©゙doubtnut

 India's Number 1 Education App
CHEMISTRY

BOOKS - FULL MARKS CHEMISTRY (TAMIL ENGLISH)

PHYSICAL AND CHEMICAL EQUILIBRIUM

Textual Evaluation Solved Multiple Choice Questions

1. If K_{b} and K_{f} for a reversible reactions are 0.8×10^{-5} and 1.6×10^{-4} respectively, the value of the equilibrium constant is,
A. 20
B. 0.2×10^{-1}
C. 0.05
D. None of these

D View Text Solution

2. At a given temperature and pressure, the equilibrium constant values for the equilibria
$3 A_{2}+B_{2}+2 C \stackrel{K_{1}}{\Longleftrightarrow} 2 A_{3} B C$ and $A_{3} B C \Longleftrightarrow \stackrel{K_{2}}{\Longleftrightarrow} \frac{3}{2}\left[A_{2}\right]+\frac{1}{2} B_{2}+C$ The relation between K_{1} and K_{2} is
A. $k_{1}=\frac{1}{\sqrt{K_{2}}}$
B. $K_{2}=K_{1}^{\frac{-1}{2}}$
C. $K_{1}^{2}=2 k_{2}$
D. $\frac{K_{1}}{2}=K_{2}$

Answer: B

- View Text Solution

3. The equilibrium constant for a reaction at room temperature is K_{1} and that at 700 K is K_{2}. If $K_{2}>K_{2}$, then
A. The forward reaction is exothermic
B. The forward reaction is endothermic
C. The reaction does not attain equilibrium
D. The reverse reaction is exotermic

Answer: A

- View Text Solution

4. The formation of ammonia from $N_{2}(g)$ and $H_{2}(g)$ is a reversible reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)+\text { Heat }
$$

What is the effect of increase of temperature on this equilibrium reaction
A. equilibrium is unaltered
B. formation of ammonia is favoured
C. equilibrium is shifted to the left
D. reaction rate does not change

Answer: C

- View Text Solution

5. Solubility of carbon dioxide gas in cold water can be increased by
A. increase in pressure
B. decrease in pressure
C. increase in volume
D. none of these

Answer: A

6. Which one of the following is incorrect statement ?
A. for a system at equilibrium, Q is always less than the equilibrium constant
B. equilibrium can be attaned from either side of the reaction
C. presence of catalyst affects both the forward reaction and reverse reaction to the same extent
D. Equilibrium constant varied with temperature

Answer: A

- View Text Solution

7. K_{1} and K_{2} are the equilibrium constants for the reactions respectively.
$N_{2}(g)+O_{2}(g) \stackrel{K_{1}}{\Longleftrightarrow} 2 N O(g)$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \stackrel{K_{2}}{\Longleftrightarrow} 2 \mathrm{NO}_{2}(\mathrm{~g})$

What is the equilibrium constant for the required reaction $N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g)$
A. $\frac{1}{\sqrt{K_{1} K_{2}}}$
B. $\left(K_{1}=K_{2}\right)^{\frac{1}{2}}$
C. $\frac{1}{2 K_{1} K_{2}}$
D. $\left(\frac{1}{K_{1} K_{2}}\right)^{\frac{3}{2}}$

Answer: A

- View Text Solution

8. In the equilibrium, $2 A(g) \Leftrightarrow 2 B(g)+C_{2}(g)$ the equilibrium concentrations of A, B and C_{2} at 400 K are $1 \times 10^{-4} M, 2.0 \times 10^{-3} M, 1.5 \times 10^{-4} M$ respectively. The value of K_{C} for the equilibrium at 400 K is \qquad
A. 0.06
B. 0.09
C. 0.62
D. 3×10^{-2}

Answer: A

- View Text Solution

9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is \qquad
A. largely towards forward direction
B. largely towards reverse direction
C. never established
D. none of these

Answer: B

- View Text Solution

10. $\frac{K_{C}}{K_{P}}$ for the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ is
A. $\frac{1}{R T}$
B. $\sqrt{R T}$
C. $R T$
D. $(R T)^{2}$

Answer: D

- View Text Solution

11. For the reaction, $A B(g) \Leftrightarrow A(g)+B(g)$, at equilibrium, AB is 20% dissociated at a total pressure of P . The equilibrium constant K_{p} is related to the total pressure by the expression \qquad
A. $P=24 K_{P}$
B. $P=8 K_{P}$
C. $24 P=K_{P}$
D. none of these

Answer: A

- View Text Solution

12. In which of the following equilibrium, K_{P} and K_{C} are not equal ?
A. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$
B. $\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

Answer: D

- View Text Solution

13. If x is the fraction of $P \mathrm{Pl}_{5}$ dissociated at equilibrium in the reaction, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$ then starting with 0.5 mole of $P C l_{5}$, the total number of moles of reactants and products at equilibriumis
A. $0.5-x$
B. $x+0.5$
C. $2 x+0.5$
D. $x+1$

Answer: B

- View Text Solution

14. The values of $K_{P 1}$ and $K_{P 2}$ for the reactions : $X \Leftrightarrow Y+Z$ and $A \Leftrightarrow 2 B$ are in the ratio $9: 1$ if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P_{1}, and P_{2} are in the ratio
A. $36: 1$
B. 1:1
C. 3:1
D. 1:9

Answer: A

- View Text Solution

15. In the reactio, $\mathrm{Fe}(\mathrm{OH})_{3}(s) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+3 O H^{-}(a q)$, if the concentration of OH^{-}ions is decreased by $\frac{1}{4}$ times, then the equilibrium concentrationof Fe^{3+} will
A. not changed
B. also decreased by $\frac{1}{4}$ times
C. increase by 4 times
D. increase by 64 times

Answer: D

- View Text Solution

16. Consider the reaction where $K_{P}=0.5$ at a particular temperature

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

if the three gases are mixed in a container so that the partial pressure of each gas is initially 1 atm,then which one of the following is true?
A. more PCl_{3} will be produced
B. more $C l_{2}$ will be produced
C. more $P C l_{5}$ will be produced
D. None of these

Answer: C

- View Text Solution

17. Equimolar concentraions of H_{2} and I_{2} are heated to equilibriumin a 1 litre flask. What percentage of initial concentration of H_{2} has reacted at equilibrium if rate constant for both farward and reverse reactions are equal
A. 0.33
B. 0.66
C. $(33)^{2} \%$
D. 0.165

Answer: A

- View Text Solution

18. Ina chemical equilibrium,the rate constant for the forward reaction is 2.5×10^{2} and the equilibrium constant is 50 . The rate constant for the reverse reaction is \qquad .
A. 11.5
B. 5
C. 2×10^{2}
D. 2×10^{-3}

Answer: B

- View Text Solution

19. Which of the following is not a general characteristic of equilibriuminvolving physical process
A. Equilibrium is possible only in a closed system at a given temperature
B. The opposing process occur at the same rate and there is a dynamic but stable condition
C. All the physical processes stop at equilibrium
D. All measurable properties of the system remains constant

Answer: C

- View Text Solution

20. For the formation of two moles of $\mathrm{SO}_{3}(\mathrm{~g})$ from SO_{2} and O_{2} the equilibrium constant is K_{1}. The equilibrium constant for the dissociation of one mole of SO_{3} into SO_{2} and O_{2} is \qquad
A. $\frac{1}{K_{1}}$
B. K_{1}^{2}
C. $\left(\frac{1}{K_{1}}\right)^{\frac{1}{2}}$
D. $\frac{K_{1}}{2}$

Answer: C

21. Match the equilibria with the corresponding conditions \qquad
(i) Liquid \rightleftharpoons Vapour
(ii) Solid \rightleftharpoons Liquid
(iii) Solid \rightleftharpoons Vapour
(iv) Solute (s) \rightleftharpoons Solute (Solution)
22. Melting point
23. Saturated solution
24. Boiling point
25. Sublimation point
26. Unsaturated solution
(i) (ii) (iii) (iv)
A.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
(i) (ii) (iii) (iv)
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
(i) (ii) (iii) (iv)
C. $\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
(i) (ii) (iii) (iv)
D. 3445

Answer: B

- View Text Solution

22. Consider the following reversible reaction at equilibrium, $A+B \Leftrightarrow C$, If the concentration of the reactants A and B are doubled,then the equilibrium constant will \qquad .
A. be doubled
B. become one fourth
C. be halved
D. remain the same

Answer: D

- View Text Solution

23.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(a q) \text { (pink) }+4 \mathrm{Cl}^{-}(a q) \Leftrightarrow\left[\mathrm{COCl}_{4}\right]^{2-}(a q) \text { (blue) }+6 \mathrm{H}_{2}
$$ In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture,it becomes pink in colour. On the basis of this information, which one of the following is true ?

A. $\Delta>0$ for the forward reaction
B. $\Delta H=0$ for the reverse reaction
C. $\Delta<0$ for the forward reaction
D. Sign of the ΔH cannot be predicted based on this information.

Answer: A

- View Text Solution

24. The equilibrium constant of the following reactions are :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O: K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}: \mathrm{K}_{3}$
The equilibrium constant (K) for the reaction:
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{K}{\Longleftrightarrow} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
A. $K_{2}^{3} \frac{K_{3}}{K_{1}}$
B. $K_{1} \frac{K_{3}^{3}}{K_{2}}$
c. $K_{2} \frac{K_{3}^{3}}{K_{1}}$
D. $K_{2} \frac{K_{3}}{K_{1}}$

Answer: C

- View Text Solution

25. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the mavable piston fitted in the container. The maximum volume of the conatiner, when pressure of CO_{2} attains its maximum value will be :

Give that : $\mathrm{SrCO}_{3}(s) \Leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g)$
$K_{p}=1.6 \mathrm{~atm}$
A. 2 litre
B. 5 litre
C. 10 litre
D. 4 litre

Answer: B

1. If there is no change in concentration, why is the equilibrium state considered dynamic ?

- View Text Solution

2. For a given reaction at a particular temprature, the equilibrium constant value. Is the value of Q also constnat ? Explain.

- View Text Solution

3. What is the relation between K_{p} and K_{C}. Give one example for which
K_{p} is equal to K_{C}.
4. For a gaseous homogeneous reaction at equilibrium, number of moles of products are greater than the number of moles of reactants. Is K_{C} is larger or smaller than K_{P} ?

- View Text Solution

5. When the numerical value of the reaction quotient (Q) is greater than the equilibrium constant (K), in which direaction does the reaction proceed to reach equilibrium ?

- View Text Solution

6. For the reaction: $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g): \Delta H$ is -ve.

- View Text Solution

7. State Le - Chaterlier principle.
8. Consider the following reactions,
(a) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$ (b) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ (c)
$S(s)+3 F_{2}(g) \Leftrightarrow S F_{6}(g)$
In each of the above reaction find out whether you have in increase (or) decrease the volume to increase th yield of the product.

D View Text Solution

9. State law of mass action.

- View Text Solution

10. Explain how will you predict the direaction of an equilibrium reaction.

- View Text Solution

1. Derive a general expression for the equilibrium constant K_{P} and K_{C} for the reaction.
$3 H_{2}(g)+N_{2}(g) \Leftrightarrow 2 N H_{3}(g)$

- View Text Solution

2. Write a balanced chemical equation for an equilibrium reaction for which the equilibrium constant is given by expression ?
$K_{C}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$

D View Text Solution

3. What is the effect of added inert gas on the reaction at equilibium at constant volume ?
4. Derive the ralation between K_{P} and K_{C}.

- View Text Solution

5. One mole of $P C l_{5}$ is heated in one litre closed container. If 0.6 mole of chlorine is found at equilibium, calculate the value of equilibrium constant.

- View Text Solution

6. For the reaction : $\mathrm{SrCO}_{3}(s) \Leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g)$, the value of equilibrium constnat $K_{P}=2.2 \times 10^{-4}$ at 1002 K . Calculate K_{C} for the reaction.

- View Text Solution

7. To study the decomposition of hydrogen iodide, a student fills an evacuated 3 litre flask with 0.3 mole of HI gas and allows the reaction to proceed at $500^{\circ} \mathrm{C}$. At equilibrium he found the concentratin of HI which is equal to 0.05 M . Calculate K_{C} and K_{P} for this reaction.

- View Text Solution

8. Oxidation of nitrogen monoxide was strudied at $200^{\circ} \mathrm{C}$ with initial pressure of 1 atm NO and 1 atm of O_{2}. At equilibrium partial pressure of oxygen is found to be 0.52 atm . Calculate K_{P} value.

- View Text Solution

9.1 mol of $C H_{4}$, 1 mole of $C S_{2}$ and 2 mole of $H_{2} S$ are 2 mol of H_{2} are mixed in a 500 mL flask.

The equilibrium constant for the reaction $K_{C}=4 \times 10^{-2} \mathrm{~mol}^{2}{ }^{2} \mathrm{lt}^{-2}$. In which direaction will the reaction proceed to reach equilibrium ?
10. At particular temperature $K_{C}=4 \times 10^{-2}$ for the reaction
$H_{2} S(g) \Leftrightarrow H_{2}(g)+\frac{1}{2} S_{2}(g)$
Calculate K_{C} for each of the following reaction
(i) $2 H_{2} S(g) \Leftrightarrow 2 H_{2}(s)+S_{2}(g)$
(ii) $3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{~S}_{2}(\mathrm{~g})$

- View Text Solution

11. 28 g of nitrogen and 6 g hydrogen were mixed in a 1 litre closed container. At equilibrim $17 \mathrm{~g} \mathrm{NH}_{3}$ was produced. Calculate the weight of weight of nitrogen, hydrogen at equilibrium.

D View Text Solution

12. The equilibtium for the dissociation of $X Y_{2}$ is given as,
$2 X Y_{2}(g) \Leftrightarrow 2 X Y(g)+Y_{2}(g)$
if the degree of dissociation x is so small compared to one. Show that $2 K_{P}=P x^{3}$ where P is the total pressure and K_{P} is the dissociation equilibrium constant of $X Y_{2}$.

- View Text Solution

13. A sealed container was filled with 1 mol of $A_{2}(\mathrm{~g}), 1 \mathrm{~mol} B_{2}(\mathrm{~g})$ at 800 K and total pressure 1.00 bar. Calculate the amounts of the components in the mixture at equilibrium given that $\mathrm{K}=1$ for the reaction :
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$

D View Text Solution

14. Deduce the Vant Hoff's equation.

- View Text Solution

15. The equilibrium constant K_{P} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ is 8.19×10^{2} at 298 K and 4.6×10^{-1} at 498 K . Calculate ΔH^{0} for the reaction.

- View Text Solution

16. The partial pressure of carbon dioxide in the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is 1.017×10^{-3} atm at $500^{\circ} \mathrm{C}$.
Calculate K_{P} at $600^{\circ} C$ for the reaction. ΔH for the reaction is $181 \mathrm{kJmol}^{-1}$ and does not change in the given range of temperature.

- View Text Solution

17. Consider the following reaction ,
$F e^{3+}(a q)+S C N^{-}(a q) \Leftrightarrow[F e(S C N)]^{2+}(a q)$
A solution is made with initial $\mathrm{Fe}^{3+}, \mathrm{SCN}^{-}$concentration of $1 \times 10^{-3} M$ and $8 \times 10^{-4} M$ respectively. At equilibrium $[F e(S C N)]^{2-}$ constant.

- View Text Solution

18. The atmospheric oxidation of $\mathrm{NO} 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ was studied with initial pressure of 1 atm of NO and 1 atm of O_{2}. At equilibrium, partial pressure of oxygen is 0.52 atm . Calculate K_{p} of the reaction.

- View Text Solution

19. The following water gas shift reaction is an important industrial process for the production of hydrogen gas .
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
At a given temperature $K_{p}=2.7$. If 0.13 mol of $\mathrm{CO}, 0.56 \mathrm{~mol}$ of water , 0.78 mol of CO_{2} and 0.28 mol of H_{2} are introduced into a 21 . flask, find out in which direction must the reaction proceed to reach equilibrium.
20.1 mol of $P C l_{5}$, kept in a closed container of volume of $1 \mathrm{dm}^{3}$ and was allowed to attain equilibrium at 423 K . Calculate the equilibrium composition of reaction mixture.
(The K_{C} value for PCl_{5} dissociation at 423 K is 2)

- View Text Solution

21. The equilibrium constant for the following reaction is 0.15 at 298 K and 1 atm pressure .

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g), \Delta H_{f}^{\circ}=57.32 \mathrm{kJmol}^{-1}
$$

The reaction conditions are altered as follows .
(a) The reaction temperature is altered to $100^{\circ} C$ keeping the pressure at 1 atm , Calculate the equilibrium constant .

- View Text Solution

22. One mole of H_{2} and mole of I_{2} are allowed to attain equilibrium in 1 lit container. If the equilibrium mixture contains 0.4 mole of HI . Calculate the equilibrium constant .

- View Text Solution

23. The equilibrium concentration of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and H_{2} are $1.8 \times 10^{-2} M, 1.2 \times 10^{-2} \mathrm{M}$ and $3 \times 10^{-2} M$ respectively. Calculate the equilibrium constant for the formation of NH_{3} and N_{2} and H_{2}. [Hint : $\mathrm{M}=\mathrm{mol} \mathrm{lit}^{-1} \mathrm{~J}$

- View Text Solution

24. The equilibrium constant at 298 K for a reaction is 100 ,

$$
A+B \Leftrightarrow C+D
$$

If the initial concentration of all the four species is 1 M , the equilibrium concentration of D (in mol lit^{-1}) will be
25. For an equilibrium reaction $K_{p}=0.0260$ at $25^{\circ} C$ and $\Delta H=32.4 \mathrm{kJmol}^{-1}$. Calculate K_{p} at $37^{\circ} \mathrm{C}$.

- View Text Solution

Additional Questions Solved Choose The Correct Answer

1. Which of the following represents physical equilibrium ?
A. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
B. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: C

2. Which one of the following is an example of chemical equilibrium ?
A. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
B. $I_{2}(s) \Leftrightarrow I_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(I)$
D. $\mathrm{NH}_{2} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g})$

Answer: A

- View Text Solution

3. Which one of the following does not undergo sublimation ?
A. lodine
B. water
C. Camphor
D. Ammonium chloride

Answer: B

- View Text Solution

4. At chemical equilibrium ,
A. rate of forward reaction $=$ rate of backward reaction
B. rate of forward reaction $>$ rate of backward reaction
C. rate of forward reaction $<$ rate of backward reaction
D. rate of forward reaction \propto rate of backward reaction

Answer: A

- View Text Solution

5. Which of the following is an example of homogeneous equilibrium?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)$
B. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}(g)$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $2 \mathrm{CO}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+C(s)$

Answer: C

- View Text Solution

6. Which of the following is an example of heterogeneous equilibrium ?
A. Synthesis of HI
B. Dissociation of PCl_{5}
C. `Acid hydrolysis of ester
D. Decomposition of limestone

Answer: D

7. Statement I: In dissociation of $P C l_{5}$ to PCl_{3} and $\mathrm{Cl}_{2}, K_{P}>K_{C}$

Statement II: In dissociation of $P C l_{5}, \Delta n_{g}=-$ ve and so $K_{P}>K_{C}$
A. Statement I \& II are correct and statement II is the correct explanation of statement I.
B. Statement I \& II are correct but statement II is not the correct explanation of statement I.
C. Statement I is correct but statement II is wrong .
D. Statement I is wrong but statement II is correct .

Answer: C

- View Text Solution

8. In the reaction , $2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{2}(g)$
A. $K_{P}=K_{C}$
B. $K_{P}<K_{C}$
C. $K_{P}>K_{C}$
D. $K_{P}=\frac{1}{K_{C}}$

Answer: C

- View Text Solution

9. In which of the following reaction K_{p} is equal to K_{C} ?
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
C. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}$

Answer: A

10. In the equilibrium reaction $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ whose concentration remains constant at a given temperature?
A. CaO
B. CO_{2}
C. CaCO_{3}
D. Both (a) and (c)

Answer: D

- View Text Solution

11. Consider the following equilibrium reaction and relate their equilibrium constants
(i) $\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}, \mathrm{K}_{1}$
(ii) $2 \mathrm{NO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}, \mathrm{~K}_{2}$
(iii) $\mathrm{N}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}, \mathrm{~K}_{3}$
A. $K_{3}=K_{2}=K_{1}$
B. $K_{1} \times K_{3}=K_{2}$
C. $K_{1} \times K_{2}=K_{3}$
D. $\frac{K_{1}}{K_{2}}=K_{3}$

Answer: C

- View Text Solution

12. Statement I: A pure solid in an equilibrium reaction has the same concentration at a given temperature .

Statement II : The solid does not expand to fill its container and it has same number of moles of its volume.
A. Statement I and II are correct and statement II is the correct explanation of statement of I .
B. Statement I and II are correct but II is not the correct explanation of I.
C. Statement I and II are not correct
D. Statement I is wrong but II is correct

Answer: A

- View Text Solution

13. Find the Q value of the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ at an instant where concentration of H_{2}, I_{2} and HI are found to be 0.2 mol $L^{-1}, 0.2 \mathrm{molL}^{-1}$ and $0.6 \mathrm{molL}^{-1}$ respectively .
A. 48
B. 9
C. 0.9
D. 90

Answer: B

14. For the reaction $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g) K_{C}=0.21$ at 373 K . The concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are found to be $0.125 \mathrm{moldm}^{-3}$ and 0.5 $\mathrm{mol} \mathrm{dm}^{-3}$ respectively at a given temperature. Predict the direction of the reaction.
A. At equilibrium
B. reverse direction
C. forward direction
D. Both reverse and forward direction

Answer: B

D View Text Solution

15. Which of the following does not alter the equilibrium ?
A. catalyst
B. concentration
C. temperature
D. pressure

Answer: A

- View Text Solution

16. Statement I . In Haber's process , NH_{3} is liquefied and removed . Statement II . In manufacture of NH_{3}, liquefied and removal of NH_{3}, keeps the reaction moving in forward direction
A. Statement I and II are correct and II is the correct explanation of I .
B. Statement I and II are correct but II is not the correct explanation of
I.
C. Statement I is wrong but statement II is correct .
D. Statement I is correct but statement II is wrong .

- View Text Solution

17. In which of the following reaction, pressure has no effect?
A. $N_{2}+3 N_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
B. $2 S O_{2}(g)+O_{2}(g) \Leftrightarrow 2 S O_{3}(g)$
C. $\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
D. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$

Answer: D

View Text Solution

18. Among the following reactions which one has $K_{P}=K_{C}$?
A. $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
D. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

Answer: C

- View Text Solution

19. Statement I. Addition of an inert gas at constant volume has no effect on equilibrium.

Statement II. When an inert gas is added, the total number of moles of gases present in the container increases and total pressure also increases, the partial pressure of the products and reactants are unchanged .
A. Statement I and II are correct but statement II is not the correct explanation of I .
B. Statement I and II are correct and Statement II is the correct explanation of I .
C. Statement I is correct but statement II is not correct
D. Statement I is wrong but statement II is correct .

Answer: B

- View Text Solution

20. Which one of the following equation is not correct ?
A. $\Delta G^{\circ}=-R T \ln K$
B. $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S$
C. $-R T \ln K=\Delta H^{\circ}-T \Delta S^{\circ}$
D. $\ln k=\frac{\Delta H^{\circ}}{T}-\frac{\Delta S^{\circ}}{R}$

Answer: D

21. The equilibrium expressions , $\mathrm{K}_{C}=\left[\mathrm{CO}_{2}\right]$ represents the reaction .
A. $C(s)+O_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$
B. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
C. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$

Answer: B

- View Text Solution

22. Hydrogen molecule $\left(H_{2}\right)$ can be dissociated into hydrogen atoms (H)
. Which one of the following changes will not increase the number of atoms present at equilibrium ?
A. adding H atoms
B. increasing the temperature
C. increasing the total pressure
D. increasing the volume of the container

Answer: C

- View Text Solution

23. What is the expression for $K_{e q}$ for the reaction ,
$2 \mathrm{~N}_{2} \mathrm{O}(g)+O_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g) ?$
A. $\frac{\left[N_{2}\right]\left[O_{2}\right]}{[N O]}$
B. $\frac{[\mathrm{NO}]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2}}$
C. $\frac{[\mathrm{NO}]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]}$
D. $\frac{\left[\mathrm{N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]}{[N O]^{4}}$

Answer: B

24. What is the correct expression for the representation of the solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
A. $\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$
B. $\left[2 \mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{2}\right]$
C. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
D. $\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$

Answer: A

- View Text Solution

25. $H_{2}+S \Leftrightarrow H_{2} S+$ energy

In this reversible reaction, select the factor which will shift the equilibrium to the right.
A. adding heat
B. adding $H_{2} S$
C. blocking hydrogen gas reaction
D. removing hydrogen sulphide gas

Answer: A

- View Text Solution

26. What effect does a catalyst have on the equilibrium position of a reaction?
A. a catalyst favours the formation of products
B. a catalyst favours the formation of reactants
C. a catalyst does not change the equilibrium position of a reaction
D. a catalyst may favour reactants or product formation, depending upon the direction in which the reaction is written.

Answer: C

27. A chemist dissolves an excess of BaSO_{4} in pure water at $25^{\circ} \mathrm{C}$ if its $K_{s p}=1 \times 10^{-10}$. What is the concentration of barium in the water ?
A. $10^{-4} \mathrm{M}$
B. $10^{-5} \mathrm{M}$
C. $10^{-15} \mathrm{M}$
D. $10^{-6} \mathrm{M}$

Answer: C

D View Text Solution

28. If in a mixture where $Q=K$, then what happens ?
A. the reaction shift towards products
B. the reaction shift towards reactants
C. nothing appears to happen, but forward and reverse reactions are continuing at the same rate
D. nothing happens

Answer: C

- View Text Solution

29. If dissociation for reaction $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$ is 20% at 1 atm pressue. Calculate the value of K_{C}.
A. 0.04
B. 0.05
C. 0.07
D. 0.06

Answer: B

30. What would be the value of Δn_{g} for the reaction $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) ?$
A. 1
B. 0.5
C. 2
D. 1.5

Answer: C

- View Text Solution

31. Which of the following is not a general characteristic of equilibrium involving physical processes ?
A. Equilibrium is possible only in a close system at a given
B. All measurable properties of the system remains constant
C. All the physical processes stop at equilibrium
D. The opposing processes occur at the same rate and there is dynamic but stable condition

Answer: C

- View Text Solution

32. At 500 K , equilibrium constant K_{C} for the following reaction is 5 , $\frac{1}{2} H_{2}(g)+\frac{1}{2} t_{2}(g) \Leftrightarrow H I(g)$
what would be the equilibrium constant K_{C} for the reaction
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
A. 0.44
B. 0.04
C. 25
D. 2.5

Answer: B

- View Text Solution

33. For the reaction $2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+O_{2}(g), K_{C}=1.8 \times 10^{-6}$ at $185^{\circ} \mathrm{C}$. At the same temperature the value of K_{C} for the reaction. $N O(g)+\frac{1}{2} O_{2} \Leftrightarrow \mathrm{NO}_{2}(g)$ is
A. 0.9×10^{6}
B. 7.5×10^{2}
C. 1.95×10^{-3}
D. 1.95×10^{3}

Answer: B

- View Text Solution

34. Which of the following reaction will be favoured at low pressure ?
A. $N_{2}+O_{2} \Leftrightarrow 2 N O$
B. $H_{2}+I_{2} \Leftrightarrow 2 H I$
C. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
D. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

Answer: C

- View Text Solution

35. Consider the reaction $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is a closed container at equilibrium . What would be the effect of addition of CaCO_{3} on the equilibrium ?
A. increases
B. remains unaffected
C. decreases
D. unpredictable

Answer: B

D View Text Solution

36. For the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ the forward reaction at constant temperature is favoured by \qquad
A. introducing an inert gas at constant volume
B. introducing $\mathrm{PCl}_{3}(\mathrm{~g})$ at constant volume
C. introducing $\mathrm{PCl}_{5}(g)$ at constant volume
D. introducing $\mathrm{Cl}_{2}(\mathrm{~g})$ at constant volume

Answer: C

D View Text Solution

37. The equilibrium of the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ will shift to product side when
A. $K_{p}>1$
B. $Q<K_{p}$
C. $Q=K_{p}$
D. $Q=2 K_{p}$

Answer: B

- View Text Solution

38. NO_{2} is involved in the formation of smog and acid rain. A reaction that is important in the formation of NO_{3} is $O_{3}(g)+N O(g) \Leftrightarrow O_{2}(g)+N O_{2}(g) K_{C}=6.0 \times 10^{34}$. If the air over a section of New Delhi contained $1.0 \times 10^{6} \mathrm{M}$ of $O_{3}, 1.0 \times 10^{-5} \mathrm{M}$ of $N O, 2.5 \times 10^{-4} \mathrm{M}$ of $N O_{2}$ and $8.2 \times 10^{-3} \mathrm{M}$ of O_{2}, what can we conclude ?
A. there will be tendency to form more NO and O_{2}
B. there will be tendency to form more NO_{2} and O_{2}
C. there will be tendency to form more $N O_{2}$ and O_{3}
D. there will no tendency for chane because the reaction is at equilibrium

Answer: B

- View Text Solution

39. Haemoglobin (Hb) forms bond with oxygen and given oxyhaemoglobin $\left(\mathrm{HbO}_{2}\right)$. This process is partially regulated by the concentration of $\mathrm{H}_{3} \mathrm{O}(+)$ and dissolved CO_{2} in blood as $\mathrm{HbO}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{2} \Leftrightarrow \mathrm{H}^{+}-\mathrm{Hb}-\mathrm{CO}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ If there is production of lactic acid and and CO_{2} during a muscular exercise, then \qquad
A. more HbO_{2} is formed
B. more O_{2} is released
C. CO_{2} is released
D. both (b) and (c)

Answer: B

- View Text Solution

40. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}+x k C a l$, one mole of N_{2} reacts with 3 moles of H_{2} at equilibrium. . Then the value of α (degree of dissociation) is approximately \qquad . P is the pressure at equilibrium
A. $\frac{p\left(\sqrt{27 K_{p}}\right)}{8}$
B. $\frac{8 P}{K_{p} \sqrt{27}}$
C. $\frac{p \sqrt{27}}{8 K_{p}}$
D. $\frac{n}{v}$

Answer: A

Additional Questions Solved Match The Following

Match the following.
1 List-I
A. $\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})$
B. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
1.
D. Sugar $(\mathrm{s}) \rightleftharpoons$ Sugar (solution)
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}1 & 4 & 3 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}3 & 2 & 1 & 4\end{array}$
D. $A \quad B \quad C \quad D$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$

Answer: A

- View Text Solution

List-I
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
2.
D. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

List-II

1. $\Delta \mathrm{n}_{\mathrm{g}}=1$
2. $\Delta \mathrm{n}_{\mathrm{g}}=0$
3. $\Delta \mathrm{n}_{\mathrm{g}}=-1$
4. $\Delta \mathrm{n}_{\mathrm{g}}=2$
A. $A \quad B \quad C \quad D$
$\begin{array}{llll}4 & 2 & 1 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 3 & 1 & 2 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 4 & 3 & 2\end{array}$

Answer: B

- View Text Solution

List-I

A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
B. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
C. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

List-II

1. $\Delta n_{g}=2$
2. $\Delta \mathrm{n}_{\mathrm{g}}=-1$
3. $\Delta n_{g}=1$
4. $\Delta n_{g}=0$
5.

$\begin{array}{llll}A & B & C & D\end{array}$
A. $\begin{array}{llll}4 & 1 & 2 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}2 & 3 & 1 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 4 & 3 & 2\end{array}$

Answer: A

- View Text Solution

List-I

A. Decomposition of water at 500 K
B. Oxidation of nitrogen at 1000 K
C. Dissociation of bromine monochloride $3 . \mathrm{K}_{\mathrm{C}}=4.1 \times 10^{-48}$ at 1000 K
D. Formation of HI at 700 K
4.
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}2 & 1 & 4 & 3\end{array}$
D. $\begin{array}{lllll}A & B & C & D\end{array}$
$\begin{array}{llll}1 & 3 & 2 & 4\end{array}$

List-II

1. $\mathrm{K}_{\mathrm{C}}=5$
2. $\mathrm{K}_{\mathrm{C}}=57.0$
3. $\mathrm{K}_{\mathrm{C}}=1 \times 10^{-30}$

- View Text Solution

List-I

A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
5.

List-II

1. $\mathrm{K}_{\mathrm{p}}=p_{\mathrm{CO}_{2}}$
2. $\mathrm{K}_{\mathrm{P}}=\frac{4 x^{2}}{(a-x)(b-x)}$
3. $\mathrm{K}_{\mathrm{P}}=\frac{x^{2} \cdot \mathrm{P}}{(a-x)(a+x)}$
4. $\mathrm{K}_{\mathrm{p}}=\frac{4 x^{2}(a+b-2 x)^{2}}{\mathrm{p}^{2}(a-x)(b-3 x)^{3}}$

A $\begin{array}{cccc}A & B & D\end{array}$
$\begin{array}{llll}1 & 4 & 2 & 3\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
c. $\begin{array}{llll}A & B & C\end{array}$
$\begin{array}{llll}3 & 2 & 1 & 4\end{array}$
D. $\begin{array}{cccc}A & B & C & D \\ 4 & 1 & 3 & 2\end{array}$

Answer: B

1. Transport of oxygen by Hemoglobin in our body is a reaction.

- View Text Solution

2. The temperature at which the solid and liquid phases of a substance are at equilibrium is called

- View Text Solution

3. The temperature at which the liquid and vapour phases are at equilibrium is called

- View Text Solution

4. \qquad law is used to explain gas-solution equilibrium processes.
5. In the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, the K_{p} value is equal to

- View Text Solution

6. The expression of K_{C} for the reaction $\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ is equal to..........

- View Text Solution

7. The expression of K_{p} for the reversible reaction $2 \mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})$

- View Text Solution

8. The Δn_{g} value for the reaction $2 \mathrm{NO}(g)+O_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is

- View Text Solution

9. The correct differential form of van't Hoff equation is

- View Text Solution

10. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the equilibrium constant K_{C} is

- View Text Solution

11. $P C l_{5}$ is kept in a closed container at a temperature of 250 K the equilibrium concentrations. $\mathrm{PCl}_{5}, P C l_{3}$ and $C l_{2}$ are 0.045 moles L^{-1}, 0.096 moles $L^{-1}, 0.096$ moles L^{-1} respectively. The value of equilibrium constant for the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ will be

- View Text Solution

12. Equilibrium constant changes with \qquad

- View Text Solution

13. For the reaction $2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ at 720 K , the equilibrium constant value is 50 . The equilibrium constant for the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ at the same temperature will be \qquad

- View Text Solution

14. If equilibrium constant for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 298 K is 2.54 , the value of equilibrium constant for the reaction $\frac{1}{2} N_{2}+\frac{3}{2} H_{2} \Leftrightarrow N H_{3}$ will be

- View Text Solution

15. The chemical system at equilibrium is not affected by addition of

- View Text Solution

16. A catalyst will increase the rate of a chemical reaction by lowering the

- View Text Solution

17. In a closed system $A(S) \Leftrightarrow 3 B(g)+3 C(g)$

If partial pressure of C is doubled, then partial pressuer of B will be
Time the original value.

- View Text Solution

18. Cosider the following gasecous equilbria with equilibria with equilibrium constants K_{1} and K_{2} respectively
$S O_{2}+\frac{1}{2} O_{2}(g) \Leftrightarrow S O_{3}(g)-K_{1}$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}(\mathrm{~g})-\mathrm{K}_{2}$
The equilibrium constants are related as

- View Text Solution

19. K_{p} of the following reaction at 700 K is $1.3 \times 10^{-3} \mathrm{~atm}^{-1}$. The K_{C} at same tempertaure for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ will be.

- View Text Solution

20. For the reaction $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$ at $250^{\circ} \mathrm{C}$, then value of K_{c} is 26 then the value of K_{p} on the same temperature wil be \qquad

- View Text Solution

21. In the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$, the value of the eqilibrium constant depends on

- View Text Solution

22. K_{1} and K_{2} are velocity constant of forward and backward reaction. The equilibrium constant K_{c} of the reaction is

- View Text Solution

23. The equlibirium constant of the reaction $3 C_{2} H \Leftrightarrow C_{6} H_{6}$ is 4.0 at temperature of T.K if the equilbrium concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ is 0.5 mole L^{-1}, the concentration of $C_{6} H_{6}$ is

D View Text Solution

24. The equilibrium constant for the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 5 . If the euilibrium constant mixture contains equal moles of SO_{3} and SO_{2} the equilibrium partial pressure of O_{2} gas is \qquad

- View Text Solution

25. In the rection $N H_{4}(s) \Leftrightarrow(g)+H C l(g)$ the value of Δn_{g} is

Additional Questions Solved Choose The Odd One Out

1. Choose the odd one out .
A. see -saw
B. tuh of war
C. sublimation of camphor
D. Acid hydrolysis of an ester

Answer: A::C::D

D View Text Solution

2. Choose the odd one out.
A. Synthesis of hydrogen iodide
B. Decomposition of calcium carbonate
C. sublimation of iodine
D. dissociation of PCl_{5}

Answer: A::B::D

- View Text Solution

3. Choose the odd one out.
A. synthesis of HI
B. Dissociation of PCl_{5}
C. Sunthesis of NH_{3}
D. Decomposition of CaCO_{3}

Answer: A::C::D

4. Choose the odd one out .
A. $2 C O_{(g)} \Leftrightarrow C O_{2(g)}+C_{(s)}$
B. $\mathrm{Ag}_{2} \mathrm{O}_{s}+2 \mathrm{NH}_{3(a q)} \Leftrightarrow 2 \mathrm{AgNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{i}$
C. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$
D. $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(g)}$

Answer: A::B::C

- View Text Solution

5. Choose the odd one out .
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{g}$
B. $2 C O_{g} \Leftrightarrow C O_{2(g)}+C_{(s)}$
C. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 S_{3(g)}$
D. $H_{2(g)}+\mathrm{Cl}_{2(g)} \Leftrightarrow 2 H C l_{(g)}$

D View Text Solution

Additional Questions Solved Choose The Correct Pair

1. Choose the corrent pair.
A. $Q=K_{c}$: Reaction is in equilibrium state
B. $Q<K_{c}$: Reaction proceed in reverse direction
C. $Q>K_{c}$: Reaction proceed in both directions
D. $Q=K_{C}:$ Reaction proceed in both directions

Answer: A::B::C

- View Text Solution

2. Choose the corrent pair.
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}: \Delta n_{g}=-v e$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}: \Delta n_{g}=-v e$
C. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}: \Delta n_{g}=+v e$
D. $2 \mathrm{NH}_{3(g)} \Leftrightarrow N_{2(g)}+3 H_{2(g)}: \Delta n_{g}=+v e$

Answer: A::B::C::D

- View Text Solution

3. Choose the corrent pair.
A. $K_{p}=K_{c}$: Sythensis of HI
B. $K_{p}>K_{c}$, Dissociation of PCl_{5}
C. $K_{p}<K_{c}$: sythesis of $S O_{3}$
D. $K_{p}<K_{c}$: Synthesis of NH_{3}

Answer: C

Additional Questions Solved Choose The Incorrect Pair

1. Choose the incorret pair.
A. Acid hydrolysis of an ester : Homogeneous equilbrium
B. Synthesis of Ammonia : Homogeneous equilibrium
C. Decomposition of CaCO_{3} : Homogeneous equilbrium
D. Synthesis of HI : Homogeneous equilibrium

Answer: A::B::C::D

D View Text Solution

2. Choose the incorret pair.
A. $\Delta n_{g}=0: H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. Det $<a n_{g}=2: 2 N_{3(g)} \Leftrightarrow N_{2(g)}+3 H_{2(g)}$
C. $\Delta n_{g}=0: P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
D. $\Delta n_{g}=0: P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$

Answer: A::B::C::D

- View Text Solution

Additional Questions Solved Assertion And Reason

1. Assertion (A): Chemical equilibrium is in a state of dynamic equilibrium.

Reason (R): At equilibrium the forward and backward reactions are proceeding at the same rate and no macroscopic change is observed.
A. Both (A) and (R) are correct and (R) is the correct explanation of (A),
B. Both (A) and (R) are correct but (R) is not the correct explanation of

> (A).
C. (A) is correct but (R) is wrong
D. (A) is wrong but (R) is correct

D View Text Solution

2. Assertion (A): In Haber's process, NH_{3} is liquefied and removed.

Reason (R): Because of the reaction keeps moving in the backward direction
A. Both (A) and (R) are correct and (R) is the correct explanation of (A),
B. Both (A) and (R) are correct but (R) is not the correct explanation of
(A).
C. (A) is correct but (R) is wrong
D. (A) is wrong but (R) is correct

Answer: B

3. Assertion (A): In the dissociation of $P C I_{5}$ at constant pressure and temperature addition of helium at equilibrium increases the dissociation of $P C I_{5}$

Reason (R) : Helium remove $C l_{2}$ from the field of aciton.
A. Both (A) and (R) are correct and (R) is the correct explanation of (A),
B. Both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. (A) is correct but (R) is wrong
D. (A) is wrong but (R) is correct

Answer: D

- View Text Solution

Additional Questions Solved Choose The Incorrect Statement

1. Choose the incorret statement.
A. In equilbirium mixture of ice and water kept in perfectly in perfectly insuled flask. Mass of ice and water does not change with time
B. The intensity of red colour increase when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate
C. On addition of catalyst the equilibrium constant value is not affected
D. Equilibrium constant for a reaction with negative ΔH value decrease as the timperature increases.

Answer: A::C::D

D View Text Solution

Additional Questions Solved 2 Mark Questions

1. Define the state of equilibrium.
2. What are the different types of equilibrium? Explain with example?

- View Text Solution

3. Explain about the equilibrium involving dissolution of solid in liquid with suitable example,

- View Text Solution

4. How is a gas-solution equilibrium exist?

- View Text Solution

5. What is meant by active mass? Give its unit.

- View Text Solution

6. Show that $K_{p}=K_{c}$ with two examples

- View Text Solution

7. Give two example of equilibrium reactions where $K_{p}>K_{c}$.

- View Text Solution

8. When will be $K_{p}<K_{C}$? Give two example

- View Text Solution

9. Write the K_{c} for the reaction $\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow H_{(a q)}^{+}+\mathrm{HCO}_{3}^{-}$

- View Text Solution

10. If $A \stackrel{K_{1}}{\Longleftrightarrow} B, B \stackrel{K_{2}}{\Longleftrightarrow} C, C{ }^{K_{3}}$ what is the value of K_{4} in $A \Leftrightarrow D$

- View Text Solution

11. Write the K_{p} and K_{c} for the following reactions.
$(i) 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(ii) $2 \mathrm{CO}(g) \Leftrightarrow \mathrm{CO}_{2}+C(s)$

- View Text Solution

12. Explain how the equilibrium constant K_{c} predict the extent of a reaciton.

- View Text Solution

13. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) K_{C}=4.1 \times 10^{-48}$ At 599 K
$N_{2}(g)+O_{2}(g) \Leftrightarrow \Leftrightarrow 2 N O(g) K_{c}=1 \times 10^{-30}$ at 1000 K
Predict the extent of the above two reactions.
14. Expolain about the extent of reaction of dissociation of bromine mono chloride at 1000 K .

- View Text Solution

15. What is the K_{c} value for formation of HI at 700 K ? Predict the extent of the reaction?

- View Text Solution

16. What is the K_{c} value of formation of HCl at 300 K ? Explain it.

- View Text Solution

17. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{CO}_{2}(g)$ at 1000 K . What is the K_{C} for this reaction ? Predict the extent of this reaction.
18. Define Q value for a chemical equilibrium reaction.

- View Text Solution

19. Explain the diagrammatic expression about the direction of reaction.

reactants \rightarrow products equilibrium products \rightarrow reactants

- View Text Solution

20. Explain about the effect of catalyst in an equilibrium reaction ?

- View Text Solution

21. For the following equilibrium , $K_{c}=6.3 \times 10^{14}$ at 1000 K
$N O(g)+O_{3}(g) \Leftrightarrow N O_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilbrium are elementary bimolecular reactions what is K_{C} for the reverse reaction?

- View Text Solution

22. Explain : Why pure liquids and solids can be ignored while writing the value of equilibrium constants.

- View Text Solution

23. A sample of $\mathrm{HI}(\mathrm{g})$ is placed in a flask a pressure of 0.2 atm . At equilibrium partial pressure of $\mathrm{HI}(\mathrm{g})$ is 0.04 atm . What is K_{p} for the given equilibrium ?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
24. The equilibrium constant expression for a gass reaciton is
$K_{C}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balaced chemical equation corresponding to this expression.

- View Text Solution

25. Predict which of the following will have appreciable concentration of reactions and produst:
$(a) C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g}): K_{c}=3.7 \times 108$
(c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=1.8$

- View Text Solution

26. Write the equilibrium constant (K_{c}) expression for the following reactions.
$(i) C u^{2+}(a q)+2 A g(s) \Leftrightarrow C u(s)+2 A g^{+}(a q)$
(ii) $4 \mathrm{Hcl}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

- View Text Solution

27. The value of Ke for the raction $2 A \Leftrightarrow B+C$ is 2×10^{3}. At a given time . The composition of reaction mixture is $[A]=[B]=[c]=3 \times 10^{-4} M$. In which direciton the reaction will proceed ?

- View Text Solution

28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(a) Write an expression for K_{p} for the above reaction.
(b) How will the values of K_{p} and composition of equilibrium mixture bge affected by (i) increasing the pressure (ii) increasing the temperature (iii) using a catalyst ?
29. Explain about the formation of solid-liquid equilibrium with suitable example.

- View Text Solution

2. How is liquid -vapour equilibrium exist ?

- View Text Solution

3. What is meant by boiling point and condensation point of the liquid?

- View Text Solution

4. Define melting point (or) freezing point of the substance
5. Illustrate the formation of solid-vapour equilibrium with suitable example

- View Text Solution

6. Give threee examples for solid vapour equilbrium.

- View Text Solution

7. Explain the following diagrams.
8. What are the types of chemical equilibrium? Explain with suitable example.

- View Text Solution

9. Write the value of K_{p} and K_{C} equation for $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

- View Text Solution

10. Cosider the following equilibrium reaction and relate their equilibrium constants
(i) $N_{2}+O_{2} \Leftrightarrow 2 N O, K_{1}$
(ii) $2 \mathrm{NO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}, \mathrm{~K}_{2}$
$($ iii $) \mathrm{N}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}, \mathrm{~K}_{3}$
11. Explain the effect of concentration in an equilibrium state?

- View Text Solution

12. Consider the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$. Explain the effect of pressure on this equilibrium reaction.

- View Text Solution

13. Why pressure has no effect on the synthesis of HI ?

- View Text Solution

14. Explain the effect of temperature on the following equilbrium reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{2}(g) \Delta H=-92.2 K j .
$$

15. How does oxygen exchanges between maternal and fetal is provided by the maternal blood in the placenta woman?

- View Text Solution

16. What is K_{c} for the follwoing reaction in state of equilibrium ?
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
Given $\left[\mathrm{SO}_{2}\right]=0.6 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$, and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$

- View Text Solution

17. At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$. iodine vapours conatain 40% by volume of idine atoms in the equilibrium $I_{2}(g) \Leftrightarrow 2 I(g)$

Calculate K_{p} for the equilibrium.

- View Text Solution

18. A mixture of 1.57 mol of $N_{2} 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant K_{c} for the reactin.
$N_{2}(g)+3 H_{2}(g) j \Leftrightarrow 2 \mathrm{NH}_{3}(g) i s 1.7 \times 10^{-2}$
Is this reaction at equilibriuim ? if not, what is the direction of net rection ?

- View Text Solution

19. What is effect of :
(i) addition of H_{2} (ii) addition of $\mathrm{CH}_{3} \mathrm{OH}$ (iii) removal of CO (iv) removal of $\mathrm{CH}_{3} \mathrm{OH}$ On the euilibrium $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
A. Equilibrium will be shifted in the forward direction.
B. Equilibrium will be shifted in the backward direction.
C. Equilibrium will be shifted in the backward direction.
D. Equilibrium will be shifted in the forward direction

Answer: A

D View Text Solution

20. At 473 K , the equilibrium constant K_{c} for the decomposition of phosphorus pentachloride $\left(P C l_{5}\right) i s 8.310^{-3}$
.If decomposition proceeds as :
$P C l_{5}(g) \Leftrightarrow P C l_{3}+P C l_{3}(g)+C l_{2}(g), \Delta H=+124.0 \mathrm{Kjmol}^{-1}$
(a) Write an expression for K_{C} for the reaction.
(b) What is the value of K for the reverse reaction at the same temperature.
(c) What would be the effect on K_{C} if(i) More of $P C l_{3}$ is added (ii) Temperature is increased

D View Text Solution

21. Dihydrogen gas. used in Haber's process is produced by reacting methane from natural gas with high temperature stam. The first stage of
two stage reaction involves the formation of CO and H. In second stage,
CO formed in first stage is reacted with more steam in water gas shift reaction.
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}(\mathrm{~g})$
If a rection vessel at 400° is charged with an equimolar mixture of CO and steam so that $P_{C O}=P_{H_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium ? $K_{p}=0.1$ at 400°

- View Text Solution

22. The value of K_{c} for the reaction $3 O_{2}(g) i s 2.0 \times 10^{-50}$ and $25^{\circ} \mathrm{C}$. If equilbrium concentration of O_{2} in $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}. What is the concentration of O_{3} ?

- View Text Solution

23. The reaction $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ is at equilibrium at 1300 K in a 1 K flask. It also contain 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and unknown amount of CH_{4} in the flask.

Determine the cocentration of CH_{4} in the mixture. The equilbrium constant, K_{C} for the reaction at the given temperature is 3.90.

- View Text Solution

24. The following concentration were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K .

$$
\begin{aligned}
& {\left[N_{2}(g)\right]=1.5 \times 10^{-2} M} \\
& {\left[H_{2}(g)\right]=3.0 \times 10^{-2} M} \\
& {\left[N H_{3}\right]=1.2 \times 10^{-2} M}
\end{aligned}
$$

Calculate equilibrium constant.

- View Text Solution

25. In the reaction $A+B \Rightarrow C+D$, what will happen to the equilibrium is concentration of A is increased ?

The equilibrium constant for a reaction is 2×10^{-23} at $25^{\circ} \mathrm{C}$ and 2×10^{-2} at 50°. Is the reaction endothermic or exothermic ?
(c) Mention at least three ways by which the concetration of SO_{3} can be
increased in the following reaction in a state of equilibrium.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow(g)$

D View Text Solution

26. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at eqilibrium at 500 K and having concentration $1.59 \mathrm{M} \mathrm{PCl}_{3}, 1.59 \mathrm{M} \mathrm{Cl}_{2}$ and $1.41 \mathrm{M} \mathrm{PCl}_{5}$ Calculate K_{C} for the reaction $\mathrm{PCl}_{5} \Leftrightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

- View Text Solution

27. Give the equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ wih $K_{p}=0.15 \mathrm{~atm}$ at 298 K
(a) What is K_{p} using pressure in torr ?
(b) What is K_{C} using units of moles per litre.

- View Text Solution

1. Derive the value of equilibrium constants K_{p} and K_{c} for a general reaction
$x A+y B \Leftrightarrow l C+m D$

- View Text Solution

2. Derive the values of K_{C} and K_{P} for the synthesis of HI .

- View Text Solution

3. Derive the values of K_{p} and K_{C} for dissociation of PCl_{5}.

- View Text Solution

4. At certain temperature and under a pressure of 4 atm, PCl_{5} is 10% dissociated . Calculate the pressure at which PCl_{5} will be 20% dissociated at temperature remaining constant .

- View Text Solution

Additional Questions Solved Numerical Problems

1. Find the value of K_{c} for each of the following equilibria from the value of K_{p}
(a) $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{P}=1.8 \times 10^{-2}$ atm at 500 K
(b) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{P}=167$ atm at 1073 K

View Text Solution

2. What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of 1 Cl was 0.78 M ?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{C}=0.14$

- View Text Solution

3. Equilibrium constant K_{c} for the reaction , $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at 500 K is 0.061 , At particular time ,the analysis shows that the composition of the reaction mixture is 3.0 mol L^{-1} of $H_{2}, 0.50 \mathrm{~mol} L^{-1}$ of NH_{3}. Is the reaction at equilibrium ?
