Answer: D

- Watch Video Solution

79. Which of the following is displaced by Fe ?
A. (a) Ag
B. (b) Zn
C. (c) Na
D. (d) All of these

Answer: A

- Watch Video Solution

80. The standerd potential at 25° for the following Half rection is given :
$Z n^{2+}+2 e^{-} \rightarrow Z n, E^{\circ}=-0.762 V$
$M g^{2+}+2 e^{-} \rightarrow M g, E^{\circ}=-2.37 V$
When Zinc dust is added to the solution of MgCl_{2}.
A. ZnCl_{2} is formed
B. Mg is percipitaed
C. Zn dissolved in the solution
D. No reaction take place

Answer: D

81. The element which can displace three other halogens from their compound is:
A. F
B. Cl
C. Br
D. 1

Answer: A

- Watch Video Solution

82. Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction :
$\mathrm{Co}(\mathrm{s})+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{Co}^{2+}(a q)+\mathrm{H}_{2}(g)$ at 298 K
$\mathrm{Co}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Co}(\mathrm{s}) E^{\circ}=-0.277 V$
A. 2.3×10^{9}
B. 4.8×10^{4}
C. 4.8×10^{7}
D. 4.8×10^{11}

Answer: A

- Watch Video Solution

83. The E° at $25^{\circ} \mathrm{C}$ for the following reaction is 0.22 V . Calculate the equilibrium constant at $25^{\circ} \mathrm{C}$:
$\mathrm{H}_{2}(g)+2 \mathrm{AgCl}(s) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{HCl}(a q)$
A. 2.8×10^{7}
B. 5.2×10^{8}
C. 5.2×10^{6}
D. 5.2×10^{3}
84. Electrode potential of the half $\mathrm{Pt}(\mathrm{s})|\mathrm{Hg}(\mathrm{l})| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s) \mid \mathrm{Cl}^{-}(a q)$ can be incresed by :
A. Increasing $\left[\mathrm{Cl}^{-}\right]$
B. decreasing $\left[\mathrm{Cl}^{-}\right]$
C. Increasing $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)$
D. decreasing $H g(l)$

Answer: A

- Watch Video Solution

85. The equillibrium constant for thefollowing general reaction is 10^{30}.

Calculate E° for the cell at 298 K .
$2 X_{2}(s)+3 Y^{2+}(a q) \rightarrow 2 X_{2}^{3+}(a q)+3 Y(s)$
A. +0.105 V
B. +0.2955 V
C. 0.0985 V
D. -0.2955 V

Answer: B

- Watch Video Solution

86. A solution containing H^{+}and D^{+}ions is in equilibrium with a mixture of H_{2} and D_{2} gases at $25^{\circ} \mathrm{C}$. If the partial pressures of both gases are 1.0 atm , find the ratio of $\left[D^{+}\right] /\left[H^{+}\right]$:
(Given: $\left.E_{D^{+} / D_{2}}=-0.003 \mathrm{~V}\right]$
A. 1.23
B. 1.12
C. 0.11
D. 1

- Watch Video Solution

87. The E° at $25^{\circ} \mathrm{C}$ for the following reaction is 0.55 V . Calculate the ΔG° in kJ $/ \mathrm{mol}:$
$4 \mathrm{BiO}^{+}(a q)+3 \mathrm{~N}_{2} \mathrm{H}_{5}^{+} \rightarrow 4 \mathrm{Bi}(s)+3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+7 \mathrm{H}^{+}$
A. -637
B. -424
C. -106
D. -318.5

Answer: A

88. Use the following standard electrode potentials, calculate ΔG° in kJ / mol for the indicated reaction :
$5 \mathrm{Ce}^{4+}(a q)+\mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 5 \mathrm{Ce}^{3+}(a q)+\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}$ $\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 e^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l), E^{\circ}=+1.51 \mathrm{~V}$ $C e^{4+}(a q)+e^{=} \rightarrow C e^{3+}(a q) \quad E^{\circ}=+1.61 V$
A. -9.65
B. -24.3
C. -48.25
D. -35.2

Answer: C

- Watch Video Solution

89. Consider an electrochemical cell in which the following reaction occurs and predict which changes will decrease the cell voltage :
$F e^{2+}(a q)+\mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Ag}(s)+\mathrm{Fe}^{3+}(a q)$
(I) Decrease the Ag+
(II)Increase in Fe3+
(III)Increase the amount of Ag
(a) I
(b) II and III
(c) II
(d) I and II
A. I
B. II and III
C. II
D. I and II

Answer: D

- Watch Video Solution

90. Consider the following equation for an electrochemical cell reaction.

Which of the following changes in condition will increase the cell voltage
$\mathrm{H}_{2}(g)+\mathrm{PbCl}_{2}(s) \rightarrow \mathrm{Pb}(s)+2 \mathrm{HCl}(a q)$
(I) addition of concentrated HClO_{4} solution
(II)Increase the pressure of $H_{2}(g)(I I I)$ increase the amount of $\left.\mathrm{Pb}(s)\right\}$
A. III
B. I and II
C. II and III
D. II

Answer: D

D Watch Video Solution

91. The standard electrode potential for the following reaction is +1.33 V .

What is the potential at $\mathrm{pH}=2.0$?
$C r_{2} O_{7}^{2-}(a q, 1 M)+14 H^{+}(a q)+6 e^{-} \rightarrow 2 C r^{3+}(a q, 1 M)+7 \mathrm{H}_{2} \mathrm{O}(l)$
A. +1.820 V
B. +1.990 V
C. +1.608 V
D. +1.0542 V

Answer: D

- Watch Video Solution

92. The standard electrode potential for the following reaction is -0.57 V .

What is the potential at $\mathrm{pH}=12.0$?
$\mathrm{TeO}_{3}^{2-}(a q, 1 \mathrm{M})+3 \mathrm{H}_{2} \mathrm{O}(l)+4 e^{-} \rightarrow \mathrm{Te}(s)+6 \mathrm{OH}^{-}(a q)$
A. -017 V
B. +0.21 V
C. -0.39 V
D. +1.95 V

Answer: C

93. $\mathrm{Co}^{\mid}\left|\mathrm{Co}^{2+}\left(\mathrm{C}_{2}\right) \| \mathrm{Co}^{2+}\left(C_{1}\right)\right| C o$, for this cell, ΔG is negative if:
A. $C_{2}>C_{1}$
B. $C_{1}>C_{2}$
C. $C_{1}=C_{2}$
D. unpredictable

Answer: B

- Watch Video Solution

94. What will be the emf for the given cell ?
$P t\left|H_{2}\left(g, P_{1}\right)\right| H^{+}(a q)\left|H_{2}\left(g, P_{2}\right)\right| P t$
A. $\frac{R T}{F} \cdot \ln \frac{P_{1}}{P_{2}}$
B. $\frac{R T}{2 F} \cdot \ln \frac{P_{1}}{P_{2}}$
C. $\frac{R T}{F} \cdot \ln \frac{P_{2}}{P_{1}}$
D. None of these

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 95. For the electro chemical cell } \\
& P t(s)\left|\underset{1 a t m}{H_{2}(g)}\right| H^{+}(1 M)| | C u^{2+}(1 M) \mid C u(s) \text {, which one of the }
\end{aligned}
$$ following statements are true?

A. H^{+}ions are formed at anode and Cu is deposited at cathode.
B. H_{2} liberated at cathode and Cu is deposited at anode.
C. Oxidation occurs at cathode
D. Reduction occurs at anode

Answer: A

96. In a concentration cell the same reagents are present in both the anode and the cathode compartments, but at different concentrations. Calculate the emf of a cell of a cell containing $0.040 \mathrm{M} . \mathrm{Cr}^{3+}$ in one compartment and $1.0 \mathrm{MCr} r^{3+}$ in the other if Cr electrodes are used in both.
A. 0.028 V
B. 0.249 V
C. 0.083 V
D. 0.125 V

Answer: A

- Watch Video Solution

97. A 1.0 M solution of $C d^{2+}$ is added to excess iron and the system is allowed to reach equillibrium. What is the concentration of $C d^{2+}$?
$C d^{2+}(a q)+F e(s) \rightarrow C d(s)+F e^{2+}(a q), E^{\circ}=0.037$
A. 0.195
B. 0.097
C. 0.053
D. 0.145

Answer: C

- Watch Video Solution

98. The measured voltage for the reaction with the indicated concentration is 1.50 V . Calculate E°.
$C r(s)+3 A g^{+}(a q, 0.10 M) \rightarrow 3 A g(s)+C r^{3+}(a q, 0.30 M)$
A. 1.35
B. 1.4
C. 1.65

- Watch Video Solution

99. Calculate the standard voltage that can be obtained from an ethane oxygen fuel cell at $25^{\circ} \mathrm{C} . \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\Delta G^{\circ}=-1467 k \frac{J}{m} o l$.
A. +0.91
B. +0.54
C. +0.72
D. +1.08

Answer: D

- Watch Video Solution

100. $I_{2}(s) \mid I^{-}(0.1 \mathrm{M})$ half cell is connected to a $H^{+}(\mathrm{aq}) \mid H_{2}(1$ bar)|Pt half celland e.m.f. is found to be 0.7714 V . If $E_{I_{2} \mid I^{-}}^{\circ}=0.535 \mathrm{~V}$, find the pH of $H^{+} \mid H_{2}$ half cell.
A. 1
B. 3
C. 5
D. 7

Answer: B

- Watch Video Solution

101. Estimate the E° reduction for $C u \mid C u S$ electrode.

Given : $K_{s p}$ of $C u S=8.0 \times 10^{-36}, E^{\circ} \cdot\left(\mathrm{Cu}^{\prime} \mid \mathrm{Cu}^{2+}\right)=-0.34 \mathrm{~V}$
A. 1.034 V
B. 1.0 V
C. -0.694 V
D. 0.694 V

Answer: C

- Watch Video Solution

102. Given the folowing standerd electrode potentials, the $K_{s p}$ for PbBr_{2} is :
$\mathrm{PbBr}_{2}(s)+2 e^{-} \rightarrow \mathrm{Pb}(s)+2 \mathrm{Br}^{-}(a q), E^{\circ}=-0.248 \mathrm{~V}$
$P b^{2+}(a q)+2 e^{-} \rightarrow P b(s), E^{\circ}=-0.126 \mathrm{~V}$
A. 7.4×10^{-5}
B. 4.9×10^{-14}
C. 5.2×10^{-6}
D. 2.3×10^{-13}

Answer: A

103. The standerd free energy change for the following reaction is $-210 \mathrm{~kJ} /$ mol. What is the standerd cell potential?
$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
A. +0.752
B. +1.09
C. +0.420
D. +0.640

Answer: B

(D) Watch Video Solution

104. At equilibrium :
A. $E_{\text {cell }}^{\circ}=0, \Delta G^{\circ}=0$
B. $E_{\text {cell }}^{\circ}=0, \Delta G=0$
C. both are correct
D. none is correct

Answer: B

- Watch Video Solution

105. The E° at $25^{\circ} \mathrm{C}$ for the following reaction at the indicated concentrations is 1.50 V . Calculate the ΔG in $\mathrm{kJ} / \mathrm{mol} 25^{\circ} \mathrm{C}$:
A. -140.94
B. -295
C. -212
D. -422.83

Answer: D

106. If $E_{A u^{+} / A u}^{\circ}$ is 1.69 V and $E_{A u^{3+} / A u}^{\circ}$ is 1.40 V , then $E_{A u^{+} / A u^{3+}}^{\circ}$ will be :
A. 0.9 v
B. 0.945 V
C. 1.255 V
D. None of these

Answer: D

- Watch Video Solution

107. Consider the following standard electrode potentials and calculate the eqillibrium constant at $25^{\circ} \mathrm{C}$ for the indicated disproportional reaction:
$3 \mathrm{Mn}^{2+}(a q) \rightarrow M n(s)+2 \mathrm{Mn}^{3+}(a q)$
$M n^{3+}(a q)+e^{-} \rightarrow M^{2+}(a q), E^{\circ}=1.51 V$
$M n^{2+}(a q)+2 e^{-} \rightarrow M n(s), E^{\circ}=-1.185 V^{\top}$
A. 1.2×10^{-43}
B. 2.4×10^{-73}
C. 6.3×10^{-92}
D. 1.5×10^{-62}

Answer: C

- Watch Video Solution

108. A galvanic cell is composed of two hydrogen electrods, one of which is a standard one. In which of the following solutions should the other electrode be immersed to get maximum e.m.f:
A. 0.1 M HCl
B. $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
C. $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
D. 0.01 M HCOOH

Answer: C

D Watch Video Solution

109. $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{Cl}^{-}\left(C_{2}\right)| | C l^{-}\left(C_{1}\right)|A g C l| A g$ for this cell ΔG is negative if :
A. $C_{1}=C_{2}$
B. $C_{1}>C_{2}$
C. $C_{2}>C_{1}$
D. Both (a) and (c)\}

Answer: C

- Watch Video Solution

110. By how much is the oxidizing power of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \mid \mathrm{Cr}^{3+}$ couple decreased if the H^{+}concentration is decreased from 1 M to $10^{-3} \mathrm{M}$ at
$25^{\circ} \mathrm{C}$?
A. 0.001 V
B. 0.207 V
C. 0.441 V
D. 0.414 V

Answer: D

- Watch Video Solution

111. The temperature coefficient of a cell whose operation is based on the reaction
$\mathrm{Pb}(\mathrm{s})+\mathrm{HgCl}_{2}(a q) \rightarrow \mathrm{PbCl}_{2}(a q)+\mathrm{Hg}(\mathrm{l})$ is :
$\left(\frac{d E}{d T}\right)_{P}=1.5 \times 10^{-4} V K^{-1}$ at 298 K
The change in entropy (in J/k mol) during the operation is:
A. 8627
B. 57.9
C. 28.95
D. 14.475

Answer: C

- Watch Video Solution

112. The thermodynamic efficiency of cell is given by
A. $\frac{\triangle H}{\triangle G}$
B. $-\frac{n F E}{\triangle G}$
c. $-\frac{n E F}{\triangle H}$
D. $n F E^{\circ}$

Answer: C

- Watch Video Solution

113. calculate the value of equilibrium constant $\left(K_{f}\right)$ for the reaction:
$\mathrm{Zn}^{2+}(a q)+4 \mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(a q)$
Given: $Z n^{2+}(a q)+2 e^{-} \rightarrow Z n\left(s 0, E^{\circ}=-0.76 V\right.$
$\mathrm{Zn}(\mathrm{OH})_{4}^{2-}(a q)+2 e^{-} \rightarrow Z n(s)+4 O H^{-}(a q), E^{\circ}=-1.36 \mathrm{~V}$ $2.303 \frac{R T}{F}=0.06$
A. 10^{10}
B. 2×10^{10}
C. 10^{20}
D. None of these

Answer: C

- Watch Video Solution

114. Which of the following statement is false for fuel cell?
A. They are more efficient
B. They are free from pollution
C. They run till reactants are active
D. Fuel burned with O_{2}

Answer: D

- Watch Video Solution

115. When a lead storage battery is charged it acts as:
A. a fuel cell
B. an electrolytic cell
C. a galvanic cell
D. a concentration cell

Answer: B

116. The metal that forms a self-protecting film of oxide to prevent corrosion is:
A. Na
B. Al
C. Cu
D. Au

Answer: B

117. Rusting of iron is catalyzed by which of the following?
A. Fe
B. Zn
C. O_{2}
D. H^{+}

D Watch Video Solution

118. Which of the following is a highly corrosive salt?
A. $H g_{2} C l_{2}$
B. $\mathrm{HgCl} l_{2}$
C. $F e C l_{2}$
D. $\mathrm{PbCl} l_{2}$

Answer: B

119. The Zn acts as sacrificial of cathodic protection to prevent rusting of iron because:
A. $E_{O P}^{\circ}$ of $Z n<E_{O P}^{\circ}$ of Fe
B. $E_{O P}^{\circ}$ of $Z n>E_{O P}^{\circ}$ of Fe
C. $E_{O P}^{\circ}$ of $Z n=E_{O P}^{\circ}$ of Fe
D. Zn is cheaper than iron

Answer: B

- Watch Video Solution

120. In electrochemical corrosion of metals, the metal undergoing corrosion:
A. acts as anode
B. acts as cathode
C. undergoes reduction
D. None
121. When an acid cell is charged, then: A) voltage of cell increases B) resistance of cell increases C) electrolyte of cell dilutes D) None of the above
A. voltage of cell increases
B. resistance of cell increases
C. eletrolyte of cell dilutes
D. None of these

Answer: A

Watch Video Solution

122. Electrolytic conduction is due to the movement of :
A. electrons
B. ions
C. atoms
D. electrons as well as ions

Answer: B

D Watch Video Solution

123. Molten sodium chloride conducts electricity due to the presence of:
A. free electron
B. free ions
C. free molecules
D. atoms of sodium and chlorine

Answer: B

124. Pure water does not conduct electricity because it :
A. is neutral
B. is readily decomposed
C. is almost totally unionized
D. has a low boiling point

Answer: C

- Watch Video Solution

125. The relation among conductance (G), specific conductance (K) and cell constant (I/A) is :
A. $G=k \frac{l}{A}$
B. $G=k \frac{A}{l}$
C. $G k=\frac{l}{A}$
D. $G=k A L$

D Watch Video Solution

126. If X is specific resistance of the electrolytic solution and Y is the molarity of the solution then molar conductivity of solution is (in $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) given by:
A. $\frac{1000 X}{Y}$
B. $1000 \frac{Y}{X}$
C. $\frac{1000}{X Y}$
D. $\frac{X Y}{1000}$

Answer: C

127. Equivalent conductivity can be expressed in terms of specific conductance (k) and concentration (N) in gram equivalent $d m^{-3}$ as:
A. $k \times N$
B. $\frac{k \times 1000}{N}$
C. $\frac{k \times N}{1000}$
D. $k \times N \times 1000$

Answer: B

- Watch Video Solution

128. Resistance of a decimolar solution between two electrodes 0.02 meter apart and $0.0004 \mathrm{~m}^{2}$ in area was found to be 50 ohm. Specific conductance (kO is :
A. $0.1 S m^{-1}$
B. $1 \mathrm{Sm}^{-}$
C. $10 \mathrm{Sm}^{-1}$
D. $4 \times 10^{-4} \mathrm{Sm}^{-1}$

Answer: B

- Watch Video Solution

129. Resistance of 0.1 M KCl solution in a conductance cell is 300 ohm and conductivity is $0.013 \mathrm{Scm}^{-1}$. The value of cell constant is :
A. $3.9 \mathrm{~cm}^{-1}$
B. $39 m^{-1}$
C. $3.9 m^{-1}$
D. None of these

Answer: A

130. Ionisation constant of a weak acid (HA) in terms of A_{m}^{∞} and A_{m} is:
A. $K_{a}=\frac{C \Lambda_{m}^{\infty}}{\Lambda_{m}-\Lambda^{\infty}}$
B. $K_{a}=\frac{C \Lambda_{m}^{2}}{\Lambda_{m}^{\infty}\left(\Lambda_{m}^{\infty}-\Lambda_{m}\right)}$
C. $K_{a}=\frac{C \Lambda\left(\Lambda_{m}^{\infty}\right)^{2}}{\Lambda_{m}^{\infty}\left(\Lambda_{m}^{\infty}-\Lambda_{m}\right)}$
D. None of these

Answer: B

- Watch Video Solution

131. When a concentrated solution of an electrolyte is diluted
A. its specific conductance increases
B. its equivalent conductivity decreases
C.its specific conductivity decreases and equivalent conductivity increases
D. Both specific and equivalent conductivity increases

Answer: C

- Watch Video Solution

132. Molar conductivity of a solution of an electrolyte $A B_{3}$ is 150 $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. If it ionises as $A B_{3} \rightarrow A^{3+}+3 B^{-}$, its equivalent conductivity will be :
A. $150\left(\mathrm{inScm}{ }^{2} e q^{-1}\right)$
B. $75\left(\right.$ in $\left.S c m^{2} e q^{-1}\right)$
C. $50\left(\right.$ in $\left.S c m^{2} e q^{-1}\right)$
D. $80\left(\right.$ in $\left.S c m^{2} e q^{-1}\right)$

Answer: C

- Watch Video Solution

133. Equivalent conductivity of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is relative to molar conductivity by the expression :
A. $\Lambda_{e q}=\Lambda_{m}$
B. $\Lambda_{e q}=\Lambda_{m} / 3$
C. $\Lambda_{e q}=3 \Lambda_{m}$
D. $\Lambda_{e q}=\Lambda_{m} / 6$

Answer: D

- Watch Video Solution

134. The limiting equivalent conductivity of $\mathrm{NaCl}, \mathrm{KCl}$ and KBr are $126.5,150.0$ and $151.5 \mathrm{Scm}^{2} e q^{-1}$, respectively. The limiting equivalent ionic conductance for Br^{-}is $78 \mathrm{Scm}^{2} \mathrm{eq}^{-1}$. The limiting equivalent ionic conductance for Na^{+}ions would be :
A. 128
B. 125
C. 49
D. 50

Answer: D

- Watch Video Solution

135. The specific conductance of a saturated solution of silver bromide is $k S c m^{-1}$. The limiting ionic conductivity of Ag^{+}and Br^{-}ions are x and y respectively. The solubility of silver bromide in $g L^{-1}$ is : (molar mass of $\mathrm{AgBr}=188$)
A. $\frac{k \times 1000}{x-y}$
B. $\frac{k}{x+y} \times 188$
C. $\frac{k \times 1000 \times 188}{x+y}$
D. $\frac{x+y}{k} \times \frac{1000}{188}$

Answer: C

- Watch Video Solution

136. The resistance of $0.1 N$ solution of formic acid is 200 ohm and cell constant is $2.0 \mathrm{~cm}^{-1}$. The equivalent conductivity (in $S \mathrm{~cm}^{2} e q^{-1}$) of $0.1 N$ formic acid is :
A. 100
B. 10
C. 1
D. None of these

Answer: A

137. A conductance cell was filled with a 0.02 M KCl solution which has a specific conductance of $2.768 \times 10^{-3} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. If its resistance is 82.4 ohm at $25^{\circ} \mathrm{C}$ the cell constant is:
A. $0.2182 \mathrm{~cm}^{-1}$
B. $0.2281 \mathrm{~cm}^{-1}$
C. $0.2821 \mathrm{~cm}^{-1}$
D. $0.2381 \mathrm{~cm}^{-1}$

Answer: B

- Watch Video Solution

138. The equivalent conductance of Ba^{2+} and Cl^{-}are $76 o \mathrm{hm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$ and $63.50 \mathrm{hm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}{ }^{-1}$, respectively, at infinite dilution. The equivalent conductance (in ohm ${ }^{-1} \mathrm{~cm}^{2} e q^{-1}$) of BaCl_{2} at infinite dilution will be
A. 203
B. 279
C. 101.5
D. 139.5

Answer: A

D Watch Video Solution

139. Unit of ionic mobility is :
A. $m V^{-1} s^{-1}$
B. $m^{2} V^{-2} s^{-1}$
C. $m^{2} V^{-1} s^{-1}$
D. $m^{-2} V s^{-1}$

Answer: C

140. $A_{A g C l}^{\infty}$ can be obtained:
A. by extraplotation of the graph Λ and \sqrt{C} to zero concentration
B. by known values of Λ^{∞} of $\mathrm{AgNO}_{3}, \mathrm{HCl}$ and HNO_{3}
C. both (a) and (b)
D. None of these

Answer: B

- Watch Video Solution

141. The conductance of a salt solution (AB) measured by two parallel electodes of area $100 \mathrm{~cm}^{2}$ separated by 10 cm was found to be $0.0001 \Omega^{-1}$. If volume enclosed between two electrode contain 0.1 mole of salt, what is the molar conductivity $\left(S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ of salt at same concentration:
B. 0.1
C. 1
D. None of these

Answer: B

- Watch Video Solution

142. The conductivity of a strong electrolyte:
A. increases on dilution
B. decrease on dilution
C. does not change with dilultion
D. depends upon density of electrolytes

Answer: B

143. The increase in equivalent conductivity of a weak electrolyte with dilution is due to :
A. increase in degree of dissociation and decrease in ionic mobility
B. decrease in degree of dissociation and decrease in ionic mobility
C. increase in degree of dissociation and increase in ionic mobility
D. decrease in degree of dissociation and increase in ionic mobility

Answer: C

- Watch Video Solution

144. Strong electrolytes are those which:
A. conduct electricity
B. dissolve readily in water
C. dissolve into ions at high dilution
D. completely dissociation into ions

Answer: D

- Watch Video Solution

145. The electric conduction of a salt solution in water depends on the :
A. size of its molecules
B. shape of its molecules
C. size of solvent molecules
D. extent of its ionization

Answer: D

- Watch Video Solution

146. A graph was plotted between molar conductivity of various electrolytes $\left(\mathrm{NaCl}, \mathrm{HCl}\right.$ and $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ and \sqrt{C} (in mol L^{-1}). Correct set is

a. I(NaCl$), \mathrm{II}(\mathrm{HCl}), \mathrm{III}\left(\mathrm{NH}_{4} \mathrm{OH}\right)$
b. I(HCl), II $(\mathrm{NaCl}), \mathrm{III}\left(\mathrm{NH}_{4} \mathrm{OH}\right)$
c. I($\left.\mathrm{NH}_{4} \mathrm{OH}\right), \mathrm{II}(\mathrm{NaCl}), \mathrm{III}(\mathrm{HCl})$
d. $\mathrm{I}\left(\mathrm{NH}_{4} \mathrm{OH}\right), \mathrm{II}(\mathrm{HCl}), \mathrm{III}(\mathrm{NaCl})$
A. I(NaCl),II(HCl) , III($\left.\mathrm{NH}_{4} \mathrm{OH}\right)$
B. I(HCl),II(NaCl$), \mathrm{III}\left(\mathrm{NH}_{4} \mathrm{OH}\right)$
C. I($\left.\mathrm{NH}_{4} \mathrm{OH}\right), \mathrm{II}(\mathrm{NaCl})$, II(HCl$)$
D. $\mathrm{I}\left(\mathrm{NH}_{4} \mathrm{OH}\right), \mathrm{II}(\mathrm{HCl}), \mathrm{III}(\mathrm{NaCl})$

Answer: B

- Watch Video Solution

147. Which of the following is arranged in increasing order of ionic mobility?
A. $I^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}$
B. $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<I^{-}$
C. $\mathrm{F}^{-}<\mathrm{I}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}$
D. $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{I}^{-}<\mathrm{Br}^{-}$

Answer: B

- Watch Video Solution

148. $\mathrm{HNO}_{3}(\mathrm{aq})$ is titrated with $\mathrm{NaOH}(\mathrm{aq})$ condutomatrically, graphical representation of the titration is :
a.

b.

d.

Answer: A

149. which of the following plots will obtained for a conductometric titration of strong acid against a weak base?

- Watch Video Solution

150. conductometric titration curve of a equimolar mixture of a HCl and HCN with $\mathrm{NaOH}(\mathrm{aq})$ is :
A. (a)

B. (b)
C. (c)

D. (d)

Answer: D

- Watch Video Solution

Level 2

1. In the Hall process, aluminium is produced by the electrolysis of molten
$\mathrm{Al}_{2} \mathrm{O}_{3}$. How many second would it take to produce enough aluminium by the Hall process to make a case of 24 cans of auminium soft-drink, if each can uses 5.0 g of Al, a current of 9650amp is employed and the current efficiency of the cell is 90% :
A. 203.2
B. 148.14
C. 333
D. 6.17

Answer: B

- Watch Video Solution

2. 108 g fairly concentrated solution of AgNO_{3} is electrolysed by using
0.1 F charge the mass of resulting solution is
(a) 94 g
(b) 11.6 g
(c) 96.4 g
(d)None of these
A. 94 g
B. 11.6 g
C. 96.4 g
D. None of these

Answer: C

- Watch Video Solution

3. The electolysis of acetate solution produces ethane according to reaction:
$2 \mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H} 6(g)+2 \mathrm{CO}_{2}(g)+2 e^{-}$
The current efficiency of the process is 80%. What volume of gases would be produced at $27^{\circ} \mathrm{C}$ and 740 torr, if the current of 0.5 amp is used though the solution for 96.45 min ?
(a) 6.0 L
(b) 0.60 L
(c) 1.365 L
(d) 0.91 L
A. 6.0 L
B. 0.60 L
C. 1.365 L
D. 0.91 L

Answer: D

- Watch Video Solution

4. A layer of chromium metal 0.25 mm thick is to be plated on an auto bumper with a total area of $032 m^{2}$ from a solution cantaining CrO_{4}^{2-} ? What current flow is required for this electroplating if the bumper is to be plated in 60 s ? The density of chromium metal is $7.20 \mathrm{~g} / \mathrm{cm}^{3}$
a. $4.9 \times 10^{3} \mathrm{~A}$
b. $1.78 \times 10^{3} \mathrm{~A}$
c. $5.3 \times 10^{4} \mathrm{~A}$
d. $10.69 \times 10^{4} \mathrm{~A}$
A. $4.9 \times 10^{3} \mathrm{~A}$
B. $1.78 \times 10^{3} \mathrm{~A}$
C. $5.3 \times 10^{4} \mathrm{~A}$
D. $10.69 \times 10^{4} \mathrm{~A}$

Answer: D

- Watch Video Solution

5. 100 mLCuSO 4 (aq) was electrolyzed using inert electrodes by passing $0.965 A$ till the pH of the resulting solution was 1 . the soluton after electrolysis was neutralized treated with excess $K I$ and titrated with $0.04 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required was 35 mL . Assuming no volume change during electrolysis calculate:
(a) during of electrolysis if current efficiency is 80%
(b) initial concentration (M) of CuSO_{4}.
A. 112.5 mL
B. 100 mL
C. 125 mL
D. None of these

Answer: A

6. If the equilibrium constant for the reaction $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)$ is 10^{13} at certain temperature then what is the E° for the reaction,
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 e^{-} \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(a q)$
(a) -0.858 V
(b) 0.547 V
(c) 4.37 V
(d) 1.09 V
A. -0.858 V
B. 0.547 V
C. 4.37 V
D. 1.09 V

Answer: B

7. A fuel cell develops an electrical potential from the combustion of butane at 1 bar and 298 K

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \triangle_{r} G^{\circ}=-2746 \mathrm{~kJ} / \mathrm{mol}
$$

what is E° of a cell?
(a) 4.74 V
(b) 0.547 V
(c) 4.37 V
(d) 1.09 V
A. 4.74 V
B. 0.547 V
C. 4.37 V
D. 1.09 V

Answer: D

8. The cell Pt $\mid H_{2}(g, 01$
$\left|H^{+}(a q), p H=x\right|\left|C l^{-}(1 M)\right| H g_{2} C l_{2}|H g| P t$ has emf of 0.5755 V at $25^{\circ} \mathrm{C}$ the SOP of calomel electrode is -0.28 V then pH of the solution will be
(a)11
(b) 4.5
(c) 5
(d)None of these
A. 11
B. 4.5
C. 5
D. None of these

Answer: C

9.

$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \triangle_{r} S_{198}^{\circ}=-0.32 \mathrm{KJ} / k$. What is the value of $\triangle_{f} H_{298}^{\circ}\left(H_{2} O, l\right)$?

Given: $\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), E^{\circ}=1.23 \mathrm{~V}$
A. $-285.07 \mathrm{~kJ} / \mathrm{mol}$
B. $-570.14 \mathrm{~kJ} / \mathrm{mol}$
C. $285 . \mathrm{kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

10. What is the potential of an electrode which originally contained 0.1 MNO_{3}^{-}and $0.4 \mathrm{MH}^{+}$and which has been treated by 8% of the cadmium necessary to reduce all the NO_{3}^{-}to $\mathrm{NO}(\mathrm{g})$ at 1 bar ?

Give: $\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 e^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}, E^{\circ}=0.96 \mathrm{~V}, \log 2=0.3$
A. 0.84 V
B. 1.08 V
C. 1.23 V
D. 1.36 V

Answer: A

- Watch Video Solution

11. The standard reduction potential of normal calomel electrode and reduction potential of saturated calomel electrodes are 0.27 and 0.33 volt respectively. What is the concentration of Cl^{-}in saturated solution of KCl?
(a) 0.1 M
(b) 0.01 M
(c) 0.001 M
(d) None
B. 0.01 M
C. 0.001 M
D. None

Answer: A

- Watch Video Solution

12. Determine the potential of the following cell:
$\left.P t\left|H_{2}(g, 0.1 \mathrm{bar})\right| H^{+}\left(a q, 10^{-3} M| | M n O_{4}^{-}\right)(a q), 0.1 M\right)$
$M n^{2+}(a q, 0.01 M), H^{+}(a q, 0.01 M) \mid P t$
Given : $E_{\mathrm{MnO}_{4}^{-} \mid M n^{2+}}^{\circ}=1.51 \mathrm{~V}$
(a) 1.54 V
(b) 1.48 V
(c) 1.84 V
(d)none of these
A. 1.54 V
B. 1.48 V
C. 1.84 V
D. none of these

Answer: B

- Watch Video Solution

13. Copper reduced NO_{3}^{-}into NO and NO_{2} depending upon conc.of $\mathrm{HNO}_{3} \quad$ in \quad solution. Assuming $\quad\left[\mathrm{Cu}^{2+}\right]=0.1 M, \quad$ and $P_{\mathrm{NO}}=P_{\mathrm{NO}_{2}}=10^{-3}$ atm and using data answer the following questions:
$E_{C u^{2+} / C u}^{\circ}=+0.34$ volt, at $298 K \frac{R T}{F}(2.303)=0.06$ volt
$E_{\text {cell }}$ for reduction of $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$ by $\mathrm{Cu}(\mathrm{s})$ when $\left[\mathrm{HNO}_{3}\right]=1 \mathrm{M}$ is [At $t=298]$
A. $10^{1.23} M$
B. $10^{0.56} \mathrm{M}$
C. $10^{0.66} M$
D. $10^{0.12} \mathrm{M}$

Answer: C

- Watch Video Solution

14.

For
the
cell,
$\left.P t\left|C l_{2}(g, 0.4 \mathrm{bar})\right| C l^{-}(a q, 0.1 M)| | C l^{-}(a q), 0.01 M\right)\left|C l_{2}(g, 0.2 \mathrm{bar})\right| p t$

Emf is?

(a) 0.051 V
(b)-0.051V
(c) 0.102 V
(d) 0.0255 V
A. 0.051 V
B. -0.051
C. 0.102 V
D. 0.0255 V

D Watch Video Solution

15. The chlorate ion can disproportinate in basic solution according to reaction,
$2 \mathrm{ClO}_{3}^{-} \Leftrightarrow \mathrm{ClO}_{2}^{-}+\mathrm{ClO}_{4}^{-}$
what is the equilibrium concentration of perchlorate ions from a solution initially at 0.1 M in chlorate ions at 298 K ?

Given: $E_{\mathrm{Cl}_{4}^{-} \mid \mathrm{ClO}_{3}^{-}}^{\circ}=0.36 \mathrm{~V}$ and $E_{\mathrm{Cl}_{3}^{-}}^{\circ} \mid \mathrm{ClO}_{2}^{-}-0.33 \mathrm{Vat} 298 \mathrm{~K}$
(a) 0.019 M
(b) 0.024 M
(c) 0.1 M
(d) 0.19 M
A. 0.019 M
B. 0.024 M
C. 0.1 M

D. 0.19 M

Answer: A

- Watch Video Solution

16. A cell diagram shown below contains of one litre of buffer solution of $H A\left(P K_{a}=4\right)$ and NaA in both compartments. What is the cell e.m.f?

A. 0.03 V
B. 0.06 V
C. -0.06 V
D. None of these

- Watch Video Solution

17.

Given
the
cell:
$\mathrm{Cd}(\mathrm{s})\left|\mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})\right| \mathrm{NaOH}(\mathrm{aq}, 0.01 \mathrm{M})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{bar})\right| \mathrm{Pt}(\mathrm{s})$
with $E_{\text {cell }}=0.0 \mathrm{~V}$. if $E_{C d^{2+}}^{\circ} \mid C d=-0.39 \mathrm{~V}$, then $K_{\text {sp }}$ of $C d\left(\mathrm{OH}_{2}\right)$ is:
(a) 0.1
(b) 10^{-13}
(c) 10^{-15}
(d)None of these
A. 0.1
B. 10^{-13}
C. 10^{-15}
D. None of these

Answer: C

18. calculate the e.m.f (in V) of the cell:
$P t\left|H_{2}(g)\right| B O H(A q)\left||H A(A q)| H_{2}(g)\right| P t$,
0.1 bar 1M 0.1M 1bar

Given : $K_{a}(H A)=10^{-7}, K_{b}(B O H)=10^{-6}$
(a) 0.39 V
(b) 0.36 V
(c) 0.93 V
(d)None of these
A. 0.39 V
B. 0.36 V
C. 0.93 V
D. None of these

Answer: A

19. Calculate the potential of a half cell having reaction : $A g_{2} S(s)+2 e^{-} \Leftrightarrow 2 A g(s)+S^{2-}(a q)$ in a solution buffered at $p H=3$ and which is also saturated with $0.1 \mathrm{MH}_{2} \mathrm{~S}(\mathrm{aq})$:
[Given: $K_{s p}\left(A g_{2} S\right)=10^{-49}, K_{a 1} \cdot K_{a 2}=10^{-21}$]
A. 1.18
B. 0.19
C. -0.19 V
D. none of these

Answer: C

- Watch Video Solution

20. The conductivity of 0.1 N NaOH solution is $0.022 \mathrm{Scm}^{-1}$. When equal volume of 0.1 N HCl solution is added, the conductivity of resultant solution is decreased to $0.0055 \mathrm{~S} \mathrm{~cm}^{-1}$. The equivalent conductivity of NaCl solution is :
A. 0.0055
B. 0.11
C. 110
D. None of these

Answer: C

- Watch Video Solution

21. In above question after formation of NaCl , further 0.1 N HCl is added, the volume of which is double to that of the first portion added, the conductivity increases to $0.018 \mathrm{Scm}^{-1}$. The value of $b i d \wedge_{-}(e q)(\mathrm{HCl})$ is [assume no change in equivalent conductivity of $\mathrm{NaCl}(\mathrm{aq})$]:
A. $330 \mathrm{Scm}^{2} e q^{-1}$
B. $305 \mathrm{Scm}^{2} e q^{-1}$
C. $415 \mathrm{Scm}^{2} e q^{-1}$
D. $360 \mathrm{Scm}^{2} e q^{-1}$

Answer: B

D Watch Video Solution

22. Given the following molar conductivity at $25^{\circ} \mathrm{C}:, \mathrm{HCl}, 426$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, \quad \mathrm{NaCl}, \quad 126 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, \mathrm{NaC}($ sodium crotonate), $83 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. What is the dissciation constant of crotonic acid,if the conductivity of a 0.001 M crotonic acid solution is $3.83 \times 10^{-5} \Omega^{-1} \mathrm{~cm}^{-1}$?
A. 10^{-5}
B. 1.11×10^{-5}
C. 1.11×10^{-4}
D. 0.01

Answer: B

- Watch Video Solution

23. Equivalent conductivity of $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl , are x_{1}, x_{2} and $x_{3} S c m^{-1} e q^{-1}$ at infinite dilution. If conductivity of saturated BaSo_{4} solution is $\times \mathrm{Scm}^{-1}$, then $K_{s p}$ of BaSO_{4} is:
A.
$500 x$
$\overline{\left(x_{1}+x_{2}-x_{3}\right)^{2}}$
B. $\frac{10^{6} x^{2}}{\left(x_{1}+x_{2}-2 x_{3}\right)^{3}}$
C. $\frac{2.5 \times 10^{5} x^{2}}{\left(x_{1}+x_{2}-2 x_{3}\right)^{2}}$
D. $\frac{0.25 x^{2}}{\left(x_{1}+x_{2}-2 x_{3}\right)^{2}}$

Answer: C

- Watch Video Solution

24. The conductivity of $0.001 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution is $2.6 \times 10^{-4} \mathrm{Scm}^{-1}$ and increases to $7.0 \times 10^{-4} \mathrm{Scm}^{-1}$, When the solution is saturated with CaSO_{4}. The molar conductivities of Na^{+}and Ca^{2+} are 50 and 120 $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively. Neglect conductivity of used water. What is the solubility product of CaSO_{4} ?
A. 4×10^{-6}
B. 1.57×10^{-3}
C. 4×10^{-4}
D. 1.52×10^{-4}

Answer: A

- Watch Video Solution

25. The dissociation constant of a weak acid is 1.6×10^{-5} and the molar conductivity at infinite dilution is $380 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$. If the cell constant is $0.01 m^{-1}$ then conductace of 0.1 M acid solution is :
A. $1.52 \times 10^{-5} \mathrm{~S}$
B. 1.52 S
C. $1.52 \times 10^{-3} \mathrm{~S}$
D. $1.52 \times 10^{-4} \mathrm{~S}$

Answer: B

- Watch Video Solution

26. Three electrolytic cells $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ containing solution of $\mathrm{NaCl}, \mathrm{AgNO}_{3}$ and $\mathrm{CuSO} \mathrm{S}_{4}$ respectively are connected in series combination. During electrolysis 21.6 gm of silver deposits at cathode in cell Y . Which is incorrect statement.
A. 6.35 gm copper deposits at cathode in cell z
B. 2.24 litre $C l_{2}$ is liberated(at latm and 273 K) at anode in cell X
C. 2.24 litre O_{2} is liberated(at 1atm and 273 K) at anode in cell Y
D. 2.24 litre H_{2} is liberated(at 1atm and 273 K) at anode in cell X

Answer: C

- Watch Video Solution

27. During electrolysis of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ with high charge density, $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ formed as by product. In such electrolysis 22.4L $H_{2}(g)$ and $8.4 \mathrm{~L} O_{2}(g)$ liberated at 1 atm and 273 K at electrode. The moles of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ formed is
A. 0.25
B. 0.5
C. 0.75
D. 1

Answer: A

- Watch Video Solution

28.

$Z n(s)\left|Z n(C N)_{4}^{2-}(0.5 M), C N^{-}(0.01)\right|\left|C u\left(N_{3}\right)_{4}^{2+}(0.5 M), N H_{3}(1 M)\right| C$
Given: K_{f} of $Z n(C N)_{4}^{-2}=10^{16}, K_{f}$ of $C u\left(N H_{3}\right)_{4}^{2+}=10^{12}$,

$$
E_{Z n \mid Z n^{2+}}^{\circ}=0.76 \mathrm{~V}, E_{C u}^{\circ} \mid C u=0.34 \mathrm{~V}, \frac{2.303 R T}{F}=0.06
$$

The emf of above cell is :
A. 1.22 V
B. 1.10 V
C. 0.98 V
D. None of these

Answer: C

- Watch Video Solution

1.

A Galvanic cell consits of three compartment as shown in figure. The first compartment contain $\mathrm{ZnSO}_{4}(1 \mathrm{M})$ and III compartment contain CuSO_{4} (1M). The mid compartment contain NaNO_{3} (1M). Each compartment contain 1L solution:

$$
E_{Z n^{2+} / Z n}^{\circ}=-0.76, E_{C u^{2+} / C u}^{\circ}=+0.34,
$$

The concertation of $Z n^{2+}$ in first compartment after passage of 0.1 F charge will be:
A. 1 M
B. 1.05 M
C. 1.025 M
D. 0.5 M

Answer: C

- Watch Video Solution

2.

A Galvanic cell consits of three compartment as shown in figure. The first compartment contain $\mathrm{ZnSO}_{4}(1 \mathrm{M})$ and III compartment contain CuSO_{4} (1M). The mid compartment contain NaNO_{3} (1M). Each compartment
contain 1L solution:

$$
E_{Z n^{2+} / Z n}^{\circ}=-0.76, E_{C u^{2+} / C u}^{\circ}=+0.34
$$

The concentration of NO_{3}^{-}in mid compartment after passage of 0.1 F of charge will be:
A. 0.95 M
B. 0.90 M
C. 0.975 M
D. 1.05 M

Answer: A

D Watch Video Solution

A Galvanic cell consits of three compartment as shown in figure. The first compartment contain $\mathrm{ZnSO}_{4}(1 \mathrm{M})$ and III compartment contain CuSO_{4} (1M). The mid compartment contain NaNO_{3} (1M). Each compartment contain 1L solution:

$$
E_{Z n^{2+} / Z n}^{\circ}=-0.76, E_{C u^{2+} / C u}^{\circ}=+0.34
$$

The concentration of SO_{4}^{2-} ions in III compartment after passage of 0.1 F of charge will be:
A. 1.05 M
B. 1.025 M
C. 0.95 M
D. 0.975 M

Answer: D

- Watch Video Solution

4. The cell potential ($E_{\text {cell }}$) of a reaction is related as $\triangle G=-n F E_{\text {cell }}$, where $\triangle G$ represents max. useful electrical work $\mathrm{n}=\mathrm{no}$. of moles of electrons exchanged during the section for reversible cell reaction $d(\triangle G)=\left(\triangle_{r} V\right) d p-\left(\triangle_{r} S\right), d T$ at constant pressure $d(\triangle G)=-\left(\triangle_{r} S\right) \cdot d T$
:' At constant pressure $\triangle G=\triangle H-T . \triangle S$
$\therefore \triangle G=H+T \frac{d(\triangle G)}{(d T)_{P}}$
$\left(\frac{d E_{\text {cell }}}{d T}\right)_{P}$ is known as temperture coefficient of the e.m.f of the cell.
The temperature coefficient of the e.m.f of cell, $\left(\frac{d E}{d T}\right)_{P}$ si given by:
A. $\frac{n F}{\triangle S}$
B. $\frac{\triangle S}{n F}$
c. $\frac{\triangle S}{n F T}$
D. \#REF!

Answer: B

- Watch Video Solution

5. At $300 \mathrm{k}, \triangle H$ for the reaction
$\mathrm{Zn}(s)+\mathrm{AgCl}(s) \rightarrow \mathrm{ZnCl}_{2}(a q)+2 \mathrm{Ag}(s)$ is
$-218 \mathrm{KJ} / \mathrm{mol}$ while the e.m.f of the cell was 1.015 V . $\left(\frac{d E}{d T}\right)_{p}$ of the cell is :
A. $-4.2 \times 10^{-4} V K^{-1}$
B. $-3 . .81 \times 10^{-4} V K^{-1}$
C. $0.11 V K^{-1}$
D. $7.62 \times 10^{-4} V K^{-1}$

Answer: B

6. At $300 \mathrm{k}, \triangle H$ for the reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{ZnCl}_{2}(a q)+2 \mathrm{Ag}(s)$ is
$-218 K \frac{J}{m}$ olwhile the e.m.f of the cell was 1.015 V . $\left(\frac{d E}{d T}\right)_{p}$ of the cell is $-0.000381 V K^{-1}$. Calculate $\triangle S$ for the given cell reaction.
A. $-73.53 \mathrm{~J} / \mathrm{Kmol}$
B. $83.53 \mathrm{~J} / \mathrm{Kmol}$
C. $100 \mathrm{~J} / \mathrm{Kmol}$
D. None of these

Answer: A

- Watch Video Solution

7. The molar conductivity of 0.04 M solution of MgCl_{2} is 200 $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at 298 k . A cell with electrodes that are $2.0 \mathrm{~cm}^{2}$ in surface
area and 0.50 cm apart is filled with MgCl_{2} solution.
Conductance of MgCl_{2} solution is :
A. $8 \times 10^{-3} \mathrm{~S}$
B. 32 S
C. 0.032 S
D. None of these

Answer: C

- Watch Video Solution

8. The molar conductivity of 0.04 M solution of MgCl_{2} is 200 $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at 298 k . A cell with electrodes that are $2.0 \mathrm{~cm}^{2}$ in surface area and 0.50 cm apart is filled with MgCl_{2} solution

How much current will flow when the potential difference between the two electrodes is 5.0 V ?
B. 0.16 A
C. 160A
D. None of these

Answer: B

- Watch Video Solution

9. In a hydrogen oxyge fuel cell, electricity is produced. In this process H_{2}
(g) is oxided at anode and $O_{2}(\mathrm{~g})$ reduced at cathode

Given: Cathode $\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+4 e^{-} \rightarrow 4 \mathrm{OH}^{-}(a q)$
Anode $\mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-}$
4.48 litre H_{2} at 1atm and 273 k oxidised in 9650 sec.

The current produced is (in amp):
A. 1A
B. 2A
C. 4A
D. 8 A

Answer: C

- Watch Video Solution

10. In a hydrogen oxyge fuel cell, electricity is produced. In this process
$\mathrm{H}_{2}(\mathrm{~g})$ is oxided at anode and $\mathrm{O}_{2}(\mathrm{~g})$ reduced at cathode
Given: Cathode $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(a q)$
Anode $\mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-}$
4.48 litre H_{2} at 1atm and 273 k oxidised in 9650 sec .

The mass of water produced is :
A. 7.2 g
B. 3.6 g
C. 1.8g
D. 0.9 g

- Watch Video Solution

11. In a hydrogen oxyge fuel cell, electricity is produced. In this process H_{2} (g) is oxided at anode and $O_{2}(\mathrm{~g})$ reduced at cathode Given: Cathode $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(a q)$

Anode $\mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-}$
4.48 litre H_{2} at 1atm and 273 k oxidised in 9650 sec .

If current produced in fuel cell, is used for the deposition of Cu^{+2} in $1 \mathrm{~L}, 2 \mathrm{M} \mathrm{CuSO} 4$ (aq) solution for 241.25 sec using Pt. electrode, the pH of solution after electrolysis is:
A. 1
B. 2
C. 3
D. 4

Answer: B

12. A saturated solution in $\operatorname{AgX}\left(K_{s p}=3 \times 10^{-12}\right)$ and $\operatorname{Ag} Y\left(K_{s p}=10^{-12}\right)$ has conductivity $0.4 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$. Given: Limiting molar conductivity of $\mathrm{Ag}^{+}=60 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ Limiting molar conductivity of $X^{-}=90 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ The conductivity of Y^{-}is (in $\Omega^{-1} \mathrm{~cm}^{-1}$):
A. 1.45×10^{-7}
B. 1.45×10^{-5}
C. 1.45×10^{-9}
D. None of these

Answer: A

- Watch Video Solution

13. A saturated solution in $\operatorname{AgX}\left(K_{s p}=3 \times 10^{-12}\right)$ and $\operatorname{Ag} Y\left(K_{s p}=10^{-12}\right)$ has conductivity $0.4 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$.

Given: Limiting molar conductivity of $\mathrm{Ag}^{+}=60 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ Limiting molar conductivity of $X^{-}=90 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

The conductivity of Y^{-}is (in $\Omega^{-1} \mathrm{~cm}^{-1}$):
A. 50
B. 2900
C. 2.9
D. None of these

Answer: A

- Watch Video Solution

14. If the e.m.f of a galvanic cell is negative, it implies that:
A. the cell reaction is spontaneous
B. the cell reaction is non-spontaneous
C. the cell reaction is exothermic
D. the cell is working in reverse direction

Answer: A::B

- Watch Video Solution

15. Select correct statement(s) about electrolysis:
A. Electric current is used to drive a non -spontaneous reaction
B. $\triangle G$ is positive for chemical process during electrolysis
C. Cations and anions are moved toward the anode and cathode respectively
D. Over voltage is generally associated with evolution of O_{2} gas

Answer: A::B::D

16. If the half-cell reaction $A+e^{-} \rightarrow A^{-}$has a large negative reduction potentials, it follows that:
A. A is readly reduced
B. A is readily oxidised
C. A^{-}is readily reduced
D. A^{-}is readily oxidised

Answer: D

- Watch Video Solution

17. Which of the following statements is correct? If

$$
E_{C u^{2+} \mid C u}^{\circ}=0.34 V, E_{S n^{2+} \mid S n}^{\circ}=-0.136 \mathrm{~V}, E_{H+\mid H_{2}}^{\circ}=-0.0 \mathrm{~V}
$$

A. Cu^{2+} ions can be reduced by H_{2} (g)
B. cu can be oxidised
C. Sn^{2+} ions can be reduced by H_{2}
D. Sn can be oxidized by $C u^{2+}$

Answer: A::D

- Watch Video Solution

18. The oxidation potential of hydrogen half-cell will be negative if:
A. $p\left(H_{2}\right)=1$ atmand $\left[H^{+}\right]=1 M$
B. $p\left(H_{2}\right)=1$ atmand $\left[H^{+}\right]=2 M$
C. $p\left(H_{2}\right)=0.2 a t m a n d\left[H^{+}\right]=1 M$
D. $p\left(H_{2}\right)=0.2 a t m$ and $\left[H^{+}\right]=0.2 M$

Answer: B::C

- Watch Video Solution

19. which of the following arrangement will procedure oxygen at anode during electrolysis?
A. Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Pt electrodes
B. Fused NaOH with inert electrodes
C. Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Cu electrodes
D. Concentrated aq. NaCl with Pt electrodes

Answer: A::B

- Watch Video Solution

20. When an aqueous concentrated solution of lithium chloride is electrolysed using inert electrodes:
A. $C l_{2}$ is liberated at the anode
B. Li is deposited at the cathode
C. as the current flows. pH of the solution around the cathode remains constant
D. as the current flows, pH of the solution around the cathode increases

Answer: A::D

D Watch Video Solution

21. Oxygen and hydrogen gas are produced at the anode and cathode during the electrolysis of fairly concentration aqueous solution of :
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. $\mathrm{AgNO} \mathrm{O}_{3}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. NaOH
22. During the purification of copper by electrolysis:
(a)the anode used is made of copper ore
(b)pure copper is deposited on the cathode
(c)the impurities such as Ag , Au present in solution as ions
(d)concentration of CuSO_{4} solution remains constant during dissolution of Cu
A. the anode used is made of copper ore
B. pure copper is deposited on the cathode
C. the impurities such as Ag , Au present in solution as ions
D. concentration of CuSO_{4} solution remains constant during dissolution of Cu

Answer: A::B::D

23. When a lead storage battery is discharged:
A. $S O_{2}$ is evolved
B. lead sulphate is produced at both electrodes
C. sulphuric acid is consumed
D. water is formed

Answer: B::C::D

- Watch Video Solution

24. Which of the following is characteristic of the cathode in a voltaic cell?
A. It may gain weight during reaction
B. Electrons flow to it through the external circuit
C. It is where oxidation occurs
D. it receives electrons from ions in solution

- Watch Video Solution

25. In an electrochemical process, a salt bridge is used:
A. to maintain electrical neutrality in each solution
B. to complete the external circuit so that current can flow for long time
C. to mix the solution of anodic and cathodic compartment
D. to supply voltage

Answer: A

D Watch Video Solution

26. For a reaction in a galvanic cell the value of $-\triangle G^{\circ}$ at certain temperature is not necessarily equal to:
A. $n F E^{\circ}$
B. RT In K
C. $T \triangle S^{\circ}-\triangle H^{\circ}$
D. zero

Answer: B::D

- Watch Video Solution

27. Given that $E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}=-0.44 V, E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=0.77 \mathrm{~V}$ if $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and Fe solid are kept together then
A. the concentration of $F e^{3+}$ increases
B. the concentration of Fe^{3+} decreases
C. the mass of Fe increases
D. the concentration of Fe^{2+} decreases
28. which of the following statements are correct regarding to galvanic cell?
A. A reaction is spontaneous from right to left if $E_{\text {cell }}>0$
B. A reaction occurs from right to left if $E_{\text {cell }}<0$
C. If the system is at equilibrium no net reaction occurs
D. $E_{\text {cell }}$ is temperature-independent

Answer: A::B::C

- Watch Video Solution

29. Which of the following are concentration cell?
A. $P t\left|\underset{P_{1}}{H_{2}(g)|H C l|} \underset{P_{2}}{H_{2}(G)}\right| P t$
B. $C d \underset{\left(a_{1}\right)}{(\mathrm{Hg})}\left|\underset{(C)}{C} d^{2+}\right|\left(\underset{a_{2}}{\mathrm{Hg})}, C d\right.$
C. $Z n(s)\left|{ }_{c_{1}} n^{2+}\right|\left|C C_{c_{2}} u^{2+}\right| C u$
D. $A g|A g C l| C_{c_{1}} l^{-}(a q)| |{ }_{c_{2}} r^{-}(a q)|A g B r| A g$

Answer: A::B::D

- Watch Video Solution

30. In electrolyte concentration cell:
A. the electrode material and the solution in both half-cells are composed of the same substances
B. only the concentrations of solutions of ther same substances is different
C. $E_{\text {cell }}^{\circ}=0$
D. the Nernst equations reduces to $E_{\text {cell }}=-\left(\frac{0.0591}{n}\right) \log \mathrm{Q}$ at $25^{\circ} \mathrm{C}$

- Watch Video Solution

31. The standard electrode of a metal ion $\left(A g \mid A g^{\oplus}\right)$ and metal insoluble salt anion $\left(\mathrm{Ag}|\mathrm{AgCl}| \mathrm{Cl}^{-}\right)$are related as
A. $E_{A g+\mid A g}^{\circ}=E_{C l(-)|A g C l| A g}^{\circ}+\frac{R T}{F} I n K_{s p}$
B. $E_{C l(-)|\mathrm{AgCl}| A g}^{\circ}=E_{A g+\mid A g}^{\circ}+\frac{R T}{F} I n K_{s p}$
C. $E_{C l(-)|A g C l| A g}^{\circ}=E_{A g^{+} \mid A g}^{\circ}-\frac{R T}{F} \operatorname{In} \frac{\left[C l^{-}\right]}{K_{s p}}$
D. $E_{C l(-)|A g C l| A g}^{\circ}=E_{A g^{+} \mid A g}^{\circ}-\frac{R T}{F} \operatorname{In} \frac{\left[C l^{-}\right]}{K_{s p}}$

Answer: B

- Watch Video Solution

32. Which of the following units is correctly matched?
A. SI units of conductivity is $S m^{-1}$
B. SI units of molar conductivity is $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

C. Sl unit of conductance is S^{-1}

D. All of these

Answer: A

- Watch Video Solution

33. Which of the following statements is/are correct?
A. The conductance of one cm^{3} (or $1 u n i t^{3}$) of a solution is called specific conductance
B. Specific conductance increases while molar conductivity decreases on progressive dilution
C. The limiting equivalent conductivity of weak electrolyte cannot be determined exactly by extraplotation of the plot of $\wedge_{e q}$ against \sqrt{c}
D. The conductance of metals is due to the movement of free electrons

D Watch Video Solution

34. Which is/are correct statement?
A. No corrosion takes place in vaccum
B. Corrosion is protected by electroplating
C. During rusting $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ formed
D. In presence of electrolyte, corrosion takes place with greater rate

Answer: A::B::C::D

- Watch Video Solution

35. A dilute solution of KCl was placed between two Pt electrodes 10 cm apart across which a potential difference of 10 volt was applied. Which is
/are correct statement (Given: molar conductivity of K^{+}at infinite dilution is $96.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
A. Ionic mobility of K^{+}is $10^{-3} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ volt $^{-1}$
B. The speed of K^{+}is $10^{-3} \mathrm{~cm} \mathrm{sec}^{-1}$
C. Distance travelled by K^{+}in 5×10^{3} sec is 5 cm
D. The potential gradient is 1.0 volt cm^{-1}

Answer: A::B::C::D

- Watch Video Solution

36. Given: $\left.P t(s)\left|{ }_{P_{1} \text { atm }}^{C} l_{2}(g)\right| C l^{-}\left(C_{1}\right)| | C l^{-}\left(C_{2}\right)\right|_{P_{2} a t m}(C l)_{2}(\mathrm{~g}) \mid P t(s)$
identify in which of following condition working of cell takes place:
A. $C_{1}>C_{2}$ and $P_{1}=P_{2}$
B. $P_{1}>P_{2}$ and $C_{1}=C_{2}$
C. $C_{2}>C_{1}$ and $P_{1}=P_{2}$
D. $P_{1}<P_{2}$ and $C_{1}=C_{2}$

Answer: A::B

- Watch Video Solution

37. $1000 \mathrm{~mL} 1 \mathrm{M} \mathrm{CuSO} \mathrm{C}_{4}(\mathrm{aq})$ is electrolysed by 9.65 A current for 100 sec using Pt-electrode which is /are correct statements?
A. Blue colour intensity decreases during electrolysis
B. Blue colour intensity remains constant if Cu -electrode used.
C. pH of solution is 8 after electrolysis.
D. 28 mL of CH_{4} at 1 atm and 273 K required for its combustion by O_{2}, liberated during electrolysis.

Answer: A::B::D

- Watch Video Solution

1. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one entries of column-I may have the matching with the same entries of column-II

Column-I

(A) Dilute solution of HCl
(B) Dilute solution of NaCl
(C) Concentrated solution of NaCl
D) Fairly concentrated solution of AgNO_{3}

Column-II

(P) O_{2} evolved at anode
(Q) H_{2} evolved at cathode
(R) Cl_{2} evolved at anode
(S) Ag deposition at cathode

- Watch Video Solution

2. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one entries of column-I may have the matching with the same entries of column-II

Column-I

Column-II (SRP)
(A) $\mathrm{F}_{2}+2 e \rightleftharpoons 2 \mathrm{~F}$
(P) 0.54
(B) $\mathrm{Cl}_{2}+2 e^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$
(Q) 1.09
(C) $\mathrm{Br}_{2}+2 e \rightleftharpoons \mathrm{Br}$
(R) 1.36
(D) $\mathrm{I}_{2}+2 e \rightleftharpoons 2 \mathrm{BI}$
(S) 2.87

- Watch Video Solution

3. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one entries of column-I may have the matching with the same entries of column-II

Column-I

(A) $\mathrm{Pt} \mid \mathrm{Fe}^{3+}, \mathrm{Fe}^{3+}$
(P) Metal-metal ion half-cell
(B) $\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}^{+}$
(Q) Gas-gas ion half-cell
(C) $\mathrm{Pt}|\mathrm{Hg}| \mathrm{Hg}_{2}^{2+}$
(D) $\mathrm{Pb}\left|\mathrm{PbSO}_{4}\right| \mathrm{SO}_{4}^{2-}$
(R) Oxidation-reduction half-cell
(S) Metal-sparingly soluble salt half-cell

- Watch Video Solution

4. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one entries of column-I may have the matching with the same entries of

Column-I (Property)
(A) Conductance
(B) Conductivity
(C) Molar conductivity
(D) Resistivity
(P) Sm^{-1}
(Q) $\mathrm{S}^{-1} \mathrm{~m}$

Column-II (Unit)

(R) $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(S) S

D Watch Video Solution

5. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one entries of column-I may have the matching with the same entries of column-II

Column-I (Ion)

(A) H^{+}
(P) 350
(B) Na^{+}
(Q) 50
(C) Li^{+}
(R) 39
(D) Cs^{+}
(S) 77

Column-II (Molar Conductivity)

Watch Video Solution

6. Column-1 and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II .One or more than one
entries of column-I may have the matching with the same entries of column-II

Column-I

(A) Galvanic cell
(B) Electrolytic cell

Column-II

(P) Used in space craft
(Q) No transformation of electmal on into chemical energy
(C) Dead battery
(D) Fuel cell
(R) Cell reaction is spontaneous
(S) Cell reaction is non spontaneous

- Watch Video Solution

Assertion Reason Type Question

1. STATEMENT -1: $E_{\text {cell }}^{\circ}$ is negative for electrolytic cell.

STATEMENT-2: $\triangle G^{\circ}$ is +ve for electrolyte cell
(a) If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-1
(b)If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-1
(c)If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
(d)If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-1
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-1
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

2. STATEMENT-1: when 2 faraday of charge is passed through $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) , 11.2 litre O_{2} evolved at STP.

STATEMENT-2: Molecular mass of oxygen is 32
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-1
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-2
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

3. STATEMENT-1: Copper is dissolved at anode and deposited at cathode when Cu electrodes are used and electrolyte is 1 M CuSO 4 (aq) solution. STATEMENT-2: SOP of Cu is less than SOP of water and SRP of Cu is greater than SRP of water.
A. If both the statements are TRUE and STATEMENTS-2 is the correct
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-3
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

4. STATEMENT-1: 1 coulomb charge deposits 1 g -equivalent of a substance.

STATEMENT-2: 1 faraday is charge is charge on 1 mole of electrons.
A. If both the statements are TRUE and STATEMENTS-2 is the correct
explantion of STATEMENTS-1
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-1
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE

Answer: D

- Watch Video Solution

5. STATEMENT-1: If SRP of substance is -0.3 V , its reduction is possible at cathode.

STATEMENT-2: Reduction potential of water lies between 0 to -0.8274 V at 25°
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-1
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-1
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

6. STATEMENT-1: If SRP of substance is -0.5 V , then reduction of substance is possible only in basic medium .

SRP of water is -0.8274 V and at reduction potential is zero at $\mathrm{pH}=7$
A. If both the statements are TRUE and STATEMENTS-2 is the correct
explantion of STATEMENTS-4
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-6
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

Watch Video Solution

7. STATEMENT-1: The voltage of mercury cell remains constant for longer period of time.

STATEMENT-2: It is because net cell reaction does not involve ions.
A. If both the statements are TRUE and STATEMENTS-1 is the correct explantion of STATEMENTS-2
B. If both the statements are TRUE but STATEMENTS-1 is NOT the correct explanation of STATEMENTS-2
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

8. STATEMENT-1: lead storage battery is a galvanic cell without salt bridge.

STATEMENT-2: A secondary cell is rechargeable cell.
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-6
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-8
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

9. STATEMENT-1: The SRP of three metallic ions A, B, C are $-0.3,-0.5,0.8$ volt respectively, so oxidizing power of ions is $C>A>B$.

STATEMENT-2: Higher the SRP, higher the oxidizing power.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statements are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

10. STATEMENT-1: If SOP of substance is less than -1.23 V and over voltage $=0 \mathrm{~V}$, then its oxidation in its aqueous solution is not possible at 298 K.,

STATEMENT-2: Standard reduction potential (SRP) of water is +1.23 V .
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-8
B. If both the statements are TRUE but STATEMENTS-2 is NOT the
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

11. STATEMENT-1: We cannot add the electrode potential in order to get electrode potential of third electrode if no. of moles of electrons exchanged are not same.

STATEMENT-2: Electrode potential is an extensive property
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-9
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-11
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

- Watch Video Solution

12. STATEMENT-1: $E_{\text {cell }}^{\circ}=0$ for a chloride ion concentration cell. STATEMENT-2: For this concentration cell where
$E_{\text {cell }}=\frac{R T}{n F} \operatorname{In} \frac{\left[C l^{-}\right]_{L H S}}{\left[C l^{-}\right]_{R H S}}$
A. If both the statements are TRUE and STATEMENTS-2 is the correct
explantion of STATEMENTS-10
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-12
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

13. STATEMENT-1: If $\left(\frac{d E_{\text {cell }}}{d T}\right)_{P}>0$, for a cell reaction then $\triangle S$ is positive.

STATEMENT-2: $\triangle S=n F T\left(\frac{d E}{d T}\right)_{p}$
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-11
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-13
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

14. STATEMENT-1: Molar conductivity increases with decrease in concentration for weak electrolysis.

STATEMENT-2: No. of ions increases and no. of ions per unit volume decreases due to dilution.
A. If both the statements are TRUE and STATEMENTS-2 is the correct explantion of STATEMENTS-12
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-14
C. If STATEMENTS-1 is TRUE and STATEMENTS-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

15. STATEMENT-1: Conductivity decreases with the decrease in concentration of both the weak and strong electolytes.

STATEMENT-2: No. of ions per unit volume linearly decreases in both electrolytes.
A. If both the statements are TRUE and STATEMENT-2 is the correct explanation of STATEMENT-1
B. If both the statements are TRUE but STATEMENTS-2 is NOT the correct explanation of STATEMENTS-15
C. If STATEMENT-1 is TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

Subjective Problems

1. How many faradays are required for reduction of $1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ into $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$?

- Watch Video Solution

2. What is the equivalent mass of O_{2} in the following reaction , $\mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}+2 e^{-} \rightarrow 2 \mathrm{OH}^{-}$?

- Watch Video Solution

3. The amount of electricity which release 2.0 g of gold from a gold salt is same as that which dissolves 0.967 g of copper anode during the electrolysis of copper sulphate solution. What is the oxidation number of gold in the gold ion ? (At mass of $\mathrm{Cu}=63.5, \mathrm{Au}=197$)

- Watch Video Solution

4. when molten salt was elctrolysed for 5 min with 9.65 A current , 0.18 g of the metal was deposited. Calculate the Eq. mass of metal.

- Watch Video Solution

5. During the electrolysis of a concentrated brine solution, Calculated the moles of chlorine gas produced by the passage of 4 F electricity.

Watch Video Solution

6. Calculate the cell potential (in V) if $\triangle G=-96.5 \mathrm{~kJ} / \mathrm{mol}$ and $n=1$

- Watch Video Solution

7. If K_{c} for the reaction
$C u^{2+}(a q)+S n^{2+}(a q) \rightarrow S n^{4+}(a q)+C u(s)$ at $25^{\circ} \mathrm{C}$ is represented as 2.6×10^{y} then find the value of y .
(Given: $E_{C u^{2+} \mid C u}^{\circ}=0.34 \mathrm{~V}, E_{S n^{4+} \mid S n^{2}}^{\circ}=0.15 \mathrm{~V}$

- Watch Video Solution

8. If $\triangle G^{\circ}$ for the half cell $\mathrm{MnO}_{4}^{-} \mid \mathrm{MnO}_{2}$ in an acid solution is -xF; then find the value of x.(Given: $E_{M n O_{4}^{-} \mid M n^{2+}}^{\circ}=1.5 \mathrm{~V}, E_{M n O_{2} \mid M n^{2+}}^{\circ}=1.25 \mathrm{~V}$)

- Watch Video Solution

9. If the equilibrium constant for the reaction $C d^{2+}(a q)+4 N H_{3}(a q) \Leftrightarrow C d\left(N H_{3}\right)_{4}^{2+}(a q)$ is 10^{x} then find the value of x.
(Given: $E_{C d^{2+} \mid C d}^{\circ}=-0.4 V, E_{C d\left(N H_{3}\right)_{4}^{2+} \mid C d}^{\circ}=-0.61 V$)

- Watch Video Solution

10. At What pH oxidation potential of water is -0.81 V ?

- Watch Video Solution

11. The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500Ω. What is the cell constant (in mm^{-1}) if the conductivity of 0.001 M KCl solution is $2 \times 10^{-3} \mathrm{Smm}^{-1}$

- Watch Video Solution

12. Molar conductivity at infinitre dilution of $\mathrm{KCl}, \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COOK}$ are $0.013,0.038$ and $0.009 \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ respectively at 291K. If conductivity of $0.001 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is $2.72 \times 10^{-3} \mathrm{Sm}^{-1}$ then find $\%$ degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

13. Molar conductivity of aqueous solution of $H A$ is $200 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}, \mathrm{pH}$ of this solution is 4

Calculate the value of $p K_{a}(H A)$ at $25^{\circ} C$.
Given $\wedge_{M}^{\infty}(N a A)=100 \mathrm{scm}^{2} \mathrm{~mol}^{-1}$,

$$
\begin{aligned}
& \wedge_{M}^{\infty}(H C l)=425 S \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
& \wedge_{M}^{\infty}(\mathrm{NaCl})=125 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

- Watch Video Solution

14. The standard reduction potential of a silver chloride electrode (metalsparingly soluble salt electrode) is 0.029 V and for silver electrode is 0.80 V . If the moles of AgCl that can dissolve in 10 L of a 0.01 M NaCl solution is represted as 10^{-z} find the value of Z.
