©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NARENDER AVASTHI CHEMISTRY (ENGLISH)

STOICHIOMETRY

Level-2

1. A mixture of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ contain 30.40% mass per cent of nitrogen. What is the mass ratio of the two components in the mixture?
A. (a) $2: 1$
B. (b) $1: 2$
C. (c) $3: 4$
D. (d) $4: 1$

Answer: A

D Watch Video Solution

2. What volume of 75% alcohol by weight $\left(d-0.80 \mathrm{~g} / \mathrm{cm}^{3}\right)$ must be used to prepare $150 \mathrm{~cm}^{3}$ of 30% alcohal by mass $\left(d=0.90 \mathrm{~g} / \mathrm{cm}^{3}\right)$?
A. (a) 67.5 mL
B. (b) 56.25 mL
C. (c) 44.44 mL
D. (d) None of these

Answer: A

- Watch Video Solution

3. Calculate the number of millilitre of $\mathrm{NH}_{3}(\mathrm{aq})$ solution ($\mathrm{d}=0.986 \mathrm{~g} / \mathrm{ml}$) contain 2.5% by mass NH_{3}, which will be required to precipitate iron as
$\mathrm{Fe}(\mathrm{OH})_{3}$ in a 0.8 g sample that contains $50 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.
A. 0.344 mL
B. 3.44 mL
C. 17.24 mL
D. 10.34 mL

Answer: D

- Watch Video Solution

4. In the preparation of iron from haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ by the reduction with carbon
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
how much 80% pure iron may be produced from 120 kg of 90% pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
A. 94.5 kg
B. 60.48 kg
C. 116.66 kg
D. 120 kg

Answer: A

- Watch Video Solution

5. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by mass. 2.8 g of the mineral on heating loat 1.32 of CO_{2}. What is the $\%$ by mass of the other metal ?
A. 87.5
B. 35.71
C. 65.11
D. 23.21

Answer: D

6. 6.2 g of a sample containing $\mathrm{NaHCO}_{3}, \mathrm{NaHCO}_{3}$ and non -volatiale inert impurity on gentle heating loses 5% of its mass due to reaction $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. Residue is dissolved in water and formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2 M aqueous solution of BaCl_{2} for complete precipitation of carbonates. Determine mass (in gram) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original sample .
A. 1.59
B. 1.06
C. 0.53
D. None of these

Answer: B

- Watch Video Solution

7. Nitric acid canbe produced from NH_{3} in three steps process given below
$(\mathrm{I}) 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$(\mathrm{II}) 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{3}(\mathrm{~g})$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
percent yield of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ steps are respectively $50 \%, 60 \%$ and 80% respectivley then what volume of $\mathrm{NH}_{3}(\mathrm{~g})$ at 1 atm and 0° required to produced 1575 g of HNO_{3}.
A. 156.25
B. 350 L
C. 3500 L
D. None of these

Answer: C

8. 1 M NaOH solution was slowly added in to 1000 mL of 183.75 g impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and the following plot was obtained. The percentage purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample and slope of the curve respectively are:

A. $75 \%,-\frac{1}{3}$
B. $80 \%,-\frac{1}{2}$
C. $80 \%,-1$
D. None of these

- Watch Video Solution

9. MnO_{2} on ignition converts into $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite having $75 \% \mathrm{MnO}_{2}, 20 \%$ inert impurities and rest water is ignited in air to constant mass. What is the percentage of Mn in the ignited sample ?
A. (a) 0.246
B. (b) 0.37
C. (c) 0.5524
D. (d) 0.7405

Answer: C

- Watch Video Solution

10. A 1.0 g sample of a pure organic compound cotaining chlorine is fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ to convert chlorine to NaCl . The sample is then dissolved in water, and the chloride precipitated with AgNO_{3}, giving 1.96 g of AgCl . If
the molecular mass of organic compound is 147 , how many chlorine does each molecule contain ?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

11. A 0.6 gm sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at $500^{\circ} \mathrm{Cg}$ gets converted into CaCO_{3} and MgCO_{3}. The sample then weighed 0.465 gm . If the sample had been heated to $900^{\circ} \mathrm{C}$ where the products are CaO and MgO , then what would the mixture of oxides weigh?
A. 0.12 g
B. 0.21 g
C. 0.252 g
D. 0.3 g

Answer: C

- Watch Video Solution

12. A metal M forms the sulphate $M_{2}\left(\mathrm{SO}_{4}\right)_{3}$. A 0.596 gram sample of the sulphate reacts with excess BaCl_{2} to give $1.220 \mathrm{~g} \mathrm{BaSO}_{4}$. What is the atomic mass of M ?
A. 26.9
B. 69.7
C. 55.8
D. 23
13. Urea $\left(\mathrm{H}_{2} \mathrm{NCONH}_{2}\right)$ is manufactured by passing $\mathrm{CO}_{2}(\mathrm{~g})$ through ammonia solution followed by crystallization. For the above reaction is prepared by combustion of hydrocarbons. If combustion of 236 kg of a saturated hydrocarbon $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ produces as much CO_{2} as required for production of 999.6 kg urea then molecular formula of hydrocarbon is:
A. $C_{10} H_{22}$
B. $\mathrm{C}_{12} \mathrm{H}_{26}$
C. $\mathrm{C}_{13} \mathrm{H}_{28}$
D. $C_{8} H_{18}$

Answer: B

- Watch Video Solution

14. 11.6 g of an organic compound having formula $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ is burnt in excess of $O_{2}(g)$ initially taken in a 22.41 litre steel vessel. Reaction the gaseous mixture was at 273 K with pressure reading 2 atm. After complete complete combustion and loss of considerable amount of heat, the mixture of product and excess of O_{2} had a temperature of 546 K and 4.6 atm pressure. The formula of organic compound is :
A. $C_{6} H_{6}$
B. $C_{3} H_{8}$
C. $C_{5} H_{12}$
D. $C_{4} H_{10}$

Answer: D

- Watch Video Solution

15. $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \xrightarrow{40 \% \text { yield }} \mathrm{I}_{2}+2 \mathrm{KOH}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{50 \% \text { yield }} \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

150 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample was divided into two parts. First part was treated with KI and formed KOH required 200 mL of $\mathrm{M} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation. Other part was treated with KMnO_{4} yielding 6.74 litre of O_{2} at 1 atm. and 273 K . Using \% yield indicated find volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample used.
A. 5.04
B. 10.08
C. 3.36
D. 33.6

Answer: D

- Watch Video Solution

16. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (sulphuryl chloride) reacts with water to given a mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCL . What volume of $0.2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is needed to completely neutralize 25 mL of $0.2 \mathrm{MSO}_{2} \mathrm{Cl}_{2}$ solution:
A. 25 mL
B. 50 mL
C. 100 mL
D. 200 mL

Answer: B

- Watch Video Solution

17. 5 g sample contain only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This sample is dissolved and the volume made up to 250 mL .25 mL of this solution neutralizes 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Calcalute the \% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample .
A. 42.4
B. 57.6
C. 36.2
D. None of these

Answer: B

- Watch Video Solution

18. 20 mL of $0.2 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution is mixed with 35 mL of this 0.1 ML $\mathrm{NaOH}(\mathrm{aq})$ solution and the resultant solution is diluted to 100 mL .40 mL of this diluted solution reacted with 10% impure sample of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ The mass of impure is:
A. 0.15 gram
B. 0.135 gram
C. 0.59 gram
D. None of these

Answer: A

D Watch Video Solution

19. A silver coin weighing 11.34 g was dissolved in nitric acid When sodium chloride was added to the solution all the silver (present as AgNO_{3}) precipitated as silver chloride. The mass of the precipitated silver chloride was 14.35 g . Calculate the percentage of silver in the coin.
A. 48%
B. 95.2%
C. 90%
D. 80\%

Answer: B

- Watch Video Solution

20. Two elements A and B combine chemically to from compounds combining with a fixed mass of A in I, II and III is $1: 3: 5$, if 32 parts by mass of A combine with 84 parts by mass of B in II, then III, 16 parts of A will combine with. \qquad by mass of B.
(a) 14 parts by mass of Y
(b) 42 parts by mass of Y
(c) 70 parts by mass of Y
(d) 84 parts by mass of Y
A. 14 parts by mass of Y
B. 42 parts by mass of Y
C. 70 parts by mass of Y
D. 84 parts by mass of Y

Answer: C

- Watch Video Solution

21. The conversion of oxygen to ozone occurs to the extent of 15% only. The mass of ozone that can be prepared from 67.2 L of oxygen at 1 atm and 273 K will be :
A. 14.4 g
B. 96 g
C. 640 g
D. 64 g

Answer: A

- Watch Video Solution

22. $R H_{2}$ (ion exchange resin) can replace Ca^{2+} ions in hard water as $\mathrm{RH}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{RCa}+2 \mathrm{H}^{+}$. If L of hard water after passing through $R H_{2}$ has $\mathrm{pH}=3$ then hardness in parts per million of Ca^{2+} is:
A. 20
B. 10
C. 40
D. 100
23. $100 \mathrm{~cm}^{3}$ of a solution of an acid (Molar mass $=98$) containing 29.4 g of the acid per litre were completely neutrazed by $90.0 \mathrm{~cm}^{3}$ of aq. NaOH cotaining 20 g of NaOH per $500 \mathrm{~cm}^{3}$. The basicity of the acid is
A. 3
B. 2
C. 1
D. data insufficient

Answer: A

- Watch Video Solution

24. 20 mL of 0.1 M solution of compound $\mathrm{NaCO}_{3} . \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is titrated against $0.05 \mathrm{M} \mathrm{HCL} . \mathrm{X} \mathrm{mL}$ of HCL is used when phenolphthalein is
used as an indicator and y mL of HCL is used when methly orange is the indicator in two separate titrations. Hence $(y-x)$ is:
A. 40 mL
B. 80 mL
C. 120 mL
D. None of these

Answer: B

- Watch Video Solution

25. A sample containing HAsO_{2} (mol. Mass=108) and weighing 3.78 g is dissolved and diluted to 250 mL in a volumetric flask. A 50 mL sample (aliquot) is withdrawn with a pipet and titrated with 25 mL of 0.05 M solution of I_{2}. Calculate the percentage HAsO_{2} in the sample :
A. 0.25
B. 0.2
C. 0.1
D. None of these

Answer: A

- Watch Video Solution

26. A mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is completely reacted with 100 mL of 0.25

M acidified KMnO_{4} solution. The resultant solution was then treated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+}. The Fe^{2+} required 1000 mL of $0.10 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Find out the weight \% $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.
A. 80.85
B. 19.15
C. 50
D. 89.41

- Watch Video Solution

27. To a $10 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution of $B r_{2}$, excess of NaOH is added so that all Br_{2} is disproportionated to Br^{-}and BrO_{3}^{-}. The resulting solution is free from Br^{-}, by extraction and excess of OH^{-}neutralised by acidifying the solution. The resulting solution is suffcient to react with 2 g of impure $\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{M}=128 \mathrm{~g} / \mathrm{mol})$ sample. The \% purity of oxalate sample is :
A. 0.853
B. 0.125
C. 0.9
D. 0.64

Answer: B

- Watch Video Solution

28. 0.10 g of a sample containing CuCO_{3} and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 520 mL . This solution was added into 50 mL of 0.04 M KI solution where copper precipitates as Cul and I^{-}is oxidized into I_{3}^{-}. A 10 mL portion of this solution is taken for analysis, filtered and made up free I_{3}^{-}and then treated with excess of acidic permanganate solution. Liberated iodine required 20 mL of 2.5 mM sodium thiosulphate solution to reach the end point.

Determine mass percentage of CuCO_{3} in the original sample.
A. 7.41
B. 74.1
C. 61.75
D. None of these

Answer: B

- Watch Video Solution

29. 1 mole of equimolar mixture of ferric oxalate and ferrous oxalate requres x mole of KMnO_{4} in acidic medium for complete oxidation. X is:
A. 0.5 mole
B. 0.9 mole
C. 1.2 mole
D. 4.5 mole

Answer: B

- Watch Video Solution

30. An impure sample of sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$ weighing 0.20 g is dissolved in aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$) and solution is titrated at 70° C,requiring 45 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ solution. The end point is overrun, and back titration in carried out with 10 mL of 0.1 M oxalic acid solution. Find the purity of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in sample:
(b) 83.75
(c) 90.25
(d) None of these
A. 75
B. 83.75
C. 90.25
D. None of these

Answer: B

- Watch Video Solution

31. 0.5 gmixture of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4} was treated with excess of KI in acidic medium. lodine liberated required $150 \mathrm{~cm}^{3}$ of 0.10 N solution of thiosulphate solution for titration.

Find trhe percentage of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the mixture :
B. 34.2
C. 65.69
D. 50

Answer: A

D Watch Video Solution

32. A 150 mL of solution of I_{2} is divided into two unequal parts. I part reacts with hypo solution solution in acidic medium. $15 m L o f 0.4 M h y p o$ was consumed. II part was added with $100 \mathrm{mLof0.3MNaOH}$ solution. Residual base required $10 \mathrm{~mL} 0.3 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution for complete neutralization. What was the initial concentration of I_{2} ?
A. 0.08 M
B. 0.1 M
C. 0.2 M
D. None of these

Answer: B

- Watch Video Solution

33. A mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) and some inert impurity weighing 3.185 g was dessolved in water and the solution made up to 1litre. 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of 0.02 M KMnO 4 solution for complete reaction. The mass \% of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the mixture was:
A. 40
B. 50
C. 60
D. 80

Answer: A

34. During developing of an exposed camera film, one step involves in the following reaction

(Quinol)

Which of the following best describes the role of quinol?
(a)It acts as an acid
(b)It acts as reducing agent
(c)It act as oxidant
(d)It acts as a base
A. It acts as an acid
B. It acts as reducing agent
C. It acts as oxidant
D. It acts as a base

Answer: B

35. The concentration of an oxalic acid solution is $x \mathrm{~mol}_{\text {litre }}{ }^{-1} .40 \mathrm{~mL}$ of this solution reacts with 16 mL of 0.05 M acidified KMnO_{4}. What is the $\mathrm{pH} x \mathrm{M}$ oxalic acid solution ? (Assume that oxalic acid dissociates completely.)
A. (a) 1.3
B. (b) 1.699
C. (c) 1
D. (d) 2

Answer: C

- Watch Video Solution

passage-1

1. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is
diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

What is the \% of free SO_{3} in an oleum that is labelled as $104.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 10
B. 20
C. 40
D. None of these

Answer: B

- Watch Video Solution

2. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is
diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as ' $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
9.0 g water is added into oleum sample lablled as " 112% " $\mathrm{H}_{2} \mathrm{SO}_{4}$ then the amount of free SO_{3} remaining in the solution is : (STP=1 atm and 273 K)
A. 14.93 Lat STP
B. 7.46 L at STP
C. 3.73 L at STP
D. 11.2 L at STP

Answer: C

- Watch Video Solution

3. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as ' $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

If excess water is added into a bottle sample labelled as "112 $\mathrm{H}_{2} \mathrm{SO}_{4}$ " and is reacted with 5.3 g NaCO then find the volume of CO_{2} evolved at 1 atm pressure and 300 K temperature after the completion of the reaction :
A. 2.46 L
B. 24.6 L
C. 1.23 L
D. 12.3 L

Answer: C

- Watch Video Solution

4. Oleum is considered as a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is obtained by passing SO_{3} in solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ When 100 g sample of oleum is diluted with desired mass of $\mathrm{H}_{2} \mathrm{O}$ then the total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained after dilution is known is known as \% labelling in oleum.

For example, a oleum bottle labelled as ' $019 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ' means the 109 g total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be formed when 100 g of oleum is diluted by 9 g of $\mathrm{H}_{2} \mathrm{O}$ which combines with all the free SO_{3} present in oleum to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ as $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

1 g of oleum sample is diluted with water. The solution required 54 mL of 0.4 N NaOH for complete neutralization. The \% free SO_{3} in the sample is :
(a) 74
(b) 26
(c) 20
(d)None of these
A. 74
B. 26
C. 20
D. None of these

Answer: B

- Watch Video Solution

passage-2

1. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality, \% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent
$\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is $2 . \therefore$ Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ " solution " $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

What is the molarity of " 11.2 V " $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 1 M
B. 2 M
C. 5.6 M
D. 11.2 M

Answer: A

- Watch Video Solution

2. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality,\% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is 2. \therefore Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

What is thepercentage strength (\%w/V) of "11.2 V " $\mathrm{H}_{2} \mathrm{O}_{2}$
A. 1.7
B. 3.4
C. 34
D. None of these

Answer: B

- Watch Video Solution

3. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality,\% (w / V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm
and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is $2 . \therefore$ Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ "solution" $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

20 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is reacted with 80 mL of $0.05 \mathrm{MKMnO}_{4}$ "in acidic medium then what is the volume strength of" $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 2.8
B. 5.6
C. 11.2
D. None of these

Answer: B

- Watch Video Solution

4. The strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in several ways like molarity, normality,\% (w/V), volume strength, etc. The strength of "10 V" means 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 10 volumes of oxygen at 1 atm and 273 K or 1 litre of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 10 litre of O_{2} at 1 atm and 273 K The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is shown as under :
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can acts as oxidising as well as reducing agent. As oxidizing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into $\mathrm{H}_{2} \mathrm{O}$ and as reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ is converted into O_{2}. For both cases its n-factor is $2 . \therefore$ Normality of $\mathrm{H}_{2} \mathrm{O}_{2}$ " solution " $=2 \times$ molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution
$40 \mathrm{~g} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ (mol.mass=375) sample containing some inert impurities in acidic medium completely reacts with 125 mL of " 33.6 V " of $\mathrm{H}_{2} \mathrm{O}_{2}$. What is the percentage purity of the sample ?
A. 0.2812
B. 0.7031
C. 0.85
D. None of these

Answer: B

- Watch Video Solution

passage-3

1. A water is said to be soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water. Hardness has been classified into two types (i)Temporary hardness
(ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
permanent hardsness is due to presencce of sulphates and chlorides of
Ca, Mg,etc. It is removed by washing soda as
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}(4)+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Permanent hardness also removed by ion exchange resin process as
$2 \mathrm{RH}+\mathrm{Ca}^{2+} \rightarrow \mathrm{R}_{2} \mathrm{Ca}+2 \mathrm{H}^{+}$
$2 \mathrm{ROH}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{R}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-}$
The degree of hardness of water is measured in terms of PPm of CaCO_{3} 100 PPm means 100 g of CaCO_{3} is present in $10^{6} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. If any other water sample which contain 120 PPm of MgSO_{4}, hardness in terms of CaCO_{3} is equal to $=100 \mathrm{PPm}$.

One litre of a sample of hard water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$) cotains 136 mg of CaSO_{4} and 190 mg of MgCl_{2}. What is the total hardness of water in terms of CaCO_{3} ?
A. 100 ppm
B. 200 ppm
C. 300 ppm
D. None of these

Answer: C

D Watch Video Solution

2. A water is said to be soft water if it produces sufficient foam with the soap and water that does not produce foam with soap is known as hard water. Hardness has been classified into two types (i)Temporary hardness
(ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
permanent hardsness is due to presencce of sulphates and chlorides of Ca, Mg,etc. It is removed by washing soda as
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}(4)+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Permanent hardness also removed by ion exchange resin process as
$2 \mathrm{RH}+\mathrm{Ca}^{2+} \rightarrow \mathrm{R}_{2} \mathrm{Ca}+2 \mathrm{H}^{+}$
$2 \mathrm{ROH}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{R}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-}$
The degree of hardness of water is measured in terms of PPm of CaCO_{3} 100 PPm means 100 g of CaCO_{3} is present in $10^{6} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. If any other water sample which contain 120 PPm of MgSO_{4}, hardness in terms of CaCO_{3} is equal to $=100 \mathrm{PPm}$.

What is the mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ required for 10 litre of water remove temporary hardness of 100 PPm due to $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$?
A. 1.62 g
B. 0.74 g
C. 7.4 g
D. None of these

Answer: B

- Watch Video Solution

3. A water is said to be soft water if it produces sufficient foam with the soap and waterthat does not produce foam with soap is known as hard water. Hardness has been classified into two types (i)Temporary hardness
(ii) Permanent hardness.

Temporary hardness is due to presence of calcium and magnesium bicarbonate. It is simply removed by boiling as
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{MgCO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
temporary hardness can also be removed by addition of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
permanent hardsness is due to presencce of sulphates and chlorides of
Ca, Mg,etc. It is removed by washing soda as
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+2 \mathrm{NaCl}$
$\mathrm{CaSO}(4)+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Permanent hardness also removed by ion exchange resin process as
$2 \mathrm{RH}+\mathrm{Ca}^{2+} \rightarrow \mathrm{R}_{2} \mathrm{Ca}+2 \mathrm{H}^{+}$
$2 \mathrm{ROH}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{R}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-}$

The degree of hardness of water is measured in terms of PPm of CaCO_{3} 100 PPm means 100 g of CaCO_(3) is present in $10^{6} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$. If any other water sample which contain 120 PPm of MgSO_{4}, hardness in terms of CaCO_{3} is equal to $=100 \mathrm{PPm}$.

A 200 g sample of hard water is passed through the column of cation exchange resin, in which H^{+}is exchanged by Ca^{2+}. The outlet water of column required 50 mL of 0.1 M NaOH for complete neutralization. What is the hardness of Ca^{2+} ion in PPm?
A. 250 ppm
B. 500 ppm
C. 750 ppm
D. 1000 ppm

Answer: B

- Watch Video Solution

Passage-4

1. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n -factor of acid/base is number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:
(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example 2: $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

n -factor of $\mathrm{Ba}\left(\mathrm{MNO}_{4}\right)_{2}$ in acidic medium is:
A. 2
B. 6
C. 10
D. None of these

Answer: C

- Watch Video Solution

2. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species specis taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:
(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow \mathrm{Mn}^{6+}$

Example 2: $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

Consider the following reaction.
$\mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$
What is the equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{2}$?(mol.Wt.is M)
A. M
B. 'M/2
C. M/3
D. None of these

Answer: A

- Watch Video Solution

3. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n -factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predict the molar ratio of the reactant species
specis taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:

(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow \mathrm{Mn}^{6+}$

Example $2: \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

For the reaction, O (molar mass $=\mathrm{M}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$ what is the eq. mass of $f e_{0.95} \mathrm{O}$?
A. $\frac{M}{0.85}$
B. $\frac{M}{0.95}$
C. $\frac{M}{0.8075}$
D. None of these

Answer: A

- Watch Video Solution

4. "Equivalent mass" =("Molecular mass/Atomic mass")/("n-factor")
n-factor is very important in redox as well as non-redox reactions.With the help of n-factor we can predict the molar ratio of the reactant species specis taking part in reactions. The reciprocal of n-factor's ratio of the reactions is the molar ratio of the reactants.

In general n -factor of acid/base is number of moles of H^{+} / OH^{-} furnished per mole of acid/base n-factor of a reactant is number of moles electrons lost or gained per mole of reactant.

Example 1:

(1)In acidic medium : $\mathrm{KMnO}_{4}(n=5) \rightarrow \mathrm{Mn}^{2+}$
(2) In neutral medium : $\mathrm{KMnO}_{4}(n=3) \rightarrow \mathrm{Mn}^{2+}$
(3) In basic medium : $\mathrm{KMnO}_{4}(n=1) \rightarrow M n^{6+}$

Example $2: \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$
Total number of moles e^{-}lost by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
=1+1 \times 2 \Rightarrow 3
$$

In the reaction, $x \mathrm{VO}+y \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+V_{2} \mathrm{O}_{5}$ what is the value of x and y respectively?
A. 1,1
B. 2,3
C. 3,2
D. None of these

Answer: B

- Watch Video Solution

Passage-5

1. Consider the following series of reactions :
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$

How much Cl_{2} is reqired to prepare 122.5 g of NaClO_{4} by above sequencial reactions?
A. 284 g
B. 213 g
C. 142 g
D. 71 g

Answer: A

- Watch Video Solution

2. Consider the following series of reactions:
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$
How many moles of NaCl will be formed by using 1 mole Cl_{2} and other reagents in excess ?
A. $\frac{1}{12}$ mole
B. 1.67 mole
C. 1.75 mole
D. 0.75 mole

Answer: C

- Watch Video Solution

3. Consider the following series of reactions:
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$
many moles NaClO_{3} obtained after the complection of reaction by
taking 1 mole $C l_{2}$ and other reagents in excess ?
A. $\frac{1}{3}$ mole
B. Zero
C. $\frac{1}{4}$ mole
D. 1 mole

Answer: B

- Watch Video Solution

One oir More Answer is Correct
1.14 g of nitrogen represents :
A. $6.02 \times 10^{23} N_{2}$ molecules
B. 22.4 litre of N_{2} at 1 atm and 273 K
C. 11.2 litre of N_{2} at 1 atm and 273 K
D. 14 g of nitrogen

Answer: C::D

2. 182 g of $\mathrm{V}_{2} \mathrm{O}_{5}$ contains :
A. 5 mole of oxygen atom
B. 2 mole of V atom
C. 1 mole of oxygen atom
D. 2.5 mole of oxygen atom

Answer: A: B

- Watch Video Solution

3. Select the dimensionless quantity (ies) :
A. vapour density
B. molality
C. specific gravity
D. mass fraction

D Watch Video Solution

4. Which of the following concentration terms is/are affected by a change in temperature?
A. Molarity
B. Molality
C. Normality
D. Specific gravity

Answer: A::C::D

D Watch Video Solution

5. Which of the following statements regarding the compound $A_{x} B_{y}$ is /are correct?
A. 1 mole of $A_{x} B_{y}$ contains 1 mole of A and 1 mole B
B. 1 equivalent of $A_{x} B_{y}$ contains 1 equivalent of A and 1 equivalent of B
C. 1 mole of $A_{x} B_{y}$ contains x moles of A and y moles of B
D. equivalent mass of $A_{x} B_{y}=$ equivalent mass of $\mathrm{A}+$ equivalent mass of B

Answer: B::C::D

- Watch Video Solution

6.1 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ will exactly neutralize :
A. 0.5 mole HCL
B. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. 2 mole of $\mathrm{H}_{3} \mathrm{PO}_{2}$

- Watch Video Solution

7. The pair of species having different percentage (mass) of carbon is :
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. HCOOCH_{3} and HCOOH
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Answer: B::D

- Watch Video Solution

8. 30 mL of $\mathrm{CH}_{3} \mathrm{OH}\left(d=0.8 \mathrm{~g} / \mathrm{cm}^{3}\right)$ is mixed with 60 mL of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\left(d=0.92 \mathrm{~g} / \mathrm{cm}^{2}\right)$ at $25^{\circ} \mathrm{C}$ to form a solution of density $0.88 \mathrm{~g} / \mathrm{cm}^{3}$. Select the correct option(s) :
A. Molarity and molality of resulting solution are 6.33 and 13.59 respectively
B. The mole fraction of solute and molality are 0.385 and 13.59 respectively
C. Molarity and \% change in volume are 0.615 and zero respectively
D. Mole fraction of solvent and molality are 0.615 and 13.59 respectively

Answer: B::C

D Watch Video Solution

9. Which of the following is/are incorrect for $17 \mathrm{~g} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ?
A. Volume strengths is 5.6 at 273 K and 1 atm
B. Molarity of solution is 0.5 M
C. 1 mL of thios solution gives $2.8 \mathrm{~mL} O_{2}$ at 273 K and 2 atm
D. The normality of solution is 2 N

Answer: A: B::C

- Watch Video Solution

10. Solutions containing 23 g HCOOH is/are :
A. 46 g of $70 \%\left(\frac{w}{V}\right) \mathrm{HCOOH}\left(d_{\text {solution }}=1.40 \mathrm{~g} / \mathrm{mL}\right)$
B. 50 g of $10 \mathrm{M} \mathrm{HCOOH}\left(d_{\text {solution }}=1 \mathrm{~g} / \mathrm{mL}\right)$
C. $50 g$ of $25 \%\left(\frac{w}{w}\right) \mathrm{HCOOH}$
D. 46 g " of 5 M " $\mathrm{HCOOH}\left(d_{\text {solution }}=1 \mathrm{~g} / \mathrm{mL}\right)$

Answer: A: B

- Watch Video Solution

11. A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled as " 28 volume" has density of 265 g / L. Mark the correct option(s) representing concentration of same solution in other units :
(a) $M_{\mathrm{H}_{2} \mathrm{O}_{2}}=2.5$
(b) $\% \frac{w}{V}=17$
(c)Mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}=0.2$
(d) $m_{\mathrm{H}_{2} \mathrm{O}_{2}}=13.88$
A. $M_{\mathrm{H}_{2} \mathrm{O}_{2}}=2.5$
B. $\% \frac{w}{V}=17$
C. Mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}=0.2$
D. $m_{H_{2} \mathrm{O}_{2}}=13.88$

Answer: A::C::D

- Watch Video Solution

12. A mixture of 100 ml of $\mathrm{CO}, \mathrm{CO}_{2}$ and O_{2} was sparked. When the resulting gaseous mixture was passed through $K O H$ solution, contraction in volume was found to be 80 ml , the composition of initial mixture may be (in the same order)
A. $30 \mathrm{~mL}, 60 \mathrm{~mL}, 10 \mathrm{~mL}$
B. $30 \mathrm{~mL}, 50 \mathrm{~mL}, 20 \mathrm{~mL}$
C. $50 \mathrm{~mL}, 30 \mathrm{~mL}, 20 \mathrm{~mL}$
D. $20 \mathrm{~mL}, 70 \mathrm{~mL}, 10 \mathrm{~mL}$

Answer: A:B

- Watch Video Solution

13. If 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts with 1 mole of $\mathrm{X}(\mathrm{OH})_{2}$ as shown below :
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{X}(\mathrm{OH})_{2} \rightarrow \mathrm{XHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ then
A. the equivalent mass of base is $\frac{\text { mol. } \text { mass }}{2}$
B. the eq. mass of $H_{3} P O_{4}$ is $\frac{98}{3}$
C. the resulting solution requires 1 mole NaOH for complete neutralization
D. minimum 1 mole of $\mathrm{x}(\mathrm{OH})_{2}$ is required for complete neutralization of XHPO_{4}

Answer: A:C

- Watch Video Solution

14. In acidic medium dichromate oin osxidizes stannous ion as:
$x \mathrm{Sn}^{2+}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+z \mathrm{H}^{+} \rightarrow a \mathrm{Sn}^{4+}+b \mathrm{Cr}^{3+} \mathrm{cH}_{2} \mathrm{O}$
A. "the value of $x: y$ is " $1: 3$
B. the value of $x+y+z$ is 18
C. a:b " is " 3:2
D. the value of $z-\mathrm{c}$ is 7

- Watch Video Solution

15. When a equimolar mixture of $C u_{2} \mathrm{~S}$ and CuS is tirated with $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic medium, the final products cintain $\mathrm{Cu}^{2+}, \mathrm{So}_{2}$ and Mn^{2+}. If the mol. Mass of $\mathrm{Cu} u_{2} \mathrm{~S}, \mathrm{CuS}$ and $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ are M_{1}, M_{2} and M_{3} respectively then :
A. eq. mass of $C u_{2} S$ is $\frac{M_{1}}{8}$
B. eq. mass of CuS is $\frac{M_{2}}{6}$
C. eq. mass of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ is $\frac{M_{3}}{5}$
D. $C u_{2}$ and CuS both have same equivalents in mixture

Answer: A::B

D Watch Video Solution

16. Which is/are INCORRECT statement ?
A. Equivalent mass of $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$is 40.5 .
B. Eq. mass of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$may be equal to molar mass or less than molar mass because it depends on the reaction.
C. KMnO_{4} has maximum eq. mass in acidic medium.
D. Oxidation state of H in MgH_{2} is greater than in $\mathrm{H}_{2} \mathrm{O}_{2}$.

Answer: A::C::D

- Watch Video Solution

Assertion-Reason type Questtions

1. STATEMENTS-1 : Specific gravity is dimensionless.

STATEMENTS-2 : Specific gravity is density of a substance measured w.r.t. density of water at $4^{\circ} C$.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

2. STATEMENT-1: Molarity of pure water is 55.55 M at 298 K .

STATEMENT-2 : Molarity is temperature dependent.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

3. STATEMENT-1: Gram molecular mass of O_{2} is 32 .

STATEMENT-2: Relative atomic mass of oxygen is 32 a.m.u.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE

Answer: C

- Watch Video Solution

4. STATEMENT-1: The oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is 6 .

STATEMENT-2: Maximum oxidation state of S is 6 because the maximum oxidation state of an element is equal to number of its valence electrons in it.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

D Watch Video Solution

5. STATEMENT-1: $0.1 \mathrm{MH}_{3} \mathrm{PO}_{3}(\mathrm{aq})$ solution has normality equal to 0.3 N when completely reacted with NaOH .

STATEMENT-2 : $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

6. STATEMENT-1 : MnO_{2} can act as an oxidizing agent as well as reducing agent.

STATEMENT-2 : Oxidation state of MnO_{2} lies between highest and lowest oxidation state.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

7. STATEMENT-1 : Equivalent volume of H_{2} is 11.2 L at 1 atm and 273 K .

STATEMENT-2 : $1 / 2$ mole H_{2} has produced when 1 mole of H^{+}(aq) accepted 1 mole of e^{-}.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

8. STATEMENT-1 : For the reaction in titration
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCL} \rightarrow \mathrm{NaCl}+\mathrm{NaHCO}_{3}$, the suitable indicator is
phennophthalein.
STATEMENT-2 : Phenolphthalein provide its colour in acidic medium.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: C

- Watch Video Solution

9. STATEMENT-1 : $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-}$, the equivalent mass of reactant is 3.74 .

STATEMENT-2 : "Equivalent mass of reactant" = ("Mol.mass")/(61)'.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

10. STATEMENT-1 : In the balanced redox reaction,
$x \mathrm{As}_{2} \mathrm{~S}_{3}+y \mathrm{NO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow a \mathrm{AsO}_{4}^{3-}+b \mathrm{NO}+c \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}$the n -factor of $\mathrm{As}_{2} \mathrm{~S}_{3}$ and NO_{3}^{-}is 28 and 3 respectively.

Statement-2 : Molar ratio is reciprocal of n-factor's ratio so $x: t$ is $3: 28$.
A. If both the statement are TRUE and STATEMENT -2 is the correct
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

11. STATEMENT-1 : In the given reaction,
$\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is
$M / 3$
STATEMENT-2 : $\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic acid.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: D

- Watch Video Solution

12. STATEMENT-1: $\ln \mathrm{Cr} \mathrm{O}_{5}$ oxidation number of Cr is +6 .

STATEMENT-2 : Cr_{5} has butterfly structure in which peroxide peroxide bonds are present.

A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

- Watch Video Solution

13. STATEMENT-1 : $I_{2} \rightarrow I O_{3}^{-}+I^{-}$, is example of a disproportionation reaction.

STATEMENT-2 : Oxidation number of I can vary from -1 to +7 .
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT- 2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

14. Assertion: Fluorine exists only in -1 oxidation state.

Reason: Fluorine has $2 s^{2} 2 p^{5}$ configuration.
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: B

- Watch Video Solution

15. STATEMENT-1 : $\mathrm{H}_{2} \mathrm{SO}_{4}$ can not act as reducing agent.

STATEMENT-2 : Sulphur can not increase its oxidation number beyond +6 .
A. If both the statement are TRUE and STATEMENT -2 is the correct explanation of STATEMENT-1
B. If both the statement are TRUE but STATEMENT-2 is NOT the correct explanation of STATEMENT-1
C. If STATEMENT- is 1 TRUE and STATEMENT-2 is FALSE
D. If STATEMENT-1 is FALSE and STATEMENT-2 is TRUE

Answer: A

1. What volume of a liquid (in L) will contain 10 mole ? If molar mass of liquid is 280 and its density is $1.4 \mathrm{~g} / \mathrm{mL}$.
A. 2 L
B. 4 L
C. 7 L
D. 9 L

Answer: 2

- Watch Video Solution

2. 16 g of $S O_{x}$ gas occupies 5.6 L at 1 atm and 273 K . What will be the value of x ?
3. 200 mL of 1 HCl , is mixed with 300 mL of 6 M and the final solution is diluted to 1000 mL .calculate molar concentration of $\left[\mathrm{H}^{+}\right.$]ion.

- Watch Video Solution

4. $N_{2}(\mathrm{~g})$ reacts with $H_{2}(\mathrm{~g})$ in either of the following ways depending upon supply of $H_{2}(\mathrm{~g})$:
$N_{2}(g)+H_{2}(g) \rightarrow N_{2} H_{2}(l)$
$N_{2}(g)+2 H_{2}(g) \rightarrow N_{2} H_{4}(\mathrm{~g})$
If $5 \mathrm{~L} N_{2}(\mathrm{~g})$ and $3 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ are taken initially (at same temperature and pressure), calculate the contraction in valume after the reaction (in L).

- Watch Video Solution

5. One commercial system removes SO_{2} emission from smoke at $95(\circ) \mathrm{C}$ by the following set of reaction :

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})
$$

$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
How many grams of CaSO_{4} may be produced from 3.78 g of SO_{2} ?

- Watch Video Solution

6. W is the mass of iron (in g) which will be converted into $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by the action of 18 g of steam on it. What is the value of $\mathrm{W} / 7$?
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$

- Watch Video Solution

7. Calculate the total moles of atoms of each element present in 122.5 g of KCLO_{3}

- Watch Video Solution

8. On dissolving 2.0 g of metal in sulphuric acid , 4.51 g of the metal sulphate was formed . The specific heat of the metal is 0.057 cal $g^{-1} .{ }^{\circ} C^{-1}$. What is the valency of metal ?

- Watch Video Solution

9. One gram of a metallic chloride was found to contain 0.835 g of chlorine. Its vapour density is 85.5 .If its moleculars formula is $M_{x} C l_{y}$,then what is value of $(x+y)$?

- Watch Video Solution

10. 0.7875 g of crystalline barium hydroxide is dissolved in water .For the neutralization of this solution 20 mL of $\mathrm{N} / 4 \mathrm{HNO}_{3}$ is required. How many moles of water of crystallization are present in one mole of this base ?
(Given : Atomic mass $\mathrm{Ba}=137, \mathrm{O}=16, \mathrm{~N}=14, \mathrm{H}=1$)
11. 2.0 g of polybasic organic acid (Molecular mass $=600$) required 100 mL of a $\frac{M}{6} \mathrm{NaOH}$ solution for complete neutralisation. Find the basicity of acid.

- Watch Video Solution

12. A mixture contains 1.0 mole each of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}. When half of mixture is titrated with HCl , it required x mole of HCl in presence of phenolphthalein. In another experiment ,half of mixture required y mole of same HCl in presence of methyl orange. Find the value of ($x+y$).

- Watch Video Solution

13. When BrO_{3}^{-}ion reacts with Br^{-}ion in acidic medium, Br_{2} is liberated. Calculate the ratio of molecular mass and equivalent mass of KBrO_{3}
14. A volume of 12.5 mL of 0.05 M SeO 2 reacts with 25 mL of $0.1 \mathrm{M} \mathrm{CrSO} \mathrm{S}_{4}$ which is oxidised to Cr^{3+}. To what oxidation state was the selenium converted by the reaction ?

D Watch Video Solution

15. A 0.276 g impure sample of copper ore is dissolved and $C u^{2+}$ is titrated with KI solution. I_{2} liberated required 40 mL of $0.1 \mathrm{M} N a_{2} S_{2} O_{3}$ solution for titration. What is the \% of impurities in the ore ?

- Watch Video Solution

16. A sample of 28 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq) solution required 10 mL of 0.1 M KMnO_{4} (aq) solution for complete reaction in acidic medium. What is the valume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$?
17. For the redox reaction given, what is the value of $\frac{x}{z}$?
$x \mathrm{NO}_{3}^{-}+y \mathrm{As}_{2} \mathrm{~S}_{3}+z \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{NO}+\mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}$.

- Watch Video Solution

18. On heating 0.220 g of a metallic oxide in presence of hydrogen, 0.045 g of water is formed. If the equivalent mass of the metal is E,then what is the value of $E / 9$

- Watch Video Solution

19. 10 g mixture of $\mathrm{K}_{2} \mathrm{Cr}(2) \mathrm{O}_{7}$ and KMnO_{4} was treated with excess of KI in acidic medium. lodine liberated $100 \mathrm{~cm}^{3}$ of 2.2 N sodium thiosulphate solution for titration. If the mass percent of KMnO_{4} in the mixture Z, then what is the value of $2 Z / 5$?

- Watch Video Solution

20. In an ore, the only oxidizable material is Sn^{2+}. This ore is titrated with a dichromate solution containing 2.5 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 0.5 litre. A 0.40 g sample of the ore required $10.0 \mathrm{~cm}^{3}$ of titrant to reach equivalence point. Calculate the percentage of tin in ore.

- Watch Video Solution

Level-1

1. Calculate number of neutrons present in $12 X 10^{25}$ atoms of oxygen
$\left(8 O^{17}\right):\left(\right.$ Given : $\left.N_{A}=6 \times 10^{23}\right)$
A. 1800
B. 1600
C. $1800 N_{A}$
D. $3200 N_{A}$

Answer: C

2. If mass of one atom is $3.32 \times 10^{-23} \mathrm{~g}$, then calculate number of nucleons (neutrons and protons) present in 2 atoms of the element:
A. 40
B. 20
C. 10
D. $40 N_{4}$

Answer: A

- Watch Video Solution

3. Calculate number of electron present in 9.5 g of PO_{4}^{3-} ?
A. 6
B. $5 N_{A}$
C. $0.1 N_{A}$
D. $4.7 N_{A}$

Answer: B

- Watch Video Solution

4. What is the number of moles of O -atoms in 126 amu of HNO_{3} ?
A. 2
B. $\frac{2}{N_{A}}$
C. $0.1 N_{A}$
D. $\frac{6}{N_{A}}$

Answer: D

- Watch Video Solution

5. What is the charge of 96 amu of s^{2-} ?
(a) 2 C
(b) $3.2 \times 10^{-19} \mathrm{C}$
(c) $9.6 \times 10^{-19} \mathrm{C}$
(d) 6 C
A. 2 C
B. $3.2 \times 10^{-19} C$
C. $9.6 \times 10^{-19} C$
D. 6 C

- Watch Video Solution

6. A sample of sodium has a mass of $46 g$. What is the mass of the same number of calcium atoms as sodium atoms present in given sample ?
B. 20 g
C. 40 g
D. 80 g

Answer: D

- Watch Video Solution

7. The total number of neutrons present in $54 m \mathrm{LH}_{2} \mathrm{O}(l)$ are :
A. $3 N_{A}$
B. $30 N_{A}$
C. $24 N_{A}$
D. None of these

Answer: C

8. Total number of electrons present in $48 g M g^{2+}$ are :
A. $24 N_{A}$
B. $2 N_{A}$
C. $20 N_{A}$
D. None of these

Answer: C

- Watch Video Solution

9. The number of neutrons in 5 g of $\mathrm{D}_{2} \mathrm{O}$ (D is ${ }_{1}^{2} \mathrm{H}$)
A. $0.25 N_{A}$
B. $2.5 N_{A}$
C. $1.1 N_{A}$
D. None of these

D Watch Video Solution

10. Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. What is the mass (in gram) of one molecule ? (Atomic masses : $P t=195, H=14, C l=35.5)$
A. 4.98×10^{23}
B. 1.08×10^{-22}
C. 6.55×10^{-21}
D. 3.85×10^{-22}

Answer: A

11. Aspirin has the formula $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many atoms of oxygen are there in a tablet weighing 360 mg ?
A. 1.204×10^{23}
B. 1.08×10^{22}
C. 1.204×10^{24}
D. 4.81×10^{24}

Answer: D

- Watch Video Solution

12. $20 g$ of ideal gas contains only atoms of S and O occupies $5.6 L$ at 1 atm and 273 K . what is the molecular mass of gas ?
A. 64
B. 80
C. 96
D. None of these

Answer: B

- Watch Video Solution

13. A sample of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, contains 6 moles of hydrogen atom, The no. of moles of oxygen atom are:
A. 1
B. 2
C. 4
D. 6

Answer: B

- Watch Video Solution

14. Total number of moles of oxygen atoms in 3 litre $O_{3}(g)$ at $27^{\circ} \mathrm{C}$ and 8.21 atm are :
A. 3
B. 1
C. 1
D. None of these

Answer: A

- Watch Video Solution

15. 3.011×10^{22} atoms of an element weighs 1.15 gm . The atomic mass of the element is:
A. $10 a \mu$
B. $2.3 a \mu$
C. $35.5 a \mu$
D. $23 a \mu$

Answer: D

- Watch Video Solution

16. One atom of an element x weight $6.643 \times 10^{-232} g$. Number of moles of atom in 20 kg is :
A. 4
B. 40
C. 100
D. 500

Answer: D

17. Mass of one atom of the element A is $3.9854 \times 10^{-23} g$. How many atoms are contained in 1 g of the element A ?
A. 2.509×120^{23}
B. 6.022×10^{23}
C. 12.044×10^{23}
D. None of these

Answer: D

- Watch Video Solution

18. Which of the following contains the largest mass of hydrogen atoms?
A. 5.0 moles $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
B. 1.1 moles $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$
C. $1.5 \operatorname{moles} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
D. $4.0 \mathrm{moles} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Answer: D

- Watch Video Solution

19. Which has minnimum number of oxygen atom ?
A. $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}(l)$
B. 0.1 mole $V_{2} O_{5}(s)$
C. $12 \mathrm{gm} O_{3}(g)$
D. 12.044×10^{22} molecules of CO_{2}

Answer: C

D Watch Video Solution

20. Rearrange the following (I to $I V$) in the order of increasing masses :
(I) 0.5 mole of O_{3}
(II) 0.5 gm atom of oxygen
(III) 3.011×10^{23} molecules of O_{2}
(IV)5.6 litre of CO_{2} at $S T P$
A. $I I<I V<I I I<I$
B. $I I<I<I V<I I I$
C. $I V<I I<I I I<I$
D. $I<I I<I I I<I V$

Answer: A

- Watch Video Solution

21. If the volume of a drop of water is $0.0018 m L$ then the number of water molecules present in two drop of water at room temperature is :
A. 12.046×10^{19}
B. 1.084×10^{18}
C. 4.48×10^{17}
D. 6.023×10^{23}
22. It is known that atom contain protons. Neutrons and electrons. If the mass of neutron is assumed to half of its orginal value where as that of proton is assumed to be twice of its original value then the atomic mass of ${ }_{6}^{14} C$ will be :-
A. same
B. 14.28% less
C. 14.28% more
D. 28.56% less

Answer: C

- Watch Video Solution

23. Common salt obtained from sea-water contains $8.775 \% \mathrm{NaCl}$ by mass. The number of formula units of NaCl present in 25 g of this salt is :
A. 3.367×10^{23} formula units
B. 2.258×10^{22} formula units
C. 3.176×10^{23} formula units
D. 4.73×10^{25} formula units

Answer: B

- Watch Video Solution

24. Calculate the number of hydrogen atoms present in 25.6 g of sucrose $\left(C_{12} H_{22} O_{11}\right)$ which has a molar mass of $342.3 g$?
A. 22×10^{23}
B. 9.91×10^{23}
C. 11×10^{23}
D. 44×10^{23}
25. Caffeine has a molecular mass of 194. If it contains 28.9% by mass of nitrogen, Calculate number of atoms of nitrogen in one molecule of caffeine?
A. 4
B. 6
C. 2
D. 3

Answer: A

Watch Video Solution

26. The density of water is $1 \mathrm{~g} / \mathrm{mL}$. Water is the volume occupied by 1 molecule of water ?
A. $1.44 \times 10^{-23} m L$
B. $1 m L$
C. $18 m L$
D. $2.88 \times 10^{-23} m L$

Answer: D

- Watch Video Solution

27. A $25.0 \mathrm{~mm} \times 40.0 \mathrm{~mm}$ piece of gold foil is 0.25 mm thick. The density of gold is $19.32 \frac{g}{c} m^{3}$. How many gold atoms are in the sheet? (Atomic weight : $A u=197.0$)
A. 7.7×10^{23}
B. 1.5×10^{23}
C. 4.3×10^{21}
D. 1.47×10^{22}

Answer: D

- Watch Video Solution

28. If average molecular mass of air is 29, then assuming N_{2} and O_{2} gases are there, which option are correct regarding composition of are?
(i)
75% by mass of N_{2}
(ii) 75% by moles N_{2}
A. only (i) is are correct
B. Only (ii) is correct
C. both (ii) and (iii) are correct
D. both (i) and (ii) are correct

Answer: C

29. Density of dry air containing ony N_{2} and O_{2} is $1.15 \frac{g}{L}$ at 740 mm of Hg and 300 K . What is \% composition of N_{2} by mass in the air?
A. 78%
B. 85.5%
C. 70.02%
D. 62.75%

Answer: C

- Watch Video Solution

30. A gaseous mixture of H_{2} and CO_{2} gas contains 66 mass $\%$ of CO_{2}. What is the vapour density of the mixture?
A. 6.1
B. 5.4
C. 2.7
D. 10.8

Answer: C

- Watch Video Solution

31. A mixture contains $N_{2} O_{4}$ and NO_{2} in the ratio 2:1 by volume.

Calculate the vapour density of the mixture?
A. 0.1
B. 0.2
C. 0.5
D. 38.33

Answer: D

- Watch Video Solution

32. Density of ideal gas at 2 atm and 600 K is $2 \mathrm{~g} / \mathrm{L}$. Calculate relative density of this with respect to $\mathrm{Ne}(\mathrm{g})$ under similar conditions : (given :
$\left.R=\frac{1}{12} \operatorname{atm} \frac{L}{m} o l . K\right)$
A. 2.5
B. 2
C. 3
D. 5

Answer: A

- Watch Video Solution

33. Average atomic mass of magnesium is 24.31 amu . This magnesium is composed of 79 mole \% of . ${ }^{24} \mathrm{Mg}$ and remaining $21 \mathrm{~mol} \%$ of.${ }^{25} \mathrm{Mg}$ and. ${ }^{26} \mathrm{Mg}$. Calculate mole \% of.${ }^{26} \mathrm{Mg}$.
A. 10
B. 11
C. 15
D. 16

Answer: A

- Watch Video Solution

34. Indium (atomic mass $=114.82$) has two naturally occurring isotopes, the predominant one from has isotopic mass 114.9041 and abundance of 95.72%. Which of the following isotopic mass is the most likely for the other isotope?
A. 112.94
B. 115.9
C. 113.9
D. 114.9

- Watch Video Solution

35. Calculate density of a gaseous mixture which consist of 3.01×10^{24} molecules of N_{2} and $32 g$ of O_{2} gas at 3 atm pressure and 860 K temperature (Given : $R=\frac{1}{12} \operatorname{atm} L^{-1} . K^{-1}$
A. $0.6 \mathrm{~g} / \mathrm{L}$
B. $1.2 g / L$
C. $0.3 g / L$
D. $12 g / L$

Answer: B

36. A mixture of O_{2} and gas Y (mol. $w t .80$) in the mole ratio $a: b$ has a mean molecular weight 40 . What would be mean molecular weight, if the gases are mixed in the ratio $b: a$ under identical conditions ? (gases are)
A. 40
B. 48
C. 62
D. 72

Answer: D

- Watch Video Solution

37. If water sample are taken from sea, rivers or lake, they will be found to contain hydrogen and oxygen in the approximate ratio of $1: 8$. This indicates the law of:
A. law of conseravtion of mass
B. Definite proporation
C. Reciprocal propoertions
D. None of these

Answer: B

D Watch Video Solution

38. Hydrogen and oxygen combine to from $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.2% hydrogen respectively. The data illustrates :
A. law of conseravtion of mass
B. law of constant proportion
C. law of reciparocal proporation
D. law of multiple proporetion

Answer: 4

39. Which one the following combinations illustrate law of reciprocal proportions?
A. $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$
B. $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$
C. $\mathrm{CS}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$
D. $\mathrm{PH}_{3}, \mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$

Answer: 3

- Watch Video Solution

40. Carbon and oxygen combine to form two oxides, carbon monoxide and carbon dioxide in which the ratio of the weight of carbon and oxygen is respectively $12: 16$ and $12: 32$. These figures illustrate the :
(a)law of multiple proportions
(b)law of reciprocal proportions
(c)law of conservation of mass
(d)law of constant proportions
A. law of multiple proportions
B. law of reciprocal proportions
C. law of conservation of mass
D. law of constant proportains

Answer: A

- Watch Video Solution

41. A sample of calcuium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $C a=40 \%, C=12 \%, O=48 \%$ If the law of constant proportions is true. Then the weight of calcium in $4 g$ of a sample of calcium carbonate obtained from another source will be
A. 0.016 g
B. 0.16 g
C. $1.6 g$
D. $16 g$

Answer: C

- Watch Video Solution

42. The law of multiple proportion is illustrated by the two compounds :
A. Sodium chlordie and sodium bromide
B. Ordinary water and heavy water
C. Caustic soda caustic potash
D. Sulphur dioxide and sulphur trixoide

Answer: 4

43. All the substance listed below are fertilizers that contribute nitrogen to the soil. Which of these is the richest source of nitrogen on a mass percentage basis ?
A. Urea , $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
B. Ammonium nitrate , $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. Nitric oxide , NO
D. Ammonia , NH_{3}

Answer: D

- Watch Video Solution

44. One mole of element X has 0.444 times the mass of one mole of element Y . One atom of element X has $2.96 \times$ the mass of one atom of . ${ }^{12} C$. What is the atomic mass of Y ?
A. 80
B. 15.77
C. 46.67
D. 40

Answer: A

- Watch Video Solution

45. A given sample of pure compound contains $9.81 g$ of $\mathrm{Zn}, 1.8 \times 10^{23}$ atoms of chromium, and 0.60 mol of oxygen atoms. What is the simplest formula?
A. $\mathrm{ZnCr}_{2} \mathrm{O}_{7}$
B. $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$
C. ZnCrO_{4}
D. $\mathrm{ZnCrO} \mathrm{O}_{6}$

Answer: B

46. The formula of an acid is HXO_{2}. The mass of 0.0242 g of the acid is
1.657 g . What is the atomic mass of X ?
A. 35.5
B. 28.1
C. 128
D. 19

Answer: A

Watch Video Solution

47. What is the emprical formula of vanadium oxide , if $2.74 g$ of the metal oxide contains 1.53 g of metal ?
A. $V_{2} O_{3}$
B. VO
C. $V_{2} O_{5}$
D. $V_{2} O_{7}$

Answer: C

- Watch Video Solution

48. Determine the empirical fromula of kelvar, used in making bullet proof vests, is $70.6 \% C, 4.2 \% H, 11.8 \% N$ and $13.4 \% O$:
A. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
C. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
D. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}$

Answer: D

49. The hydrated salt $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ undergoes 63% loss in mass on heating and becomes anhydrous. The value x is:
A. 10
B. 12
C. 8
D. 18

Answer: A

- Watch Video Solution

50. A 6.85 g sample of the hydrated $\mathrm{Sr}(\mathrm{OH})_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ is dried in an oven to given $3.13 g$ of anhydrous $\operatorname{sr}(\mathrm{OH})_{2}$. What is the value of x ? (Atomic masses : $S r=87.60 . O=16.0, H=1.0$)
A. 8
B. 12
C. 10
D. 6

Answer: A

- Watch Video Solution

51. What percentage of oxygen is present in the compound $\mathrm{CACO}_{3.3} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A. 23.3%
B. 45.36%
C. 41.94%
D. 17.08%
52. Deildrin, an insecticide, contains $\mathrm{C}, \mathrm{H}, \mathrm{Cl}$ and O . Combustion of 29.72 mg of dieldrin gave $41.21 \mathrm{mg} \mathrm{CO}_{2}$ and 5.63 mg of $\mathrm{H}_{2} \mathrm{O}$. In a separate analysis 25.31 mg of dieldein was converted into 57.13 mg Ag Cl . What is the empirical formula of diedrin ?
A. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{O}$
B. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClO}$
C. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}$
D. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{O}_{2}$

Answer: C

- Watch Video Solution

53. A gaseous compound is composed of 85.7% by mass carbon and 14.3% by mass hydrogen. Its density is $2.28 \mathrm{~g} /$ litre at 300 K and 1.0 atm pressure. Determine the molecular formula of the compound.
A. $C_{2} H_{2}$
B. $C_{2} H_{4}$
C. $\mathrm{C}_{4} \mathrm{H}_{8}$
D. $C_{4} H_{10}$

Answer: C

- Watch Video Solution

54. Complete combustion of 0.858 g of compound X gives 2.63 g of CO_{2} and 1.28 g of $\mathrm{H}_{2} \mathrm{O}$. The lowest molecular mass X can have
A. 43 g
B. 86 g
C. 129 g
D. 172 g
55. The sulphate of a metal M contains 9.87% of M, This sulphate is isomorphous with $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. What is the atomic weight of M ?
A. 40.3
B. 36.3
C. 24.3
D. 11.3

Answer: C

- Watch Video Solution

56. In an organic compound of molar mass $108 \mathrm{gmmol}^{-1} \mathrm{C}, \mathrm{H}$ and N atoms are presents in $9: 1: 3.5$ by mass. Molecular can be

$$
\text { A. } C_{6} H_{8} N_{2}
$$

B. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}$
C. $C_{5} H_{6} N_{3}$
D. $C_{4} H_{18} N_{3}$

Answer: A

- Watch Video Solution

57. On analysis, a certain compound was found to contain 254 g of iodine (at.mass 127) and 80 g oxygen (at.mass 16). What is the formula of the compound?
A. IO
B. $\mathrm{I}_{2} \mathrm{O}$
C. $I_{5} O_{3}$
D. $I_{2} O_{5}$

Answer: D

58. An element A is teravalent and another element B is divalent. The formula of the compound formed from these elements will be :
A. $A_{2} B$
B. $A B$
C. $A B_{2}$
D. $A_{2} B_{3}$

Answer: C

- Watch Video Solution

59. A compound used in making nylon, contains 43.8% oxygen. There are four oxygen atoms per molecule. What is the molecular mass of compound?
A. 36
B. 116
C. 292
D. 146

Answer: D

- Watch Video Solution

60. Suppose two elements X and Y combine to form two compounds $X Y_{2}$ and $X_{2} Y_{3}$ when 0.05 mole of $X Y_{2}$ weight $5 g$ while 3.011×10^{23} molecules of $X_{2} Y_{3}$ weight 85 g . The atomic masses of X and Y are respectively.
A. 23,30
B. 30,40
C. 40,30
D. 80,60

Answer: C

- Watch Video Solution

61. $44 g$ of a sample $\mathrm{C}, \mathrm{H} \& \mathrm{O}$ on complete combustion given $88 \mathrm{gCO}_{2}$ and 36 g of $\mathrm{H}_{2} \mathrm{O}$. The molecular formula of the compound may be :
A. $\mathrm{C}_{4} \mathrm{H}_{9}$
B. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

Answer: C

62. 40 miligram diatomic volatile substance $\left(X_{2}\right)$ is converted to vapour that displaced $4.92 m L$ of air at 1atm and 300k. Atomic mass of element X is nearly:
A. 400
B. 240
C. 200
D. 100

Answer: D

- Watch Video Solution

63. Two elemets X (atomic weight $=75$) and Y (atomic weight $=16$) combine to give a compound having 75.8% X.' The formula of the compound is
A. $X Y$
B. $X_{2} Y$
C. $X_{2} Y_{2}$
D. $X_{2} Y_{3}$

Answer: D

- Watch Video Solution

64. A sample of phosphorus that weighs $12.4 g$ exerts a pressure 8 atm in a 0.821 litre closed vesel at $527^{\circ} \mathrm{C}$. The molecular formula of the phosphorus vapour is:
A. P_{2}
B. P_{4}
C. P_{6}
D. P_{8}
65. Manganese forms non-stoichiometric oxides having the gereral formula formula $M n O_{x}$. The value of x for the compound that analyzed 64% by mass mn:
A. 1.16
B. 1.83
C. 2
D. 1.93

Answer: D

- Watch Video Solution

66. 1.44 gram if titanium $(T i)$ reacted with excess of O_{2} and produce x gram of non - stoichiometric compound $T i_{1.44} O$. The value of x is :
A. 2
B. 1.77
C. 1.44
D. None of these

Answer: C

- Watch Video Solution

67. Which statement is false for the balanced equation givem below ?
$C S_{2}+3 O_{2} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{CO}_{2}$
A. One mole of $C S_{2}$ will produce one mole of CO_{2}
B. The reaction of 16 g of oxygen produces $7.33 \mathrm{gof} \mathrm{CO}_{2}$
C. The raction of one mole of O_{2} will produce $2 / 3$ "mole of" SO_{2}
D. Six molecules of oxygen requires theree molecular of $C S_{2}$

Answer: D

68. Which of the following setups is correct to calculate the mass (in g) of KCIO_{3} produced from the reacting of 0.150 moles of $C I_{2}$?
A.
0.150 moles $\mathrm{Cl}_{2} \times 1$ mole $\quad \mathrm{KClO}_{3} / 3$ moles $\mathrm{Cl}_{2} \times 122.5 \mathrm{~g} / 1$
B.
0.150 moles $\mathrm{Cl}_{2} \times 1$ mole $\mathrm{KClO}_{3} / 3$ moles $\mathrm{Cl}_{2} \times 1 \mathrm{~mole}$
C.
0.150 moles $\mathrm{Cl}_{2} \times 3$ moles $\mathrm{Cl}_{2} / 1$ mole $\mathrm{KCLO}_{3} \times 122.5 \mathrm{~g} / 1 \mathrm{~m}$
D.
0.150 moles $\mathrm{Cl}_{2} \times 3$ moles $\mathrm{Cl}_{2} / 1$ mole $\mathrm{KCLO}_{3} \times 1$ mole K

Answer: A

69. 2.0 g of a sample contains mixture of SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$. On very strong heating, it leaves a residue weighing 1.96 g . The reaction responsible for loss of mass is given below.
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$, (unbalance equation). What is the percentage by mass of SiO_{2} in original sample?
A. 10%
B. 20%
C. 40%
D. 60%

Answer: C

- Watch Video Solution

70. What volume of air at 1 atm and 273 K containing 21% of oxygen by volume is required to completely burn sulphur $\left(S_{8}\right)$ present in 200 g of
sample, which contains 20% inert material which does not burn. Sulphur burns according to the reaction $\frac{1}{8} S_{8}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
A. 23.52 litre
B. 320 litre
C. 112 litre
D. 533.33 litre

Answer: D

- Watch Video Solution

71. For the reaction, $2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)+3 \mathrm{Na}_{2} \mathrm{CO} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NaNO}_{3}$ initially 2.5 mole of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and 3.6 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are taken. If 6.3 mole of NaNO_{3} is obtained then \% yield of given reaction is:
A. 50
B. 84
C. 87.5
D. 100

Answer: C

- Watch Video Solution

72. How many of P_{4} can be producedby reaction of 0.10 moles $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}, 0.36$ moles SiO_{2} and 0.90 moles C according to the following reaction
$4 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+18 \mathrm{SiO}_{2}+30 \mathrm{C} \rightarrow 3 \mathrm{P}_{4}+2 \mathrm{CaF}_{2}+18 \mathrm{CaSiO}_{3}+30 \mathrm{CO}$
A. 0.060
B. 0.030
C. 0.045
D. 0.075

Answer: A

73. Some older emergency oxygen masks contains potassium superoxide KO_{2} which reacts with CO_{2} and water present in exhaled air to produce oxygen according to the given equation. If a person exhales 0.667 g of CO_{2} per minute, how many gram of KO_{2} are consumed in 5.0 minutes ?
A. 10.7
B. 0.0757
C. 1.07
D. 5.38

Answer: D

- Watch Video Solution

74. The mass of $N_{2} F_{4}$ produced by the reaction of 2.0 g of NH_{3} and 8.0 g of F_{2} is 3.56 g . What is the per cent yield?
A. 79
B. 71.2
C. 84.6
D. None of these

- Watch Video Solution

75. Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCO}_{3}\right)$.
A. 104.4 kg
B. 105.4 kg
C. 212.8 kg
D. 106.4 kg

Answer: D

76. Phospheric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ perpared in two step process .
(1) $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$
(2) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$

Well allow 62 g of phosphrous to react with exces oxygen which from $P_{4} O_{10}$ in 85% yield. In the sep (2) reaction 90% yield of $H_{3} P O_{4}$ is obtained. Mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ produced is :
A. $37.485 g$
B. 149. $949 g$
C. $125.47 g$
D. $564.48 g$

Answer: B

- Watch Video Solution

77.9 moles of " D " and 14 moles of E are allowed to react in a closed vessel according to given reactions. Calculate number of moles of B formed in the end of reaction, if 4 moles of G are present in reaction vessel.
(percentage yield of reaction is mentioned in the reaction) Step -1 $3 D+4 E 80 \% \rightarrow 5 C+A$ Step-2 $3 C+5 G 50 \% \rightarrow 6 B+F$
A. 2.4
B. 30
C. 4.8
D. 1

Answer: A

- Watch Video Solution

78. The chief are of Zn is the sulphide, ZnS . The Ore is concentrated by froth floation process and then heated in air to convert Zns to Zno .
$2 \mathrm{ZnS}+30_{2} \xrightarrow{80 \%} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
$\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{100 \%} \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
$2 \mathrm{ZnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{80 \%} 2 \mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}_{2}$
The number of moles of ZnS required for producing 2 moles of Zn will be:
A. 3.125
B. 2
C. 2.125
D. 4

Answer: A

- Watch Video Solution

79. 0.8 moles of a mixture of CO and CO_{2} requieds exactly 40 gram of NaOH in solution for complete conversion of all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many more of NaOH would for require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$ if the mixture (0.8 mole) is completely oxidised to CO_{2} ?
A. 0.2
B. 0.6
C. 1
D. 1.5

- Watch Video Solution

80. Silver oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ decomposes at temperature $300^{\circ} \mathrm{C}$ yielding matellic silver and oxygen gas. A 1.60 g sample of impure silver oxide yields $0.104 g$ of oxygen gas. What is the per cent by mass of the silver oxide in the sample?
A. 5.9
B. 47.125
C. 94.25
D. 88.2

Answer: C

81. 342 g of 20% by mass of $\mathrm{ba}(\mathrm{OH})_{2}$ solution (sq.gr.0.57) is reacted with 1200 mL of $2 \mathrm{MHNO}_{3}$. If the final density of solution is same as pure water then molarity of the ion in resulting solution which decides the nature of the above solution is :
A. 0.25
B. $0.5 M$
C. $0.888 M$
D. None of these

Answer: C

- Watch Video Solution

82. 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution having molarity 1 M and density $1.5 \mathrm{~g} / \mathrm{mL}$ is mixed with 400 mL of water. Calculate final molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, if final density is $1.25 g / m L$?
A. $4.4 M$
B. 0.145 M
C. $0.52 M$
D. $0.227 M$

Answer: D

- Watch Video Solution

83. What volume of $H C I$ solution of density $1.2 \frac{g}{c} m^{3}$ and containing 36.5% by mass $H C I$, must be allowed to react wtih zinc $(Z n)$ in order to liberate $4.0 g$ of hydrogen ?
A. $333.33 m L$
B. 500 mL
C. $614.66 m L$
D. None of these

(D) Watch Video Solution

84. An ideal gaseous mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies 28 litre at $1 \mathrm{~atm} 0^{\circ} \mathrm{C}$. The mixture reacts completely with $128 \mathrm{gmO}_{2}$ to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Mole of fraction at $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixtture is-
A. 0.6
B. 0.4
C. 0.5
D. 0.8

Answer: B

- Watch Video Solution

85. Wood's metal contains 50.0% bismuth, 25.0% lead, 12.5% tin and 12.5% cadmium by mass. What is the mole fraction of tin ?(\ (Atomic
mass : $B i=209, P b=207, S n=119, C d=112)$
A. 0.202
B. 0.158
C. 0.176
D. 0.221

Answer: C

- Watch Video Solution

86. The density of a 56.0% by mass aqueous solution of 1 -propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ is $0.8975 \frac{g}{c} m^{3}$. What is the mole fraction of the 1 propanol ?
A. 0.292
B. 0227
C. 0.241
D. 0.276

Answer: D

- Watch Video Solution

87. What is the molartiy of SO_{4}^{2-} ion in aqueous solution that contain $34.2 p \pm$ of $A I_{2}\left(\mathrm{SO}_{4}\right)_{3}$? (Assume complete dissociation and density of solution $1 \frac{g}{m} L$)
A. $3 \times 10^{-4} M$
B. 2×10^{-4}
C. $10^{-4} \mathrm{M}$
D. None of these

Answer: A

- Watch Video Solution

88. The relation between molarity (M) and molality (m) is given by : ($\mathrm{p}=\mathrm{density}$ of solution (g / mL), $M_{1}=$ molecular mass of solute)
A. $m=\frac{1000 M}{1000 \rho-M_{1}}$
B. $m=\frac{1000 \rho M}{1000 \rho-M M_{1}}$
C. $m=\frac{1000 M M}{1000 \rho-M M_{1}}$
D. $m=\frac{1000 M}{1000 \rho-M M_{1}}$

Answer: D

- Watch Video Solution

89. Molarity and molality of a solution of an liquid (mol.mass $=50$) in aqueous solution is 9 and 10 respectively. what is the density of solution?
A. $1 g / \mathrm{cc}$
B. $0.95 \mathrm{~g} / \mathrm{cc}$
C. $1.05 \mathrm{~g} / \mathrm{cc}$
D. $1.35 \mathrm{~g} / \mathrm{cc}$

Answer: D

- Watch Video Solution

90. An aqueous solution of ethanol has density $1.025 \mathrm{~g} / \mathrm{mL}$ and it is 2 M .

What is the molality of this solution?
A. 1.79
B. 2.143
C. 1.951
D. None of these

Answer: B

91. 0.2 mole of $H C I$ and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the CI^{-}ions is:
A. $0.06 M$
B. 0.09 M
C. $1.2 M$
D. 0.80 M

Answer: C

- Watch Video Solution

92. Calculate the mass of anhydrous $H C I$ in 10 mL of concentrated $H C I$ (density $=1.2 \frac{g}{m} L$) solution having $37 \% H C I$ by mass.
A. $4.44 g$
B. 4.44 mg
C. 4.44×10^{-3}
D. $0.444 \mu g$

Answer: A

- Watch Video Solution

93. Calculate the molality of 1 L solution of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{w}{V}\right)$ given that the density of the solution is $1.80 \mathrm{gmL}^{-1}$.
A. 8.16
B. 8.6
C. 1.02
D. 10.8
94. Fluoxymesterone , $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FO}_{3}$, is an anabolic steroid. A 500 ml solution is prepared by dissolving 10.0 mg of the steroid in water. 10.0 mL portion of this solution is diluted to final volume of 1.00 L . What is the resulting molarity?
A. 1.19×10^{-10}
B. 1.19×10^{-7}
C. 5.95×10^{-8}
D. 2.38×10^{-11}

Answer: C

- Watch Video Solution

95. The 25 mL of a 0.15 M solution of lead nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ react with all of the aluminium sulphate, $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$, present in 20 mL of a solution. What is the molar concentration of the $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
A. $6.25 \times 10^{-2} M$
B. $2.421 \times 10^{-2} M$
C. $0.1875 M$
D. None of these

Answer: A

- Watch Video Solution

96. Concentrated HNO_{3} is $63 \% \mathrm{HNO}_{3}$ by mass and has a density of
$1.4 g / m L$. How many millilitres of this solution are required to prepare 250 mL of a $1.20 \mathrm{MHNO}_{3}$ solution ?
A. 18.0
B. 21.42
C. 20.0
D. 14.21

- Watch Video Solution

97. $50 \mathrm{mLof} 20.8 \%$ (w / V) Ba CI_2 and (aq) and $100 \mathrm{mLof9.8} \mathrm{\% mL(w/V)}$ $\mathrm{H}_{-} 2 \mathrm{SO}_{-} 4(\mathrm{aq})$ solutionsaremixed. Molarityof Cl^{\wedge} - iron in the resulting solution is : (At mass of $B a=137$)
A. 0.333 M
B. 0.666 M
C. 0.1 M
D. 1.33M

Answer: B

- Watch Video Solution

98. What volume of $0.10 \mathrm{M}_{2} \mathrm{SO}_{4}$ must be added to 50 mL of a 0.10 NaOH solution to make a solution in which molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.050M?
A. 400 mL
B. 200 mL
C. 100 mL
D. none of these

Answer: C

- Watch Video Solution

99. 1 MHCl and 2 MHCl are mixed in volume ratio 4:1. What is the final molarity of HCl solution?
A. 1.5
B. 1
C. 1.2
D. 1.8

Answer: C

100. Three solutions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of HCl are mixed to produce 100 mL of 0.1 M solution . The molarities of X, Y and Z are $0.07 \mathrm{M}, 0.12 \mathrm{M}$ and 0.15 M respectively. What respective volumes of X, Y and Z should be mixed?
A. $50 m L, 25 m L, 25 m L$
B. $20 m L, 60 m L, 20 m L$
C. $40 \mathrm{~mL}, 30 \mathrm{~mL}, 30 \mathrm{~mL}$
D. $55 m L, 20 m L, 25 m L$

Answer: D

- Watch Video Solution

101. A bottle of an aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled as ' 28 V ' $\mathrm{H}_{2} \mathrm{O}_{2}$ and the density of the solution $(\mathrm{ing} / m L)$ is 1.25 . Choose the correct option.
A. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is2
B. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is5
C. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 2.15
D. none of these

Answer: C

- Watch Video Solution

102. The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The mass of precipitate of silver chloride is found to be 14 g . The $\%$ purity of NaCl solution would be:
A. 0.95
B. 0.85
C. 0.75
D. 0.65

D Watch Video Solution

103. $\left.\mathrm{Al}(\mathrm{SO})_{4}\right)_{3}$ solution of 1 molal concentration is present in 1 litre solution of density $2.684 \mathrm{~g} / \mathrm{cc}$. How many moles BaSO_{4} would be precipated on adding excess BaCl_{2} in it?
A. 2 moles
B. 3 moles
C. 6 moles
D. 12 moles

Answer: C

104. A certain public water supply contains 0.10ppb (part per billion) of chloroform $\left(\mathrm{CHCl}_{3}\right)$. How many molecules of CHCl_{3} would be obtained in 0.478 mL drop of this water? (Assuming $\mathrm{d}=1 \mathrm{~g} / / \mathrm{Ml}$)
A. $4 \times 10^{-13} \times N_{A}$
B. $10^{-3} \times N_{A}$
C. $4 \times 10^{-10} \times N_{A}$
D. none of these

Answer: A

- Watch Video Solution

105. Decreasing order (first having highest and then other following it) of mass of pure NaOH in each of the aqueous solution
(P) 50 gm of $40 \%(w / w) \mathrm{NaOH}$
(Q) 50 gm of $50 \%(w / v) \mathrm{NaOH}\left[d_{\text {soln. }}=1.2 \mathrm{gm} / \mathrm{ml}\right]$
(R) 50 gm of $20 \mathrm{M} \mathrm{NaOH}\left[d_{\text {soln }}\right.$. $\left.=1 \mathrm{gm} / \mathrm{ml}\right]$
A. I,ii,iii
B. iii,ii,i
C. ii,iii,i
D. ii,I,iii

Answer: B

- Watch Video Solution

106. What is the molar mass if diacidic organic Lewis base (B), if 12 g of its chloroplatinate salt ($\mathrm{BH}_{2} \mathrm{PtCl}_{6}$) on ignition produced 5 g residue of Pt ?
A. 52
B. 58
C. 88
D. none of these

Answer: B

107. On strong heating, one gram of the silver salt of an organic dibasic acid yields 0.5934 g of silver. If the mass percentage of carbon in it 8 times the mass percentage of hydrogen and one-half the mass percentage of oxygen, determine the molecular formula of the acid.
A. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
B. $C_{4} H_{6} O_{6}$
C. $C_{4} H_{6} O_{2}$
D. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

108. $0.607 g$ of silver salt of tribasic organic acid was quantitatively reduced to 0.37 g of pure Ag . What is the mol. Wt. of the acid ?
A. 207
B. 210
C. 531
D. 324

Answer: B

- Watch Video Solution

109. A sample of peanut oil weighing 2 g is added to 25 mL of 0.40 MKOH . After saponification is complete, 8.5 mL of $0.28 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is needed to nuetralize excess of $K O H$. The saponification number of peanut oil is : (saponification number is defined as the milligrams of KOH consumed by 1 g of oil)
A. 146.72
B. 223.44
C. 98.44
D. 98.9

Answer: A

- Watch Video Solution

110. 20 mL of a mixture of CO and H_{2} were mixed excess of O_{2} and exploded \& cooled. There was a volume contraction of 23 mL . All volume measurements corresponds to room temperature $\left(27^{\circ} C\right)$ and one atmospheric pressure. Determine the volume ratio $\left(V_{1}: V_{2}\right.$ of $C o$ anf H_{2} in the original mixture .
A. $6.5: 13.5$
B. $5: 15$
C. 2:3
D. $7: 13$

Answer: B

111. In the reaction $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{Al}^{3+}+6 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2}$
A. $6 \mathrm{LHCl}(a q)$ is consumed for every $3 L H_{2}(g)$ produced
B. 33.6L $H_{2}(g)$ is produced regardless of temperature and pressure for every mole Al that reacts
C.
$67.2 \mathrm{LH}_{2} \mathrm{at} 1 \mathrm{~atm}$ and 273 Kis produced for every mole Al that reacts
D. $11.2 \mathrm{~L} H_{2}(g)$ at 1 atm and 273 K is produced for every mole $\mathrm{HCl}(\mathrm{aq})$ consumed

Answer: D

- Watch Video Solution

112. A gaseous mixture of propane and butane of volume 3 litre on complete combustion produces
11.0 litre CO_{2} under standard conditions of temperature and pressure. The ration of volume of butane to propane is:
A. 1:2
B. 2: 1
C. 3:2
D. 3:1

Answer: B

- Watch Video Solution

113. Phosphorous has the oxidation state of +1 in:
A. (a)Orthophosphoric acid
B. (b)Phosphorous acid
C. (C)Hypophosphoric acid
D. (d)Metaphosphoric acid

Answer: C

D Watch Video Solution

114. Oxidation numbers of two Cl atoms in belaching powder, CaOCl_{2}, are
A. $+1 o n l y$
B. - 1only
C. +1 and -1
D. none of these

Answer: C

- Watch Video Solution

115. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ respectively are:
A. $0,+1,-2$ and 6
B. $+2,0,+2$ and 6
C. $0,+1,+2$ and 6
D. $-2,0,+2$ and 6

Answer: A

- Watch Video Solution

116. Fe show on oxidation state of +1 in:
A. $\mathrm{Fe}(\mathrm{CO})_{5}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$
C. $F e_{4}\left[F e(C N)_{6}\right]_{3}$
D. $\mathrm{Fe}_{4} \mathrm{Cl}_{4}^{-}$

Answer: B

117. When SO_{2} is passed inoto an acidified potassium dichromate soltion, the oxidation number of sulphur and chromium in the final products respectively are:
A. $+6,+6$
B. $+6,+3$
C. $+0,+3$
D. $+2,+3$

Answer: B

- Watch Video Solution

118. The oxidation number of nitrogen atoms in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are:
A. $+3,+3$
B. $+3,-3$
C. $-3,-5$
D. $-5,+3$

Answer: C

- Watch Video Solution

119. The oxidation state of S -atoms in Caro's and Marshall's acids are:
A. $+6,+6$
B. $+6,+4$
C. $+6,-6$
D. $+4,+6$

Answer: A

120. In which fo the following has the oxidation number of oxygen been arragned in increasing order ?
A. $O F_{2}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
B. $B a O_{2}<K O_{2}<O_{3}<O F_{2}$
C. $B a O_{2}<K O_{2}<O F_{2}<K O_{2}$
D. $\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{2}$

Answer: B

- Watch Video Solution

121. The oxidation number of oxygen in $\mathrm{KO}_{3}, \mathrm{Na}_{2} \mathrm{O}_{2}$ respectively are:
A. 3,2
B. 1,0
C. 0,1
D. $-0.33,-1$

Answer: D

- Watch Video Solution

122. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. -1
B. +1
C. +2
D. +3

Answer: B

- Watch Video Solution

123. If it is known that in $F e_{0.96} O$, Fe is present in +2 and +3 oxidation state, what is the mole fraction of $F e^{2+}$ in the compound?
A. $\frac{12}{25}$
B. $\frac{25}{12}$
C. $\frac{1}{12}$
D. $\frac{11}{12}$

Answer: D

- Watch Video Solution

124. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: B

125.2 mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 16 mole of electron is being converted to a new compound X. Assuming that all of the N appears in the new compound.

What is the oxidation state of ' N ' in X ?
A. -1
B. -2
C. +2
D. +4

Answer: C

- Watch Video Solution

126. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$, the change in the oxidation state of chromium is
A. 0
B. 6
C. 4
D. 3

Answer: A

- Watch Video Solution

127. When a mananous salt is fused with a mixture of KNO_{3} and and solid NaOH , the oxidation number of Mn change from +2 to:
A. +4
B. +3
C. +6
D. +7

Answer: C

128. In Fe (II) $-\mathrm{MnO}_{4}^{-}$tirtration HNO_{3} is not used beacause:
A. it oxidises Mn^{2+}
B. it reduces MnO_{4}^{-}
C. it oxidise Fe^{2+}
D. it reduces Fe^{3+} formed

Answer: C

- Watch Video Solution

129. Which species are oxidised and reduced in the reaction?
$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
A. Oxidised:Fe,C,Reduced:Mn
B. Oxidised:Fe,Reduced:Mn
C. Reduced:Fe,Mn,Oxidised:C
D. Reduced:C,Oxidised:Mn,Fe

Answer: A

- Watch Video Solution

130. In which of the following reactions, $\mathrm{H}_{2} \mathrm{O}_{2}$ is acting as a reducing agent?
A. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
C. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

131. Following reaction describes the rusting of iron
$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}^{2-}$
Which one of the following statements is incorrect?
A. This is an example of a redox reaction
B. Metallic iron is reduced to Fe^{2+}
C. $F e^{3+}$ is an oxidising agent
D. Metallic iron is a reducing agent

Answer: B

- Watch Video Solution

132. Which reaction does not represent auto redox or disproptionation?
A. $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
C. $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

133. Which of the following is redox reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ reach with NaOH
B. In atmoshere, O_{3} is formed from O_{2} by lightning
C. Evaporation of $\mathrm{H}_{2} \mathrm{O}$
D. Oxides of nitrogen are formed form nitrogen \& oxygen by lightning

Answer: D

- Watch Video Solution

134. Which of the following is redox reaction?
A. $2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag}$
B. $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
D. $\mathrm{AgNO}_{3}+\mathrm{KI} \rightarrow \mathrm{AgI}+\mathrm{KNO}_{3}$

Answer: A

- Watch Video Solution

135. For the redox reation
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The correct stoichiometric coefficients of $\mathrm{Mno}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and H^{+} respectively:
A. 2,5,16
B. 16,3,12
C. 15,16,12
D. 2,16,5

- Watch Video Solution

136. In the chemical reaction,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}$
x, y, and z are
A. $x=1, y=3, z-=1$
B. $x=4, y=1, z=4$
C. $x=3 . y=2 . z=1$
D. $x=2 . y=2, z=1$

Answer: A

137. Balance the following equation and choose the quantity which is the sum of the coefficients of and products:
$\ldots . . C S_{2}+\ldots . . C l_{2} \rightarrow \ldots . . C C l_{4}+\ldots . S_{2} C l_{2}$
A. 5
B. 3
C. 6
D. 2

Answer: D

- Watch Video Solution

138. Balance the followings equations and choose the quantity which is the sum of the coefficients of reactants and products : $\ldots \ldots . . P t C I_{4}+\ldots . . X_{2} F_{2}->P t F_{6}+\ldots . . C I F+\ldots . X e$
A. (a) 16
B. (b) 13
C. (c) 18
D. (d) 12

Answer: A

- Watch Video Solution

139. If 0.1 mole $H_{3} P O_{x}$ is completely neutralised by 5.6 g KOH then select the true statement.
A. (a) $x=3$ and given acid is diabasic
B. (b) $x=4$ and given acid has no $P=H$ linkage
C. (c) $x=2$ and given acid does not form acid salt
D. (d) all of these

Answer: C

140. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganent is
A. (a) $\frac{\text { molecular mass }}{3}$
B. (b) $\frac{\text { molecular mass }}{5}$
C. (c) $\frac{\text { molecular mass }}{2}$
D. (d) $\frac{\text { molecular mass }}{10}$

Answer: B

- Watch Video Solution

141. Equivalent weight of FeS_{2} in the half reaction
$\mathrm{FeS}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ is :
A. (a) $\frac{M}{10}$
B. (b) $\frac{M}{11}$
C. (c) $\frac{M}{6}$
D. (d) $\frac{M}{1}$

Answer: B

- Watch Video Solution

142. The equivalent mass of HCl in the given reaction is:
A. 16.25
B. 36.5
C. 73
D. 85.1

Answer: D

143. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it disproportionates into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is (mol.wt. of $\mathrm{H}_{3} \mathrm{PO}_{2}=\mathrm{M}$)
A. M
B. $\frac{M}{2}$
C. $\frac{M}{4}$
D. $\frac{3 M}{4}$

Answer: D

- Watch Video Solution

144. In the following reaction (unbalanced), equivalent weight of $A s_{2} S_{3}$ is related to molecular weight M by
$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$
A. $\frac{M}{2}$
B. $\frac{M}{4}$
C. $\frac{M}{24}$
D. $\frac{M}{28}$

Answer: D

- Watch Video Solution

145. Sulphur forms the chlorides $S_{2} C l_{2}$ and $S C l_{2}$. The equivalent mass of sulphur in SCl_{2} is
A. $8 \mathrm{~g} / \mathrm{mol}$
B. $16 \mathrm{~g} / \mathrm{mol}$
C. $64.8 \mathrm{~g} / \mathrm{mol}$
D. $3 \mathrm{~g} / \mathrm{mol}$

Answer: B

146. The equivalent weight of an element is 4 . Its chloride has a vapour density 59.25 . Find the valency of element.
A. 4
B. 3
C. 2
D. 1

Answer: B

- Watch Video Solution

147. 6×10^{-3} mole $K_{2} \mathrm{Cr}_{2} C_{7}$ reacts completely with 9×10^{-3} mole X^{n+} to give XO_{3}^{-}and Cr^{3+}. The value of n is :
A. 1
B. 2
C. 3
D. none of these

Answer: A

- Watch Video Solution

148. What mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol. mass $\left.=126\right)$ should be dissoved in water to prepare 250 mL of centinormal solution which act as a reducing agent?
A. 0.63 g
B. 0.1575 g
C. 0.126 g
D. 0.875 g

Answer: B

- Watch Video Solution

149. The equivalent weight of salt
$\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ when used as reducing agent : -
A. $\frac{\text { Mol.mass }}{1}$
B. $\frac{\text { Mol.mass }}{2}$
C. $\frac{\text { Mol.mass }}{3}$
D. $\frac{\text { Mol.mass }}{4}$

Answer: D

- Watch Video Solution

150. The equivalent mass of dilvalent metal is W . The molecular mass of its chloride is:
A. $\mathrm{W}+35.6$
B. $\mathrm{W}+72$
C. $2 \mathrm{~W}+72$
D. $2 W+35.6$

Answer: C

- Watch Video Solution

151.

When
BrO_{3}^{-}ions reacts with $\mathrm{Br}-\quad \mathrm{Br}_{2}$ is liberated. The equivalent mass of Br_{2} in
A. $\frac{5 M}{8}$
B. $\frac{5 M}{3}$
C. $\frac{3 M}{5}$
D. $\frac{4 M}{6}$

Answer: C

- Watch Video Solution

152. If m_{A} gram of a metal A displaces m_{B} gram of another metal B from its salt solution and if the equilvalent mass are E_{A} and E_{B} respectively then equivalent mass of A can be expressed as:
A. $E_{A}=\frac{m_{A}}{m_{B}} \times E_{B}$
B. $E_{A}=\frac{m_{A} \times m_{B}}{E_{B}}$
C. $E_{A}=\frac{m_{B}}{E_{A}} \times E_{B}$
D. $E_{A}=\sqrt{\frac{m_{A}}{m_{B}} \times E_{B}}$

Answer: A

D Watch Video Solution

153. Hydrazine reacts with KIO_{3} in presence of HCl as :
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{IO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{ICI}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
The equivalent masses of $\mathrm{N}_{2} \mathrm{H}_{4}$ and KIO_{3} respectively are :
A. 8 and 53.5
B. 16 and 53.5
C. 8 and 35.6
D. 8 and 87

Answer: A

- Watch Video Solution

154. What will be the normally of a solution obtained by mixiing 0.45 N and 0.60 N NaOH in the ratio $2: 1$ by volume?
A. 0.4 N
B. 0.5 N
C. 1.05 N
D. 0.15 N

Answer: B

2.7×10^{-3} molof $^{2+}$ ion required1. $6 \times 10^{-3} \mathrm{molofMnO}_{4}^{-} \quad$ for the oxidation of A^{2+} to AO_{3}^{-}the medium is:
A. neutral
B. acidic
C. strong basic
D. none of these

Answer: B

- Watch Video Solution

156. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as bleaching reagent because on dissociation it gives
oxygen
$\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)$
"Chachi420" used $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to bleach her hair and she required
$2.24 L O_{2}$ gas at 1atm and 273 K . She has a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled '5.6V' then what volume of such solution must she required to bleach her hair?
A. 200 mL
B. 300 mL
C. 400 mL
D. 500 mL

Answer: C

- Watch Video Solution

157. 1.25 g of a solid dibasic acid is completely neutralised by 25 mL of 0.25 molar $\mathrm{Ba}\left(\mathrm{OH}_{2}\right)$ solution. Molecular mass of the acid is:
A. 100
B. 150
C. 120
D. 200

Answer: D

- Watch Video Solution

158. 10 mL of $\mathrm{N}-\mathrm{HCl}, 2 \mathrm{~mL}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 \mathrm{mLN} / 3 \mathrm{HNO}_{3}$ are mixed togeher and volume made to one litre. The normally of H^{+}in the resulting solution is:
A. $3 \mathrm{~N} / 100$
B. $\mathrm{N} / 10$
C. $\mathrm{N} / 20$
D. $\mathrm{N} / 4 \mathrm{O}$

Answer: A

- Watch Video Solution

159. 0.45 g of acid (mol. Wt. $=90$) was exactly neutralized by 20 ml of $0.5(\mathrm{M}) \mathrm{NaOH}$.

The basicity of the given acid is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

160. A $3.4 g$ sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution containing $x \% \mathrm{H}_{2} \mathrm{O}$ by mass requires $x m L$ of a KMnO_{4} solution for complete oxidation under acidic conditions. The molarity of KMnO_{4} solution is :
A. 1
B. 0.5
C. 0.4
D. 0.2

Answer: C

- Watch Video Solution

161. What volume of O_{2} measured at standard condition will be formed by the action of 100 mL of $0.5 \mathrm{NKMnO}_{4}$ on hydrogen peroxide in an acid solution?

The skeleton equation for the reaction is,
$\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. 0.12litre
B. 0.028 litre
C. 0.56 litre
D. 1.12 litre

Answer: C

- Watch Video Solution

162. A sample of 1.0 g of solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ of 80% purity is dissolved in a moderately concentrated HCl solution which is reduced by zinc dust. The resulting solution required 16.7 mL of a 0.1 M solution of the oxidant.

Calculate the number of electrons taken up by the oxidant.
A. (a) 2
B. (b) 4
C. (c) 6
D. (d) 5

Answer: C

- Watch Video Solution

163. KMnO_{4} reacts with oxalic acid according to the equation $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Here, 20 mL of $1.0 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to:
A. 120 mL of0. $25 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
B. $150 \mathrm{mLof0} 0.10 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $25 m L$ of0. $20 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. 50 mL of0. $20 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

164. Ratio of moles of Fe (II) oxidised by equal volumes of equimolar KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions in acidic medium will be:
A. $5: 3$
B. 1: 1
C. $1: 2$
D. 5: 6

Answer: D

- Watch Video Solution

165. The mass of a mixtutre contining HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.1 g . On treatment withan excess of an AgNO_{3} solution, reacted with this acid mixture gives 0.1435 g of AgCl . Mass \% of the $\mathrm{H}_{2} \mathrm{SO}_{3}$ mixture is:
A. 36.5
B. 63.5
C. 50
D. none of these

Answer: B

166. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is standardized iodometrically against 0.167 g of KBrO_{3}. The process requires 50 mL of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution. What is the normality of the $\mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{3}$?
A. 0.2 N
B. 0.12 N
C. 0.72 N
D. 0.02 N

Answer: B

- Watch Video Solution

167. 0.80 g of impure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was boiled with 100 mL of a 0.2 N NaOH solution till all the $\mathrm{NH}_{3}(\mathrm{~g})$ evolved. the remaining solution was diluted to 250 mL . 25 mL of this solution was neutralized using $5 m L$ of a $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The percentage purity of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is:
A. 82.5
B. 72.5
C. 62.5
D. 17.5

Answer: A

- Watch Video Solution

168. 0.303 g of an organic compound was analysed for nitrogen by Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of 0.1 N $\mathrm{H}_{2} \mathrm{SO}_{4}$. The excess acid required 25 ml of 0.1 N NaOH for neutralisation. Calculate the percentage of nitrogen in the compound.
A. 8
B. 16
C. 20
D. 25

- Watch Video Solution

169. Find out \% of oxalate ion ina given sample of an alkali metal oxalate salt, 0.30 g of it is dissolve in 100 mL water and its required 90 mL OF Centimolar KMnO_{4} solution in aicdic medium:
A. 66%
B. 55%
C. 44%
D. 6.6%

Answer: A

170. 320 mg of a sample of magnessium having a coasting of its oxide required 20 mL of 0.1 M hydrochloric acid for the complete neutralisation of the latter. The composition of the sample is:
A. $87 \% \mathrm{Mg}$ and $12.5 \% \mathrm{MgO}$
B. $12.5 \% \mathrm{Mg}$ and $87.5 \% \mathrm{MgO}$
C. $80 \% \mathrm{Mg}$ and $20 \% \mathrm{MgO}$
D. $20 \% \mathrm{Mg}$ and $80 \% \mathrm{MgO}$

Answer: C

- Watch Video Solution

171. The concentration of bivalent lead ions in a sample of polluted of polluted water that aslo contains nitrate ions is determined by adding solid sodium sulphate ($M=142$) to exactly 500 mL water. Calculate the molarity of lead ions if 0.355 g is sodium sulphate was nedded for complete precipitation of lead ions as sulphate.
172.

HNO_{3} (sp. gravity1.05mL ${ }^{-1}$ containing $\left.12.6(w / W) o f \mathrm{HNO}_{3}\right)$ that reduce into NO is required to oxidise iron $1 \mathrm{~g} 1 \mathrm{~g} . \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in acid medium is:
A. 70 mL
B. 0.57 mL
C. 80 mL
D. 0.65 mL

Answer: C

- Watch Video Solution

173. The total volume of $0.1 \mathrm{MKMnO}_{4}$ solution that are needed to oxidize 100 mg each of ferrius oxalate and ferrous sulphate in a mixture in
acidic medium is:
A. 1.096 mL
B. 1.32 mL
C. 5.48 mL
D. none of these

Answer: A

- Watch Video Solution

174. When 2.5 g of a sample of Mohr's salt reacts completely with 50 mL of $\frac{N}{10} \mathrm{KMnO}_{4}$ solution. The \% purity of the sample of Mohr's salt is:
A. (a) 78.4
B. (b) 70
C. (c) 37
D. (d) 40

- Watch Video Solution

175.4 mole of a mixture of Mohr's salt and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ requires 500 mL of $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for complete oxidation in acidic medium. The mole $\%$ of the Mohr's salt in the mixture is:
A. 25
B. 50
C. 60
D. 75

Answer: D

176. The equivalent mass of a metal is twice to that of oxygen. How many times the weight of it's oxide is greater than the weight of metal?
A. 1.5
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

177. A metal oxide has the formular $\mathrm{M}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water 0.1596 g of the metal oxide required 6 mg hydrogen for complete reduction. The atomic weight of the metal is:
A. 15.58
B. 155.8
C. 5.58
D. 55.8

Answer: D

- Watch Video Solution

178. Calculate the mass of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ which can be oxidised to CO_{2} by 100.0 mL of MnO_{4}^{-}solution, 10 mL of which is capable of oxidising 50.0 mL of $1.0 \mathrm{NI}^{-}$to I_{2} ?
A. 45 g
B. 22.5 g
C. 30 g
D. 12.25 g

Answer: B

179. A mixture of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required equal volumess of $0.2 \mathrm{NKMnO}_{4}$ and 0.12 NNaOH separtely. What is the molar ration $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}_{4}$ in the mixture?
A. $6: 1$
B. 1: 6
C. 1:3
D. 3:1

Answer: D

- Watch Video Solution

180. Stannous sulphate $\left(\mathrm{SnSO}_{4}\right)$ and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrrous ammnium sulphate to ferric sulphate. The ration of number of moles of stannous sulphate required per mole of ferrous ammonium sulphate to the
number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate, is:
A. 2.5
B. 0.2
C. 0.4
D. 2

Answer: A

- Watch Video Solution

181. If a g is the mass of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ required to neutralize 100 mL of 0.2 M NaOH and $\mathrm{b} g$ that required to reduce 100 mL of $0.02 \mathrm{~mL} \mathrm{KMnO}_{4}$ in acidic medium then:
A. $a=b$
B. $2 a=b$
C. $a=2 b$
D. none of these

Answer: D

- Watch Video Solution

182. 2 mole , equimolar mixture of
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required $V_{1} \operatorname{Lof0.1} \mathrm{MKMnO}_{4}$ in acidic medium for complete oxidation. The same amount of the mixture required

A. 1: 2
B. 2: 1
C. $4: 5$
D. 5: 4

Answer: C

183. A mixture contaning 0.05 moleof $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 0.02 mole of $\mathrm{KMnO} \mathrm{O}_{4}$ was treated eoith excess of KI in acidic medium. The liberated iodine required $1.0 \mathrm{LofNa} \mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution for titration. Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was:
A. $0.4 \mathrm{~mol}^{-1}$
B. $0.20 \mathrm{molL}^{-1}$
C. $0.25 \mathrm{molL}^{-1}$
D. $0.30 \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

184. 25 mL of $2 \mathrm{NHCl}, 50 \mathrm{mLof} 4 \mathrm{NHNO}_{3}$ and $x m L 2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and the total volume is made up to 1 L after dilution. 50 mL if this acid ixture completely reacteed with 25 mL of a $1 \mathrm{NNa}_{2} \mathrm{CO}_{3}$ solution. The value of x is:
A. 250 mL
B. 62.5 mL
C. 100 mL
D. none of these

Answer: B

- Watch Video Solution

185. In a iodomeric estimation, the following reactions occur $2 \mathrm{Cu}^{2+}+4 i^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}, \mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na} a_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ 0.12 mole of $\mathrm{CuSO} \mathrm{C}_{4}$ was adde to excess of KI solution and the liberated iodine required 120 mL of hypo. The molarity of hypo soulution was:
A. 2
B. 0.2
C. 0.1
D. 1

Answer: D

- Watch Video Solution

186. 1 g mixture of equal number of mole of $L i_{2} C O_{3}$ and other metal carbonate $\left(M_{2} C_{3}\right)$ required 21.6 mL of 0.5 N HCl for complete neutralisation reaction. What is the apoproximate atomic mass of the other metal?
A. 25
B. 23
C. 51
D. 118

Answer: D

187. 32 g of a sample of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were dissolved in dilute sulphuric aid and water and its volue was made up to 1 litre. 25 mL of this solution required 20 mL of $0.02 \mathrm{MKMnO}_{4}$ solution for complete oxidation. Calculate the mass\% of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in the sample.
A. 34.75
B. 69.5
C. 89.5
D. none of these

Answer: A

- Watch Video Solution

188. In the mixture of $\left(\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, volume of HCI required is x mL with phenolphthalein indicator and y mL with methly orange indicator in the same titration. Hence, volume of $H C I$ for complete reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is:
(a) $2 x$
(b) y
(c) $x / 2$
(d) $(y-x)$
A. 2 x
B. y
C. $x / 2$
D. $(y-x)$

Answer: D

- Watch Video Solution

189.0.1g of a solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} requires 10 mL of 0.01 N HCl for neutralization using phenolphthalein as an indicator, mass\% of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution is:
B. 32
C. 50
D. none of these

Answer: C

- Watch Video Solution

190. A mixture $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ required 25 mL of 0.1 M HCl using phenolpththalein as the indicator. However, the same amount of the mixture required 30 mL of 0.1 M HCl when methyl orange was used as the indicator. The molar ration of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture was:
A. 2: 1
B. 1: 2
C. $4: 1$
D. 1: 4

Answer: A

- Watch Video Solution

191. When 100 mL solution of NaOH and NaCO_{3} was first titrated with $\mathrm{N} / 10 \mathrm{HCl}$ in presence of $\mathrm{HPh}, 17.5 \mathrm{~mL}$ were usedtill end point is obtained.

After this end point MeOH was added and 2.5 mL of same HCl were required to attain new end point. The amount NaOH in mixture is:
A. 0.06 g per 100 mL
B. 0.06 g per 200 mL
C. 0.05 g per 100 mL
D. 0.012 g per 200 mL

Answer: A

192. 1gram of a sample of CaCO_{3} was strongly heated and the CO_{2} liberated was absorbed iun 100 mL of 0.5 M NaOH solution. Assuming 90% purity for the sample, how many mL of 0.5 M HCl would be required to react with the resulting solution to reach the end point inpresence of phenolphthaein?
A. 73 mL
B. 41 mL
C. 82 mL
D. 100 mL

Answer: C

- Watch Video Solution

193. A sample of pure sodium carbonate 0.318 g is dissolved in water and titrated with HCl solution. A volume of 60 mL is required to reach the methyl orange end point. Calculate the molarity of the acid.
A. 0.1 M
B. 0.2 M
C. 0.4 M
D. none of these

Answer: A

- Watch Video Solution

194. 10L of hard water required 5.6 g of lime for removing hardness. Hence temperorary hardness in ppm of CaCO_{3} is:
A. 1000
B. 2000
C. 100
D. 1
195. 1L of pond water contains $20 \mathrm{mgofCa}{ }^{2+}$ and $12 \mathrm{mgof} \mathrm{Mg}^{2+}$ ions.

What is the volume of a $2 \mathrm{NNa}_{2} \mathrm{CO}_{3}$ solution required to soften 5000 L of pond water?
A. 500 L
B. 50 L
C. 5L
D. none of these

Answer: C

- Watch Video Solution

196. One litre of a sample of hard water contain $4.44 \mathrm{mgCaCl} 2_{2}$ and $1.9 \mathrm{mgof} \mathrm{MgCl}_{2}$. What is the total hardness in terms of ppm of CaCO_{3} ?
A. 2 ppm
B. 3 ppm
C. 4 ppm
D. 6 ppm

Answer: D

- Watch Video Solution

197. If hardness of water sample is 200ppm, then select the incorrect statement:
A. Mass ratio of $\mathrm{CaCO} \mathrm{CO}_{3}$ to $\mathrm{H}_{2} \mathrm{Ois} \frac{0.02}{100}$
B. Mole ratio of $\mathrm{CaCO} \mathrm{CO}_{3}$ to $\mathrm{H}_{2} \mathrm{Ois} 3.6 \times 10^{-5}$
C. Mass of $\mathrm{CaCO} \mathrm{C}_{3}$ present in hard water $i s 0.2 g / L$
D. 1 miliequivalent of CaCO_{3} present in 1 kg of hard water

Match the Colum-II

Column-I

(A) 0.5 mole of $\mathrm{SO}_{2}(\mathrm{~g})$

Column-II

(B) 1 g of $\mathrm{H}_{2}(\mathrm{~g})$
(P) Occupy 11.2 L at 1 atm and $27 ?$.
(C) 0.5 mole of $\mathrm{O}_{3}(\mathrm{~g})$
(Q) Weighs 24 g
(D) 1 g molecule of $\mathrm{O}_{2}(\mathrm{~g})$
(R) Total no. of atoms $15 \ldots \mathrm{~N}$
1.

Watch Video Solution
2. Match the following Column -I and Column - II

Column-I

Column-II

(A) $44 \mathrm{~g} \mathrm{CO}_{2}$ gas
(P) 1 g molecule
(B) 35.2 g of CH_{4}
(Q) N_{A} molecule
(C) 48 g of $\mathrm{O}_{3} \mathrm{gas}$
(R) $22 N_{A}$ electrons
(D) 44 g of $\mathrm{N}_{2} \mathrm{O}$ gas
(S) 49.28 L at 1 atm and 273 K
(T) N_{A} atoms of oxygen
3.

Column-I
[Atomic masses (M)]
Isotope-n Isotope-II Average
(A) $(z-1)$
$(z+3)$
z
(P) 25% by moles
(B) $(z+1)$
$(z+3) \quad(z+2)$
$2 z$
z
(C) z
$3 z$
$(z+1)$

Column-11

(\% composition of heavier iswlaj.
(Q) 50% by moles
(R) \% by mass dependent on \sim
(S) 75% by mass

- Watch Video Solution

4. Match the following Columns

Column-I

(A) When $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ converted into Bi^{5+} and S
(B) When $\mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$, reduced into Cr^{3+} in acidic medium
(C) When FeS_{2} converted into $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SO_{2}
(D) When $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$ converted into
(S) 10

Column-II

(P) 18
(Q) 11
(R) 2

Column-II

Column-I
(t) $\mathrm{P}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{PH}_{3}+\mathrm{P}_{4} \mathrm{H}_{2}$
(P) $E=\frac{3 M}{4}$
(B) $\underline{I}_{2} \longrightarrow I^{-}+\mathrm{IO}_{3}^{-}$
(Q) $E=\frac{3 M}{5}$
(C) $\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
$\longrightarrow \underline{\mathrm{Mn}_{3} \mathrm{O}_{4}}+\mathrm{H}^{+}$
(R) $E=\frac{15 M}{26}$
(D) $\underline{\mathrm{H}_{3} \mathrm{PO}_{2}} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}$
(S) $E=\frac{5 M}{6}$
5.

- Watch Video Solution

6. A sample of raw material contain NaNO_{3}. It contains some NaIO_{3} also. The NaIO_{3} can be used as a source of iodine, produced in the following reactions:
$\mathrm{IO}_{3}^{-}+\mathrm{HSO}_{3}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{SO}_{4}^{-}$
$\mathrm{I}^{-}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$.
One litre of sample solution containing $396 \mathrm{~g} \mathrm{NaIO}_{3}$ is treated with stoichiometric quantity of NaHSO_{3}. Now a substantial amount of
solution is added to reaction mixture to bring about the reaction (2).

Column-I

(A) n-factor of IO_{3}^{--}in reaction (2)
(B) Number of moles of HSO_{3}^{-}used in
reaction (1)
(C) Moles of I_{2} produced
(D) Equivalents of IO_{3}^{-}used in reaction (2)

Column-II

(P) 6
(Q) 1.2
(R) 2
(S) 5

- Watch Video Solution

Others

1. Calculate number of neutrons present in 12×10^{25} atoms of oxygen
$\left(8 O^{17}\right)$: (Given : $N_{A}=6 \times 10^{23}$)

- Watch Video Solution

2. If mass of one atom is $3.32 \times 10^{-23} g$, then calculate number of nucleons (neutrons and protons) present in 2 atoms of the element:
(a) 40
(b) 20
(c) 10
(d) 40 NA

D Watch Video Solution

3. Calculate number of electron present in 9.5 g of PO_{4}^{3-} :
(a) 6
(b) $5 N_{A}$
(c) $0.1 N_{A}$
(d) $4.7 N_{A}$

(Watch Video Solution

4. What is the number of moles of O-atoms in 126 amu of HNO_{3} ?

- Watch Video Solution

5. What is the charge of 96 amu of s^{2-} ?
(a) 2 C
(b) $3.2 \times 10^{-19} \mathrm{C}$
(c) $9.6 \times 10^{-19} \mathrm{C}$
(d) 6 C

- Watch Video Solution

6. A sample of sodium has a mass of 46 g . What is the mass of the same number of calcium atoms as sodium atoms present in given sample
(a) 46 g
(b) 20 g
(c) 40 g
(d) 80 g

Watch Video Solution

7. The total number of neutrons present in $54 m \mathrm{LH}_{2} \mathrm{O}(l)$ are :

(D) Watch Video Solution

8. Total number of electrons present in $48 g M g^{2+}$ are :

- Watch Video Solution

9. The number of neutrons in $5 g$ of $D_{2} O\left(D\right.$ is $\left.2_{1} H\right)$ are:

- Watch Video Solution

10. Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. What is the mass (in gram) of one molecule ? (Atomic masses : $P t=195, N=14, H=1, C l=35.5)$

- Watch Video Solution

11. Aspirin has the fromula $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many atoms of oxygen are there in a tablet weighing 360 mg ?

- Watch Video Solution

12. $20 g$ of ideal gas contains only atoms of S and O occupies $5.6 L$ at 1 atm and 273 K . what is the molecular mass of gas ?

- Watch Video Solution

13. A sample of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ contains 18 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is

- Watch Video Solution

14. Total number of moles of oxygen atoms in 3 litre $O_{3}(g)$ at $27^{\circ} \mathrm{C}$ and 8.21 atm are :
(a) 3
(b) 1
(c) 1
(d) None of these

D Watch Video Solution

$15.3 .011 \times 10^{22}$ atoms of an element weighs 1.15 gm . The atomic mass of the element is :
(a) 10amu
(b) 2.3 amu
(c) 35.5 amu
(d) 23amu

- Watch Video Solution

16. One atom of an element x weighs $6.643 \times 10^{-23} g$. Number of moles of atoms in its 20 kg is :
A. 4
B. 40
C. 100
D. 500

Answer: D

- Watch Video Solution

17. Mass of one atom of the element A is $3.9854 \times 10^{-23} g$. How many atoms are contained in 1 g of the element A ?

(Watch Video Solution

18. Which of the following contains the largest mass of hydrogen atoms
(a) 5.0 moles of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
(b) 1.1 moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$
(c) 1.5 moles of $C_{6} H_{8} O_{6}$
(d) 4.0 moles of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

- Watch Video Solution

19. If the volume of a drop of water is $0.0018 m L$ then the number of water molecules present in two drop of water at room temperature is :

- Watch Video Solution

20. It is known that atom contain protons, neutrons and electrons. If the mass of neutron is assumed to half of its original value whereas that of proton is assumed to be twice of its original value then the atomic mass of C_{6}^{14} will be :

- Watch Video Solution

21. Common salt obtained from sea-water contains $8.775 \% \mathrm{NaCl}$ by mass. The number of formula units of NaCl present in 25 g of this salt is:

- Watch Video Solution

22. The number of hydrogen atoms present in 25.6 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ which has a molar mass of $342.3 g$ is :

- Watch Video Solution

23. Caffiene has a molecular mass of 194 . If it contains 28.9% by mass of nitrogen, number of atoms of nitrogen in one molecule of caffeine is :

- Watch Video Solution

24. The density of water is $1 \mathrm{~g} / \mathrm{mL}$. What is the volume occupied by 1 molecule of water ?
25. A $25.0 \mathrm{~mm} \times 40.0 \mathrm{~mm}$ piece of gold foil is 0.25 mm thick. The density of gold is 19.32 g per cm^{3}. How many gold atoms are in the sheet? (Atomic weight : $A u=197.0$)

- Watch Video Solution

26. If average molecular mass of air is 29 , then assuming N_{2} and O_{2} gases are there, which option are correct regarding composition of are?
(i) 75% by mass of $N_{2}(\mathrm{ii}) 75 \%$ "by moles of N_{2} (iii) 72.41% bymassof N_(2) ${ }^{\prime}$
A. only i) is correct
B. only ii) is correct
C. both ii) and iii) are correct
D. both i) and ii) are correct

Answer: C

- Watch Video Solution

27. Density of dry air containing only N_{2} and O_{2} is $1.15 \frac{g}{L}$ at 740 mm of Hg and 300 K . What is \% composition of N_{2} by mass in the air ?

- Watch Video Solution

28. A gaseous mixture of H_{2} and CO_{2} gases contains 66 mass $\%$ of CO_{2}.

The vapour density of the mixture is :

- Watch Video Solution

29. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 27.6.

The mole fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ in the mixture is :
30. Density of ideal gas at 2 atm and 600 K is $2 \mathrm{~g} / \mathrm{L}$. Calculate relative density of this with respect to $\mathrm{Ne}(\mathrm{g})$ under similar conditions : (given :
$\left.R=\frac{1}{12} \operatorname{atm} \frac{L}{m} o l . K\right)$

- Watch Video Solution

31. Average atomic mass of magnesium is 24.31 amu . This magnesium is composed of 79 mole \% of 24 Mg and remaining 21 mole $\%$ of 25 Mg and 26 Mg . Calculate mole \% of 26 Mg .

- Watch Video Solution

32. Indium (atomic mass $=114.82$) has two naturally occurring isotopes, the predominant one from has isotopic mass 114.9041 and abundance of 95.72%. Which of the following isotopic mass is the most likely for the other isotope ?
33. Calculate density of a gaseous mixture which consist of 3.01×10^{24} molecules of N_{2} and $32 g$ of O_{2} gas at 3 atm pressure and 860 K temperature (Given : $R=\frac{1}{12} \mathrm{~atm}_{\mathrm{tmol}} \mathrm{mol}^{-1}$)

- Watch Video Solution

34. A mixture of O_{2} and gas Y (mol. $w t .80$) in the mole ratio $a: b$ has a mean molecular weight 40 . What would be mean molecular weight, if the gases are mixed in the ratio $b: a$ under identical conditions? (gases are ideal)

- Watch Video Solution

35. If water sample are taken from sea, rivers or lake, they will be found to contain hydrogen and oxygen in the approximate ratio of $1: 8$. This indicates the law of:
36. Hydrogen and oxygen combine to form $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.2% hydrogen respectively. The data illustrates:

Watch Video Solution

37. Which one the following combinations illustrate law of reciprocal proportions?

- Watch Video Solution

38. Carbon and oxygen combine to from two oxides, carbon is respectively
$12: 16$ and $12: 32$. These figures illustrate the :

- Watch Video Solution

39. A sample of calcuium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $C a=40 \%, C=12 \%, O=48 \%$ If the law
of constant proportions is true. Then the weight of calcium in $4 g$ of a sample of calcium carbonate obtained from another source will be

- Watch Video Solution

40. The law of multiple proportion is illustrated by the two compounds :

- Watch Video Solution

41. All the substance listed below are fertilizers that contribute nitrogen to the soil. Which of these is the richest source of nitrogen on a mass percentage basis ?
(a) Urea
(b) Ammonium Nitrate
(c)Nitric oxide
(d) Ammonia
42. One mole of element X has 0.444 times the mass of one mole of element Y. One atom of element X has 2.96 times the mass of one atom of C^{12}. What is the atomic mass of Y ?

- Watch Video Solution

43. A given sample of pure compound contains $9.81 g$ of $\mathrm{Zn}, 1.8 \times 10^{23}$ atoms of chromium, and 0.60 mol of oxygen atoms. What is the simplest formula?

- Watch Video Solution

44. The formula of an acid is HXO_{2}. The mass of 0.0242 moles of the acid is 1.657 g . What is the atomic mass of X ?

- Watch Video Solution

45. What is the emprical formula of vanadium oxide, if $2.74 g$ of the metal oxide contains $1.53 g$ of metal ?

Watch Video Solution

46. Determine the empirical formula of kelvar, used in making bullet proof vests, containing $70.6 \% C, 4.2 \% H, 11.8 \% N$ and $13.4 \% O$:
A. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2}$
B. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
C. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
D. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}$

Answer: D

- Watch Video Solution

47. The hydrate salt $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ undergoes 63% loss in mass on heating and becomes anhydrous. The value of x is :

- Watch Video Solution

48. A 6.85 g sample of the hydrated $\mathrm{Sr}(\mathrm{OH})_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ is dried in an oven to give $3.13 g$ of anhydrous $\mathrm{Sr}(\mathrm{OH})_{2}$. What is the value of x ? (Atomic masses : $S r=87.60 . O=16.0, H=1.0$)

- Watch Video Solution

49. What percentage of oxygen is present in the compound $\mathrm{CaCO}_{3} .3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

- Watch Video Solution

50. Deildrin, an insecticide, contains $C, H, C l$ and O. Combustion of 29.72 mg of dieldrin gave $41.21 \mathrm{mg} \mathrm{CO}_{2}$ and 5.63 mg of $\mathrm{H}_{2} \mathrm{O}$. In a separate analysis 25.31 mg of dieldrin was converted into 57.13 mg Ag Cl . What is the empirical formula of dieldrin ?

- Watch Video Solution

51. A gaseous compound is composed of 85.7% by mass carbon and
14.3% by mass hydrogen. Its density is $2.28 \mathrm{~g} /$ litre at 300 K and 1.0 atm pressure. Determine the molecular formula of the compound.

- Watch Video Solution

52. Complete combustion of $0.858 g$ of compound X given $2.64 g$ of CO_{2} and 1.26 g of $\mathrm{H}_{2} \mathrm{O}$ The lowest molecular mass X can have ;

- Watch Video Solution

53. The sulphate of a metal M contains 9.87% of M, This sulphate is isomorphous with $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The atomic weight of M is

- Watch Video Solution

54. In an organic compound of molar mass $108 \mathrm{gmmol}^{-1} \mathrm{C}, H$ and N atoms are presents in $9: 1: 3.5$ by mass. Molecular formula can be
A. $C_{6} H_{8} N_{2}$
B. $C_{7} H_{10} N$
C. $C_{5} H_{6} N_{3}$
D. $C_{4} H_{18} N_{3}$

Answer: A

- Watch Video Solution

55. On analysis, a certain compound was found to contain 254 g of iodine (at.mass 127) and 80 g oxygen (at.mass 16). What is the formula of the compound?

- Watch Video Solution

56. An element A is teravalent and another element B is divalent. The formula of the compound formed from these elements will be :

- Watch Video Solution

57. A compound used in making nylon, contains 43.8% oxygen. There are four oxygen atoms per molecule. What is the molecular mass of compound?
A. 36
B. 116
C. 292
D. 146

Answer: D

- Watch Video Solution

58. Suppose two elements X and Y combine to form two compound $X Y_{2}$ and $X_{2} Y_{3}$ weighs $85 g$. The atomic masses of X and Y are respectively

- Watch Video Solution

59. 44 g of a sample on complete combustion given $88 g C O_{2}$ and $36 g$ of $\mathrm{H}_{2} \mathrm{O}$. The molecular formula of the compound may be :

- Watch Video Solution

60. 40 miligram diatomic volatile substance $\left(X_{2}\right)$ is converted to vapour that displaced $4.92 m L$ of air at 1atm and 300 . Atomic mass of element X is nearly:

- Watch Video Solution

61. Two element $X($ at. Mass $=75)$ and $Y($ at mass $=16)$ combine to given a compound having 75.8% of X . The formula of the compound is :

- Watch Video Solution

62. A sample of phosphorus that weighs $12.4 g$ exerts a pressure 8 atm in a 0.821 litre closed vesel at $527^{\circ} \mathrm{C}$. The molecular formula of the phosphorus vapour is:

- Watch Video Solution

63. Manganese forms non-stoichiometric oxides having the general formula $M n O_{x}$. The value of x for the compound that analyzed 64% by mass Mn:

- Watch Video Solution

64. 1.44 gram if titanium (Ti) reacted with excess of O_{2} and produce x gram of non - stoichiometric compound $T i_{1.44} O$. The value of x is :

- Watch Video Solution

65. Which of the following setups is correct to calualate the mass (in g) of KClO_{3} produced from the reaction of 0.150 moles of Cl_{2} ?
$3 \mathrm{Cl}_{2}+6 \mathrm{KOH} \rightarrow 5 \mathrm{KClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

66. 2.0 g of a sample contains mixture of SiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$. On very strong heating, it leaves a residue weighing 1.96 g . The reaction responsible for loss of mass is given below.

Fe_2O_3(s)rarrFe_3o_4(s)+O_2(s)
, (unbalanceequation). WîsthepercentbymassofSiO_2` in original sample?

- Watch Video Solution

67. What volume of air at 1 atm and 273 K containing 21% of oxygen by volume is required to completely burn sulphur $\left(S_{8}\right)$ present in 200 g of sample, which contains 20% inert material which does not burn. Sulphur burns according to the reaction $\frac{1}{8} S_{8}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$

- Watch Video Solution

68.

For
the
reaction,
$2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{NaNO}_{3}$ initially 2.5 mole
of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and 3.6 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are taken. If 6.3 mole of NaNO_{3} is obtained then \% yield of given reaction is :

- Watch Video Solution

69. How many of P_{4} can be produced by reaction of 0.10 moles $C a_{5}\left(\mathrm{PO}_{4}\right)_{3} F, 0.36$ moles SiO_{2} and 0.90 moles C according to the following reaction ?
$4 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+18 \mathrm{SiO}_{2}+30 \mathrm{C} \rightarrow 3 \mathrm{P}_{4}+2 \mathrm{CaF}_{2}+18 \mathrm{CaSiO}_{3}+30 \mathrm{CO}$

- Watch Video Solution

70. Some older emergency oxygen masks contains potassium superoxide KO_{2} which reacts with CO_{2} and water present in exhaled air to produce oxygen according to the given equation. If a person exhales 0.667 g of CO_{2} per minute, how many gram of KO_{2} are consumed in 5.0 minutes ?

- Watch Video Solution

71. The mass of $N_{2} F_{4}$ produced by the reaction of 2.0 g of NH_{3} and 8.0 g of F_{2} is 3.56 g . What is the per cent yield ?

- Watch Video Solution

72. Calculate the mass of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCo}_{3}\right)$:

- Watch Video Solution

73. Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ prepared in a two step process. (1) $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$ (2) $P_{4} O_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$ We allow $62 g$ of phosphorus to react with excess oxygen which form $P_{4} O_{10}$ in 85% yield. In the step (2) reaction 90% yield of $\mathrm{H}_{\mathbf{\prime}} 3 \mathrm{PO}$ _ 4 isobta \in ed. massof H_3PO_4` produced is :

- Watch Video Solution

74.9 moles of "D" and 14 moles of E are allowed to react in a closed vessel according to given reactions. Calculate number of moles of B formed in the end of reaction, if 4 moles of G are present in reaction vessel. (percentage yield of reaction is mentioned in the reaction) Step -1 $3 D+4 E 80 \% \rightarrow 5 C+A$ Step-2 $3 C+5 G 50 \% \rightarrow 6 B+F$

- Watch Video Solution

75. The chief ore of $Z n$ is the sulphide $Z n S$. The ore is concentrated by froth floatation process and then heated in air to convert $Z n S$ to $Z n O$ $2 \mathrm{ZnS}+3 \mathrm{O}_{3} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}$ (80\% conversion)
$\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad(100 \% \quad$ conversion $)$ and
$2 \mathrm{ZnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}_{2} \quad$ (80% conversion).The number of moles of $Z n S$ required for producing 2 moles of $Z n$ will be :

- Watch Video Solution

76. 0.8 moles of a mixture of CO and CO_{2} requires exactly 40 gram of NaOH in solution for complete conversion of all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many more of NaOH would for require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$ if the mixture (0.8 mole) is completely oxidised to CO_{2} ?

- Watch Video Solution

77. Silver oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ decomposes at temperature $300^{\circ} \mathrm{C}$ yielding mettallic silver and oxygen gas. A 1.60 g sample of impure silver oxide yields $0.104 g$ of oxygen gas. What is the per cent by mass of the silver oxide in the sample?

- Watch Video Solution

78. Comprehension \# 5
$342 g$ of 20% by mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution (sp.gr. 0.57) is reacted with 200 mL of $2 \mathrm{MHNO}_{3}$ according to given balanced reaction :
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Find the molarity of the ion in resulting solution by which nature of the above solution is identified, is

- Watch Video Solution

79. 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution having molarity 1 M and density $1.5 \mathrm{~g} / \mathrm{mL}$ is mixed with 400 mL of water. Calculate final m plarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, if final density is $1.25 \mathrm{~g} / \mathrm{mL}$?

- Watch Video Solution

80. What volume of $H C I$ solution of density $1.2 \frac{g}{c} m^{3}$ and containing 36.5% by mass $H C I$, must be allowed to react wtih zinc $(Z n)$ in order to liberate 4.0 g of hydrogen ?

- Watch Video Solution

81. An ideal gaseous mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies 28 litre at $1 \mathrm{~atm} 0^{\circ} \mathrm{C}$. The mixture reacts completely with $128 \mathrm{gmO}_{2}$ to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Mole of fraction at $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixture is-

- Watch Video Solution

82. Wood's metal contains 50.0% bismuth, 25.0% lead, 12.5% tin and 12.5% cadmium by mass. What is the mole fraction of tin ?(\ (Atomic mass : $B i=209, P b=207, S n=119, C d=112)$

- Watch Video Solution

83. The density of a 56.0% by mass aqueous solution of 1 -propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ is $0.8975 \frac{g}{c} m^{3}$. What is the mole fraction of the 1 propanol ?
84. What is the molartiy of SO_{4}^{2-} ion in aqueous solution that contain $34.2 p \pm$ of $A I_{2}\left(\mathrm{SO}_{4}\right)_{3}$? (Assume complete dissociation and density of solution $1 \frac{g}{m} L$)
A. 3×10^{-4}
B. 2×10^{-4}
C. 10^{-4}
D. None

- Watch Video Solution

85. The relation between molarity (M) and molality (m) is given by : ($\mathrm{p}=$ density of solution (g / mL), $M_{1}=$ molecular mass of solute)

- Watch Video Solution

86. Molarity and molality of a solution of an liquid (mol. Mass $=50$) in aqueous solution is 9 and 10 respectively. What is the density of solution ?

- Watch Video Solution

87. An aqueous solution of ethanol has density $1.025 \mathrm{~g} / \mathrm{mL}$ and it is 2 M .

What is the molality of this solution?

- Watch Video Solution

88. 0.2 mole of $H C I$ and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the CI^{-}ions is:

- Watch Video Solution

89. Calculate the mass of anhyrous HCl in 10 mL of concentrated HCl (density $=1.2 \mathrm{~g}$ per ml) solution having $37 \% \mathrm{HCl}$ by mass is :

Watch Video Solution

90. Calculate the molality of 1 L solution of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{w}{V}\right)$ given that the density of the solution is $1.80 \mathrm{gmL}^{-1}$.

- Watch Video Solution

91. Fluoxymesterone, $\mathrm{C}_{10} \mathrm{H}_{29} \mathrm{FO}_{3}$, is an anabolic steroid. A 500 mL solution is prepared by dissolving 10.0 mg of the steoid in water. 10.0 mL portion of this solution is diluted to a final volume of 1.00 L . what is the resulting molarity?

- Watch Video Solution

92. The 25 mL of a 0.15 M solution of lead nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with all of the aluminium sulphate, $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$, present in 20 mL of a solution. What is the molar concentration of the $A I_{2}\left(S O_{4}\right)_{3}$? $3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{AI}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q) \rightarrow 3 \mathrm{PbSO}_{4}(s)+2 \mathrm{AI}\left(\mathrm{NO}_{3}\right)_{3}(a q)$

- Watch Video Solution

93. Concentrated HNO_{3} is $63 \% \mathrm{HNO}_{3}$ by mass and has a density of $1.4 g / m L$. How many millilitres of this solution are required to prepare 250 mL of a $1.20 \mathrm{MHNO}_{3}$ solution ?

- Watch Video Solution

94. $50 \mathrm{mLof} 20.8 \%(\mathrm{w} / \mathrm{V})$ Ba CI_2 and (aq) and 100mLof9.8\% (w/V) H_{-}2SO_4(aq)solutionsaremixed. Molarityof Cl^{\wedge} - in the resulting solution is : (At mass of $B a=137$)
95. 100 mL of $10 \% \mathrm{NaOH}\left(\frac{w}{V}\right)$ is added to 100 mL of $10 \% \mathrm{HCI}\left(\frac{w}{V}\right)$.

The nature of resultant solution is :

Watch Video Solution

96. How many millilitres of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ must be added to 50 mL of 0.1 MNaOH to give a solution that has a concentration of 0.05 M in $\mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

97. 1 MHCl and 2 MHCl are mixed in volume ratio 4:1. What is the final molarity of HCl solution?

- Watch Video Solution

98. Three solutions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of HCl are mixed to produce 100 mL of 0.1 M solution . The molarities of X, Y and Z are $0.7 \mathrm{M}, 0.12 \mathrm{M}$ and 0.15 M respectively. What respective volumes of X, Y and Z should be mixed?
a. $50 \mathrm{~mL}, 25 \mathrm{~mL}, 25 \mathrm{~mL}$
b. $20 \mathrm{~mL}, 60 \mathrm{~mL}, 20 \mathrm{~mL}$
c. $40 \mathrm{~mL}, 30 \mathrm{~mL}, 30 \mathrm{~mL}$
d. $55 \mathrm{~mL}, 20 \mathrm{~mL}, 25 \mathrm{~mL}$

- Watch Video Solution

99. A bottle of an aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled as ' 28 V ' $\mathrm{H}_{2} \mathrm{O}_{2}$ and the density of the solution (ing/mL) is 1.25 . Choose the correct option.

- Watch Video Solution

100. The impure 6 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The mass of p [recipitate of silver chloride is found to be 14 g . The $\%$ purity of NaCl solution would be:

(D) Watch Video Solution

101. $A I_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution of 1 molal concentration is present in 1 litre solution of density $2.684 \frac{\mathrm{~g}}{\mathrm{~m}} \mathrm{~L}$. How many moles of BaSO_{4} would be precipitated on adding excess of $B a C I_{2}$ in it ?

- Watch Video Solution

102. A certain public water supply contains 0.10 ppb (part per billion) of chloroform $\left(\mathrm{CHCI}_{3}\right)$. How many molecules of CHCI_{3} would be obtained in $0.478 m L$ drop of this water ?(assumed $d=1 \frac{g}{m} L$)

- Watch Video Solution

103. Decreasing order (first having highest and then other following it) of mass of pure NaOH in each of the aqueous solution
(P) 50 gm of $40 \%(w / w) \mathrm{NaOH}$
(Q) 50 gm of $50 \%(w / w) \mathrm{NaOH}\left[d_{\text {soln. }}=1.2 \mathrm{gm} / \mathrm{ml}\right]$
(R) 50 gm of $20 \mathrm{M} \mathrm{NaOH}\left[d_{\text {soln }}\right.$. $\left.=1 \mathrm{gm} / \mathrm{ml}\right]$

- Watch Video Solution

104. What is the molar mass of diacidic organic Lewis base (B), if $12 g$ of its chloroplatinate salt $\left(\mathrm{BH}_{2} \mathrm{PtCI}_{6}\right)$ on ignition produced 5 g residue of Pt?

- Watch Video Solution

105. On strong heating, One gram of the silver salt of an organic dibasic acid yields $0.5934 g$ of silver. If the mass percentage of carbon in it 8 times the mass percentage of hydrogen and one - half the mass percentage of oxygen, determine the molecular formula of the acid.

- Watch Video Solution

106. 0.607 g of silver salt of tribasic organic acid was quantitatively reduced to 0.37 g of pure Ag . What is the mol. Wt. of the acid ?

- Watch Video Solution

107. A sample of peanut oil weighing 2 g is added to $25 m L$ of 0.40 MKOH . After saponification is complete, 8.5 mL of $0.28 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is needed to nuetralize excess of $K O H$. The saponification number of peanut oil is : (saponification number is defined as the milligrams of $K O H$ consumed by 1 g of oil)

- Watch Video Solution

108. 20 mL of a mixture of CO and H_{2} were mixed excess of O_{2} and exploded \& cooled. There was a volume contraction of $23 m L$. All volume measurements corresponds to room temperature $\left(27^{\circ} C\right)$ and one atmospheric pressure. Determine the volume ratio $\left(V_{1}: V_{2}\right)$ of $C O$ and H_{2} in the original mixture .

Watch Video Solution

109. In the reaction:

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{Al}^{3+}(a q)+6 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2}(g)
$$

- Watch Video Solution

110. A gaseous mixture of propane and butane of volume 3 litre on complete combustion produces 11.0 litre CO_{2} under standard conditions of temperature and pressure. The ratio of volume of butane to propane is :

- Watch Video Solution

111. Phosphorous has the oxidation state of +1 in :

- Watch Video Solution

112. Oxidation state(s) of chlorine in CaOCl_{2} (bleaching powder)

- Watch Video Solution

113. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}, H_{2} S$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ respectively are :

- Watch Video Solution

114. Fe shows an oxidation state of +1 in : a) FeCl 3 b) $[\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 6] 2+\mathrm{c})$
$\mathrm{Fe}(\mathrm{CO}) 5 \mathrm{~d})[\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 5 \mathrm{NO}+] \mathrm{SO} 4$
A. FeCl 3
B. $[\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 6] 2+$
C. $\mathrm{Fe}(\mathrm{CO}) 5$
D. [$\mathrm{Fe}(\mathrm{H} 2 \mathrm{O}) 5 \mathrm{NO}+] \mathrm{SO} 4$
115. When SO_{2} is passed into an acidified potassium dichromate solution, the oxidation numbers of sulphur and chromium in the final products respectively are :

- Watch Video Solution

116. The oxidation state of S -atoms in Caro's and Marshall's acids are :

- Watch Video Solution

117. In which of the following the oxidation number of oxygen has been arranged in increasing order :
(a) $\mathrm{BaO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}<\mathrm{KO}_{2}$
(b) $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{3}<O F_{2}$
(c) $\mathrm{OF}_{2}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
(d) $\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{2}$

(D) Watch Video Solution

118. What is the oxidation numbers of oxygen in KO_{3} and $\mathrm{Na}_{2} \mathrm{O}_{2}$?

- Watch Video Solution

119. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is:

- Watch Video Solution

120. If it is known that $\mathrm{Fe}_{0.96} \mathrm{O}, \mathrm{Fe}$ is present in +2 and +3 oxidation state, What is the mole fraction of Fe^{2+} in the compound?

- Watch Video Solution

121. Which of the following sequence of compounds is according to the decreasing order of the oxidation state of nitrogen ?
(a) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(b) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
(c) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(d) $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

- Watch Video Solution

122. 2 mole of $N_{2} H_{4}$ loses 16 mole of electron is beings converted to a new compound X . Assuming that all of the N appears in the new compound. What is the oxidation state of ' N ' in X ?

- Watch Video Solution

123. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$ then change in the oxidation state of chromium is :

- Watch Video Solution

124. When a manganous salt is fused with a mixture of KNO_{3} and solid NaOH , the oxidation number of Mn change from +2 to :

- Watch Video Solution

125. The oxidation number of nitrogen atoms in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are :

- Watch Video Solution

126. In $\mathrm{Fe}(\mathrm{II})-\mathrm{MnO}_{4}^{-}$titration, HNO_{3} is not used because :

- Watch Video Solution

127. Which species are oxidized and reduced in the reaction ? $\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
128. In which of the following reactions, $\mathrm{H}_{2} \mathrm{O}_{2}$ is acting as a reducing agent?

- Watch Video Solution

129. Following reaction describe the rusting of iron $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+$ $6 O^{2-}$

Which one of the following is incorrect?
(a) This is an example of Redox reaction.
(b) Metallic iron is reduced to Fe^{3+}
(c) Fe^{3+} is an oxidising agent.
(d) Metallic iron is a reducing agent.

- Watch Video Solution

130. Which reaction does not represent auto redox or disproportionation
131. Which of the following is redox reaction ?

- Watch Video Solution

132. Which of the following is a redox reaction ?

- Watch Video Solution

133.

For
the
redox
reaction,
$\mathrm{MnO}_{4}^{-+} \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced reaction are respectively $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{-}, H^{+}$:
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}, \quad$ the value of x, y and z respectively are :

- Watch Video Solution

135. Balance the followings equations and choose the quantity which is the sum of the coefficients of reactants and products :
$\ldots \ldots . . C S_{2}+\ldots \ldots \ldots . . C l_{2} \rightarrow C C l_{4}+\ldots \ldots S_{2} C l_{2}$

- Watch Video Solution

136. Balance the followings equations and choose the quantity which is the sum of the coefficients of reactants and products : $\ldots \ldots . . \mathrm{PtCl}_{4}+\ldots . \mathrm{XeF}_{2} \rightarrow \mathrm{PtF}_{6}+\ldots . . \mathrm{ClF}+\ldots . \mathrm{Xe}$

- Watch Video Solution

137. It 0.1 mole $H_{3} P O_{x}$ is completely neutralised by 5.6 gKOH then select the true statement.
A. $x=3$ and given acid is dibasic
B. $x=4$ and given acid has no P-H linkage
C. $x=2$ and given acid does not form acid salt
D. all of the above

Answer: D

- Watch Video Solution

138. When potassium permanganate is titrated against ferrous ammonium sulphate in acidic medium, the equivalent mass potassium permanganate is ,

- Watch Video Solution

139. Equivalent mass of FeS_{2} inthe half reaction, $\mathrm{FeS}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ is :

- Watch Video Solution

140. The equaivalent mass of $H C I$ in the given reaction is : $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+3 \mathrm{Cl}_{3}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

141. Equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it disproportionate into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is (mol. wt. of $\mathrm{H}_{3} \mathrm{PO}_{2}=\mathrm{M}$) :

- Watch Video Solution

142.

In
the
following
reaction,
$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$ the equivalent
mass of $A s_{2} S_{3}$ is related to its molecular mass M by:

- Watch Video Solution

143. Sulphur forms the chlorides $S_{2} C I_{2}$ and $S C I_{2}$. The equivalent mass of sulphur in $S C I_{2}$ is :

- Watch Video Solution

144. The equivalent mass of an element is 4 . Its chloride has a vapour density 59.25. Then, the valency of the elements is:

- Watch Video Solution

145. 6×10^{-3} mole $\mathrm{K}_{2} \mathrm{Cr}_{2} O_{7}$ reacts completely with 9×10^{-3} mole X^{n+} to given XO_{3}^{-}and $\mathrm{Cr} \cdot(3+)$. The value of n is :

- Watch Video Solution

146. What mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (mol.mass $=126$) should be dissolved in water to prepare 250 mL of centinormal solution which act as a reducing agent ?

- Watch Video Solution

147. The equivalent mass of the salt, $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ when it act as reducing agent is :
(a) $M / 1$
(b) $M / 2$
(c) $M / 3$
(d) $\mathrm{M} / 4$

Watch Video Solution

148. The equivalent mass of divalent metal is W. The molecular mass of its chloride is:
149. When BrO_{3}^{-}iron reacts with Br^{-}in acid medium, Br_{2} is liberated. The equivalent mass of $B r_{2}$ in this reaction is :

- Watch Video Solution

150. If M_{A} gram of metal A displaces m_{B} gram of another metal B from its salt solution and if the equivalent mass are E_{A} and E_{B} respectively then equivalent mass of A can be expressed as :

- Watch Video Solution

151. Hydrazine reacts with KIO_{3} in presence of HCl as :
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{IO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{ICI}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
The equivalent masses of $\mathrm{N}_{2} \mathrm{H}_{4}$ and KIO_{3} respectively are :

- Watch Video Solution

152. What will be the normality of solution obtained by mixing 0.45 N and 0.60 NNaOH in the ratio $2: 1$ by volume?

- Watch Video Solution

153. A solution containing $2.7 \times 10^{-3} \mathrm{~mol}$ of A^{2+} irons required 1.6×10^{-3} mole of MnO_{4}^{-}for the oxidation of A^{2+} to AO_{3}^{-}the medium used is :

- Watch Video Solution

154. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as bleaching reagent because on dissociation it gives oxygen

$$
\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)
$$

"Chachi420" used $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to bleach her hair and she required
$2.24 \mathrm{LO}_{2}$ gas at 1atm and 273 K . She has a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled '5.6V' then what volume of such solution must she required to bleach her hair?
155. 1.25 g of a solid dibasic acid is completely neutralised by 25 mL of 0.25 molar $\mathrm{Ba}(\mathrm{OH})_{2}$ solution. Molecular mass of the acid is :

- Watch Video Solution

156. 10 mL of an $\mathrm{NHCI}, 20 \mathrm{~mL}$ of $\frac{N}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 mL of $\frac{N}{3} \mathrm{HNO}_{3}$ are mixed together and volume made to one litre. The normality of H^{+} in the resulting solution is :

- Watch Video Solution

157. 0.45 g of an acid of mol. Mass 90 was neutralised by 20 mL of 0.54 N caustic potash (KOH). The basicity of acid is :

- Watch Video Solution

158. A $3.4 g$ sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution containing $x \% h_{2} \mathrm{O}_{2}$ by mass requires $x m L$ of a KMnO_{4} solution for complete oxidation under acidic condition. The molarity of KMnO_{4} solution is :

- Watch Video Solution

159. What volume of $O_{2}(\mathrm{~g})$ measured at 1 atm and 273 K will be formed by action of 100 mL of $0.5 \mathrm{NKMnO}_{4}$ on hydrogen peroxide in an acid solution ? The skeleton equation for the reaction is $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

160. A sample of 1.0 g of solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ of 80% purity is dissolved in a moderately concentrated HCl solution which is reduced by zinc dust. The resulting solution required 16.7 mL of a 0.1 M solution of the oxidant.

Calculate the number of electrons taken up by the oxidant.
161. KMnO_{4} reacts with oxalic acid according to the equation $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \quad$ Here, 20 mL of $0.1 \mathrm{MKMnO}_{4}$ is equivalent to :

- Watch Video Solution

162. Ratio of moles of $F e$ (II) oxidised by equal volumes of equimolar KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions in acidic medium will be :

- Watch Video Solution

163. The mass of a mixture containing HCI and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.1 g On treatment with an excess of an AgNO_{3} solution, reacted with this acid mixture given 0.1435 g of AgCI . Mass $\%$ of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ mixture is :
164. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is standardized iodometrically against 0.167 g of KBrO_{3}. This process requires 50 mL of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. What is the normality of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. ?

- Watch Video Solution

165. 0.80 g is impure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ was boiled with 100 mL of 0.2 NNaOH solution till all the $\mathrm{NH}_{3}(\mathrm{~g})$ evolved. The remaining solution was diluted to 250 mL .25 mL of this solution was neutralized using $5 m L$ of $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The percentage purity of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is :

- Watch Video Solution

166. The NH_{3} evolved due to complete conversion of N from $1.12 g$ sample of protien was absorbed in 45 mL of $0.4 \mathrm{NHO}_{3}$. The excess acid required 20 mL of 1.0 NaOH . The $\% \mathrm{~N}$ in the sample is :
167. Find out \% of oxalate ion in a given sample of an alkali metal oxalate salt, 0.30 g of it is dissolved in 100 mL water and its required 90 mL of centimolar KMnO_{4} solution in acidic medium :

- Watch Video Solution

168. 320 mg of sample of magnesium having a coating of its oxide required 20 mL of 0.1 M hydrochloric acid for the complete neutralisation of the latter. The composition of the sample is :

- Watch Video Solution

169. The concentration of bivalent lead ions in sample of polluted water that also contains nitrate ions is determined by adding solid sodium sulphate ($m=142$) to exacty $500 m L$ water. Calculate the molarity of
lead ions if $0.355 g$ of solium sulphate was needed for complete precipitation of lead ions as sulphate.

- Watch Video Solution

170. What volume of HNO_{3} (sq.gravity $1.05 \mathrm{gmL}^{-1}$ containing $12.6\left(\frac{w}{W}\right)$ of HNO_{3}) that reduce into NO is required to oxidise iron $1 \mathrm{gFeSO} 4.7 \mathrm{H}_{2} \mathrm{O}$ in acid medium is :

- Watch Video Solution

171. The total volume of $0.1 \mathrm{MKMnO}_{4}$ solution that are needed to oxidize 100 mg each of ferrous oxalate and ferrous sulphate in a mixture in acidic medium is :

- Watch Video Solution

172. When 2.5 g of a sample of mohr's salt reacts completely with 50 mL of $\frac{N}{10} \mathrm{KMnO}_{4}$ solution. The \% purity of the sample of Mohr's salt is :

- Watch Video Solution

173. A mole of a mixture of Mohr's salt and Fe_2(SO_4)_3requires500mL of $\mathrm{MK}_{-} 2 \mathrm{Cr}_{-} 2 \mathrm{O}_{-} 7$ for complete oxidation in acidic medium. The mole \% of the Mohr's salt in the mixture is :

- Watch Video Solution

174. The equivalent mass of a metal is twice to that of oxygen. How many times is the equivalent mass of it's oxide than the equivalent mass of the metal ?

- Watch Video Solution

175. A metal oxide has the formula $\mathrm{X}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water. 0.1596 g of metal oxide requires 6 mg of hydrogen for complete reduction. The atomic mass of the metal (in amu) is:

- Watch Video Solution

176. Calculate the mass of anhydrous oxalic acid, which can be oxidised to $\mathrm{CO}_{2}(\mathrm{~g})$ by 100 mL of an MnO_{4}^{-}solution, 10 mL of which is capable of oxiding 50 mL of $1 \mathrm{NI}^{-}$to I_{2}.

- Watch Video Solution

177. A mixture of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required equal volumes $0.2 \mathrm{NKMnO}_{4}$ and 0.12 NNaOH separately. What is the molar ratio of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ and $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the mixture?
178. Stannous sulphate $\left(\mathrm{SnSO}_{4}\right)$ and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrrous ammnium sulphate to ferric sulphate. The ration of number of moles of stannous sulphate required per mole of ferrous ammonium sulphate to the number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate, is:

(Watch Video Solution

179. If $a g$ is the mass of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ required to neutralize 100 mL of 0.2 MNaOH and $b g$ that required to reduce 100 mL of $0.02 \mathrm{mKMnO} \mathrm{K}_{4}$ in acidic medium, then :

(Watch Video Solution

180. 2 mole, equimolar mixture of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required $V_{1} L$ of $0.1 \mathrm{MKMnO}_{4}$ in acidic medium for complete oxidation. The same
amount of the mixture required $V_{2} L$ of $0.2 M N a O H$ for neutralization. The ratio of $V_{1} \rightarrow V_{2}$ is:

- Watch Video Solution

181. A mixture containing 0.05 mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 0.02 mole of KMnO_{4} was treated with excess of $K I$ in acidic madium. The librated iodine required 1.0 L of $\mathrm{NaS}_{2} \mathrm{O}_{3}$ solution for titration. Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was:

- Watch Video Solution

182. 25 mL of $2 \mathrm{NHCI}, 50 \mathrm{~mL}$ of $4 \mathrm{NHNO}_{3}$ and xmL of $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and the total volume is made up to $1 L$ after dilution. 50 mL of this acid mixture completely reacted with 25 mL of a $1 \mathbb{N} a_{2} \mathrm{CO}_{3}$ solution. The value of x is :

- Watch Video Solution

183. In a iodomeric estimation, the following reactions occur
$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}, \mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
0.12 mole of CuSO_{4} was adde to excess of KI solution and the liberated iodine required 120 mL of hypo. The molarity of hypo soulution was:

- Watch Video Solution

184. $1 g$ mixture of equal number of mole of $\mathrm{Li}_{2} \mathrm{Co}_{3}$ and other metal carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ required 21.6 mL of 0.5 NHCI for complete neutralisation reaction. What is the approximate atomic mass of the other metal ?

- Watch Video Solution

185. 32 g of a sample of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were dissolved in dilute sulphuric aid and water and its volue was made up to 1 litre. 25 mL of this solution required 20 mL of $0.02 \mathrm{MKMnO}_{4}$ solution for complete oxidation. Calculate the mass\% of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in the sample.
186. In the mixture of $\left(\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, volume of HCI required is x mL with phenolphthalein indicator and y mL with methly orange indicator in the same titration. Hence, volume of $H C I$ for complete reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is:
(a) $2 x$
(b) y
(c) $x / 2$
(d) $(y-x)$

- Watch Video Solution

187. 0.1 g of a solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} requires 10 mL of 0.01 NHCI for neutralization using phenolphthalein as an indicator. mass \% of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution is :
188. A mixture $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ required 25 mL of 0.1 M HCl using phenolpththalein as the indicator. However, the same amount of the mixture required 30 mL of 0.1 M HCl when methyl orange was used as the indicator. The molar ration of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture was:

- Watch Video Solution

189. When 100 mL solution of NaOH and NaCO_{3} was first titrated with $\mathrm{N} / 10 \mathrm{HCl}$ in presence of $\mathrm{HPh}, 17.5 \mathrm{~mL}$ were usedtill end point is obtained.

After this end point MeOH was added and 2.5 mL of same HCl were required to attain new end point. The amount NaOH in mixture is:

- Watch Video Solution

190. 1gram of a sample of CaCO_{3} was strongly heated and the CO_{2} liberated was absorbed iun 100 mL of 0.5 M NaOH solution. Assuming 90% purity for the sample, how many mL of 0.5 M HCl would be required to
react with the resulting solution to reach the end point inpresence of phenolphthaein?

- Watch Video Solution

191. A sample of pure sodium carbonate $0.318 g$ is dissolved in water and litrated with $H C I$ solution. A volume of $60 m L$ is required to reach the methly orange end point. Calculate the molarity of the acid.

- Watch Video Solution

192. 10 L of hard water required 5.6 g of lime for removing haardness.

Hence temporary hardness in ppm of CaCO_{3} is :

- Watch Video Solution

193. 1 L of pond water contains 20 mg of Ca^{2+} and 12 mg of mg^{2+} ions.

What is the volume of a $2 \mathrm{NNa}_{2} \mathrm{CO}_{3}$ solution required to soften 5000 L
of pond water?

D Watch Video Solution

194. One litre of sample of hard water contain 4.44 mgCaCI and 1.9 mg of MgCI_{2}. What is the total hardness in terms of ppm of $\mathrm{CaCO} \mathrm{O}_{3}$?

- Watch Video Solution

195. A mixture of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ contain 30.40% mass per cent of nitrogen. What is the mass ratio of the two components in the mixture?

- Watch Video Solution

196. What volume of 75% acohol by weight $\left(d=0.80 \frac{g}{c} m^{3}\right)$ must be used to prepare $150 \mathrm{~cm}^{3}$ of 30% alcohol by mass $\left(d=0.90 \frac{g}{c} m^{2}\right) ?$
197. Calculate the number of millilitre of $\mathrm{NH}_{3}(a q)$ solution $\left(d=0.986 \frac{g}{m} L\right)$ contain 2.5% by mass $N H_{3}$, which will be required to precipitate iron as $\mathrm{Fe}(\mathrm{OH})_{3}$ in a 0.8 g sample that contains $50 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$.

- Watch Video Solution

198. In the preparation of iron from haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ by the reduction with carbon $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$ how much 80% pure iron may be produced from 120 kg of 90% pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

- Watch Video Solution

199. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 12.5% by mass $2.8 g$ of the mineral on heating lost $1.32 g$ of CO_{2}. What is the \% by mass of the other metal ?
200. $6.2 g$ of a sample containing $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$ and non-volatile inert impurity on gentle heating loses 5% of its mass due to reaction $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. Residue is dissolved in water and formed 100 mL solution and its 10 mL portion requires 7.5 mL of $0.2 M$ aqueous solution of BaCI_{2} for complete precipitation of carbonates. Determine mass (in gram) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original sample.

- Watch Video Solution

201. Nitric acid can be produced from NH_{3} in three steps process below

$$
\begin{equation*}
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) \quad$ percent yield of $1^{s t}, 2^{\text {nd }}$ and $3^{r d}$ step are respectively $50 \%, 60 \%$ and 80% respectively then what volume of $\mathrm{NH}_{3}(\mathrm{~g})$ at 1 atm and $0^{\circ} \mathrm{C}$ required to produced 1575 g of HNO_{3}.
202. 1 MNaOH solution was slowly added into 1000 mL of 183.75 g impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and the following plot was obtained. The percentage purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample and slope of the curve respectively are :
(a) $75 \%,-1 / 3$
(b) $80 \%,-1 / 2$
(c) $80 \%,-1$
(d) None of these

- Watch Video Solution

203. MnO_{2} on ignition converts into $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite having $75 \% \mathrm{MnO}_{2}, 20 \%$ inert impurities and rest water is ignited in air to constant mass. What is the percentage of $M n$ in the ignited sample ?
204. A 1.0 g sample of a pure organic compound containing chlorine is fused with $\mathrm{Na}_{2} \mathrm{O}$ to convert chlorine to NaCl . The sample is then dissolved in water, and the chloride precipitated with AgNO_{3}, giving 1.96 g of AgCl . If the molecular weight of organic compound is 147 , how many chlorine atoms does each molecule contain?

- Watch Video Solution

205. A 0.60 g sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at $500^{\circ} \mathrm{C}$ converting the two salts of CaCo_{3} and MgCO_{3}. The sample then weighs 0.465 g . If the sample had been heated to $900^{\circ} \mathrm{C}$, where the products are $C a O$ and $M g O$. What would the mixtures of oxides have weighted?

- Watch Video Solution

206. A metal M forms the sulphate $\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. $A 0.596$ gram sample of the sulphate reacts with excess BaCI_{2} to given $1.220 g \mathrm{BaSO}_{4}$. What is
the atomic mass of M ? (Atomic mass : $S=32, B a=137.3$)

- Watch Video Solution

207. Urea $\left(\mathrm{H}_{2} \mathrm{NCONH}_{2}\right)$ is manufactured by passing $\mathrm{CO}_{2}(\mathrm{~g})$ through ammonia solution followed by crystallization. CO_{2} for the above reaction is prepared by combustion of hydrocarbons. If combustion of 236 kg of a saturated hydrocarbon $\left(C_{n} \mathrm{H}_{2 n+2}\right)$ produces as much CO_{2} as required for production of 999.6 kg urea then molecular formula of hydrocarbon is :

- Watch Video Solution

208. 11.6 g of an organic compound having formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ is burnt in excess of $O_{2}(g)$ initially taken in a 22.41 litre steel vessel. Before reactioOn the gaseous mixture was at 273 K with pressure reading 2 atm. Aftercomplete combustion and loss of considerable amount of heat, the mixture of product and excess of O_{2} had a temperature of 546 K and 4.6 atm pressure. The formula of organic compound is :

- Watch Video Solution

209.

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \rightarrow 40 \% \text { yieldI } I_{2}+2 \mathrm{KOH}
$$

$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 50 \%$ yield
$\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnSO}_{4}+3 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ 150mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample was divided into two parts. First part was treated with $K I$ and formed $K O H$ required 200 mL of $\frac{M}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation. Other part was treated with KMnO_{4} yielding 6.74 litre of O_{2} at 1 atm . and 273 K . Using $\%$ yield indicated find volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample used.

- Watch Video Solution

210. $\mathrm{SO}_{2} \mathrm{CI}_{2}$ (sulphuryl chloride) reacts with water to give a mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCI . What volume of $0.2 \mathrm{MBa}(\mathrm{OH})_{2}$ in needed to completely neutralize 25 mL of $0.2 \mathrm{MSO}_{2} \mathrm{CI}_{2}$ solution :

- Watch Video Solution

211. $5 g$ sample contain only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This sample is dissolved and the volume made up to 250 mL .25 mL of this solution neutralizes 20 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Calculate the percent of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample.

- Watch Video Solution

212. By how much will the potential of half cell $\mathrm{Cu}^{+2} / \mathrm{Cu}$ change if the solutin is diluted to 100 times at 298 K ?

- Watch Video Solution

213. A silver coin weighing $11.34 g$ was dissolved in nitric acid. When sodium chloride was added to the solution all the silver (present as AgNO_{3}) was precipitated as silver chloride. The mass of the precipitated silver chloride was 14.35 g . Calculate the percentage of silver in the coin.
214. Two elements X (at.mass 16) and Y (at.mass 14) combine to form compounds A, B and C. The ratio be different masses of Y which combine with a fixed mass of X in A, B and C is $1: 3: 5$. If 32 parts by mass of X combines with 84 parts by mass of Y in B then in $C, 16$ parts by mass of X will combine with parts by mass of Y :

- Watch Video Solution

215. The conversion of oxygen to ozone occurs to the extent of 15% only. If mass of ozone that can be prepared from 67.2 of oxygen at 1 atm and 273 K will be :

- Watch Video Solution

216. $R H_{2}$ (ion exchange resin) can replace Ca^{2+} ions in hard water as $\mathrm{RH}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{RCa}+2 \mathrm{H}^{+}$. If 1 L of hard water after passing through RH_{2} has $\mathrm{pH}=3$ then hardness in parts per million of Ca^{2+} is :
217. $100 \mathrm{~cm}^{3}$ of a solution of an acid (Molar mass $=98$) containing $29.4 g$ of the acid per litre were completely neutralized by $90.0 \mathrm{~cm}^{3}$ of aq. NaOH containing 20 g of NaOH per $500 \mathrm{~cm}^{3}$. The basicity of the acid is:

- Watch Video Solution

218. 20 mL of 0.1 M solution of compound $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is titrated against $0.05 M H C I . x m L$ of $H C I$ is used when phenolphthalein is used as an indicator and y mL of HCl is used when methly orange is the indicator in two separate titrations. Hence $(y-x)$ is :

- Watch Video Solution

219. A sample containing HAsO_{2} (mol. mass $=108$) and weighing $3.78 g$ is dissolved and diluted to 250 mL in a volumetric flask. $A 50 \mathrm{~mL}$ sample (aliquat) is withdrawn with a pipet and titrated with 35 mL of 0.05 M solution of I_{2}. Calculate the percentage HAsO_{2} in the sample :

(D) Watch Video Solution

220. A mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is completely reacted with 100 mL of $0.25 M$ acidified $K M n O_{4}$ solution. The resulting solution was then treated with Zn dust which converted Fe^{3+} of the solution to $f e^{2+}$. The $\mathrm{Fe}^{2=}$ required 100 mL of $0.10 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Find out the weight $\% \mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.

- Watch Video Solution

221. To a $10 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution of $B r_{2}$, excess of NaOH is added so that all Br_{2} is disproportionated to Br^{-}and BrO_{3}^{-}. The resulting solution is free from Br^{-}, by extraction and excess of OH^{-}neutralised by acidifying the solution. The resulting solution is sufficient to react with $2 g$ of impure $\mathrm{CaC}_{2} \mathrm{O}_{4}\left(\mathrm{M}=128 \frac{\mathrm{~g}}{\mathrm{~m}} \mathrm{ol}\right)$ sample. The \% purity of oxalate sample is :

- Watch Video Solution

222. 0.10 g of a sample conining CuCo_{3} and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 50 mL . This solution was added into 50 mL of $0.04 M K I$ solution where copper precipitates as CuI and I^{-}is oxidized into I_{3}^{-}. A 10 mL portion of this solution is taken for analysis, filtered and made up free I_{3}^{-}and then treated with excess of acidic permanganate solution. Liberated iodine required 20 mL of 2.5 mM sodium thiosulphate solution to reach the end point . Determine mass percentage of CuCO_{3} in the original sample.

- Watch Video Solution

223. 1 mole of equimolar mixture of ferric oxalate and ferrous oxalate requires x mole of KMnO_{4} in acidic medium for complete oxidation. x is :

(Watch Video Solution

224. An impure sample of sodium oxalate $\left(n a_{2} C_{2} O_{4}\right)$ weighing $0.2 g$ is dissolved in aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and solution is titrated at
$70^{\circ} \mathrm{C}$, requiring 45 mL of $0.02 \mathrm{MKMnO} \mathrm{S}_{4}$ solution. The end point is overrun, and back titration in carried out with $10 m L$ of $0.1 M$ oxalic acid solution. Find the \% purity of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in sample :

- Watch Video Solution

225. 0.5 g mixture of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4} was treated with excess of $K I$ in acidic medium. lodine liberated required $150 \mathrm{~cm}^{3}$ of 0.1 N solution of thiosulphate solution for titration. Find the percentage of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the mixture :

- Watch Video Solution

226. A 50 mL of solution of I_{2} is divided into two unequal parts. I part with hypo solution in acidic medium. 15 mL of $0.4 M$ hypo was consumed. II part was added with 100 mL of 0.3 MNaOH solution. Residual base required to mL of $0.3 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution for complete neutralization. What was the initial concentration of I_{2} ?
227. A mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to 1 litre. 10 mL of this solution require 3 mL of 0.1 NNaOH for complete neutralization. In another experimant 100 mL of the same solution in hot condition required $4 m L$ of $0.02 \mathrm{MKMnO}_{4}$ solution for complete reaction. The mass \% of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the mixture was :

- Watch Video Solution

228. The concentration of an oxalic acid solution is x mol litre ${ }^{\wedge}-1.40 \mathrm{~mL}$ of this solution reacts with $16 m L$ of 0.05 M acidified KMnO_{4}. What is the $p H$ of ' x ' M oxalic acid solution ? (Assume that oxalic acid dissociates completely).)

- Watch Video Solution

