びdoubtnut

CHEMISTRY

BOOKS - FULL MARKS CHEMISTRY (TAMIL ENGLISH)

QUANTUM MECHANICAL MODEL OF ATOM

Textual Evaluation Solved Choose The Correct Answer

1. Electrinoic configuration of species M^{2+} is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$ and its atomic weight is 56.The number of neutrons in the nuclcus of species M Is \qquad
A. 26
B. 22
C. 30
D. 24

Answer: C

D View Text Solution

2. The energy of light of wavelenth 45 nm is
A. $6.67 \times 10^{15} \mathrm{~J}$
B. $6.67 \times 10^{11} J$
C. $6.67 \times 10^{-18} J$
D. $6.67 \times 10^{-15} J$

Answer: C

- View Text Solution

3. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths i.e. γ_{1} and γ_{2} will be
A. $\frac{\gamma_{1}}{\gamma_{2}}=1$
B. $\gamma_{1}=2 \gamma_{2}$
C. $\gamma_{1}=\sqrt{25 \times 50 \gamma_{2}}$
D. $2 \gamma_{1}=\gamma_{2}$

Answer: B

- View Text Solution

4. Splitting of spectral lines in an electric field is called
A. Zeeman effect
B. Shielding effect
C. Compton effect
D. Staark effect

Answer: D

D View Text Solution

5. Based on equation

$$
E=-2.178 \times 10^{1-18} J\left(\frac{z^{2}}{n^{2}}\right)
$$

certain concluusions are written.Which of them is not correct ? (NEET)
A. Equation can be used to calculate the change in energy when the electron changes orbit
B. For $\mathrm{n}=1$. the electron has a more negative energy than it
does for $\mathrm{n}=6$ which means that the electron is more loosely
bound in the smallest allowed orbit
C. The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
D. Larger the value of n. the larger is the orbit radius

Answer: B

D View Text Solution

6. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon?
A. $\tan =6$ ton $=1$
B. $\mathrm{n}=5$ to $\mathrm{n}=4$
C. $n=510 n=3$
D. $n=6$ to $n=5$

Answer: D

D View Text Solution

7. Assertion The spectrum of He is expected to be similar to that of hydrogen Reason: He^{+}is also one electron system
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. f assertion is true but reason is false
D. If both assertion and reason are false

Answer: A

D View Text Solution

8. Which of the following pairs of d-orbitals will have electron density along the axes? (NEET Phase - II)
A. $d_{z}^{2}, d_{x z}$
B. $d_{x z}, d_{y z}$
C. $d_{z}^{2}, d_{(x)^{2}-y^{2}}$
D. $d_{x y}, d_{x^{2}-y^{2}}$

Answer: C

9. Two electrons occupying the same orbital are distinguished by.
A. azimuthal quantum number
B. spin quantum number
C. magnetic quantum number
D. orbital quantum number

Answer: B

D View Text Solution

10. The electronic configuration of Eu (atomic no.63)Gd (atomic no.64) and Tb (atomic no. 65) are (NEET-Phase II)
A. $[X e] 4 f^{6} 5 d^{1} 6 s^{2},[X e] 4 f^{7} 5 d^{1} 6 s^{2}$ and $[X e] 4 f^{8} 5 d^{\prime} 6 s^{2}$
B. $[X e] 4 f^{7}, 7 s^{2},[X e] 4 f^{7} 5 d^{1} 6 s^{2}$ and $[X e] 4 f^{9} 6 s^{2}$
C. $[X e] 4 f^{7}, 6 s^{2},[X e] 4 f^{8} 6 s^{2}$ and $[X e] 4 f^{8} 5 d^{1} 6 s^{2}$
D. $[X e] 4 f^{6} 5 d^{1},[X e] 4 f^{7} 5 d^{1} 6 s^{2}$ and $[X e] 4 f^{9} 6 s^{2}$

Answer: B

D View Text Solution

11. The maximum number of electrons in a sub shell is given by the expression.
A. $2 n^{2}$
B. $21+1$
C. $4 \mathrm{I}+2$
D. none of these

Answer: C

12. For d-electron, the orbital angular momentum is
A. $\sqrt{2 \frac{h}{2 \pi}}$
B. $\sqrt{\frac{2 h}{2 \pi}}$
C. $\sqrt{\frac{2 \times 4 h}{2 \pi}}$
D. $\sqrt{\frac{6 h}{2 \pi}}$

Answer: D

- View Text Solution

13. What is the maximum number of electrons that can be associated with the
A. 4
B. 6
C. 2
D. 10

Answer: C

- View Text Solution

14. Assertion:Number of raidal and angular nodes for 3 p orbital are1,1 respecticvely. Reason:Number of radial and angular nodes depends only on principle quantum number.
A. both assertion and reason are true and reason is the correct explanation of assertion.
B. both assertion and reason are true but reason is not the coreect explanation of assertion.
C. assertion is true but reason is false
D. both assertion and reason are false

Answer: C

- View Text Solution

15. The total number of orbitals associated with the principal quantum number $\mathrm{n}=3$ is \qquad
A. 9
B. 8
C. 5
D. 7

Answer: A

16. If $n=6$, the correct sequence for filling of electrons will be,.
A. $n s \rightarrow(n-2) \mathfrak{a r r}(n-1) d \rightarrow n p$
B. $n s \rightarrow(n-2) d \rightarrow(n-2) \mathfrak{a r r n p}$
C. $n s \rightarrow(n-1) \mathfrak{a r r n p} \rightarrow(n-1) d$
D. none of these are correct

Answer: A

- View Text Solution

17. Consider the following sets of quantum numbers:

$$
n \quad l \quad m \quad s
$$

(i) $\begin{array}{lllll}3 & 0 & 0 & +\frac{1}{2}\end{array}$
(ii) $\begin{array}{lllll}2 & 2 & 1 & -\frac{1}{2}\end{array}$
(iii) $\begin{array}{lllll}4 & 3 & -2 & +\frac{1}{2}\end{array}$
(iv) $1 \begin{array}{lllll}1 & 0 & -1 & +\frac{1}{2}\end{array}$
(v) $\begin{array}{lllll}3 & 4 & 3 & -\frac{1}{2}\end{array}$

Which of the following sets of quantum number is not possible?
A. (i),(ii),(iii)and(iv)
B. (ii),(iv)and(v)
C. (i)and(iii)
D. (ii),(iii)and(iv)

Answer: B

18. How many electrons in an atom with atomic number 105 can have $(\mathrm{n}+1)=8$?
A. 30
B. 17
C. 15
D. upredictable

Answer: B

- View Text Solution

19. Electron density in the yz plan of $3 d_{x} y$ orbital is.
A. zero
B. 0.5
C. 0.75
D. 0.9

Answer: A

- View Text Solution

20. If uncertainty in position and momentum are equal,then minimum uncertainty in velocity is
A. $\frac{1}{m} \sqrt{\frac{h}{\pi}}$
B. $\sqrt{\frac{h}{\pi}}$
C. $\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
D. $\frac{h}{4 \pi}$

Answer: C

21. A macroscopic particle of mass 100 g and moving at velocity of $100 \mathrm{cms}^{-1}$ will have a de Broglie wavelength of.
A. $66 \times 10^{29} \mathrm{~cm}$
B. $6.6 \times 10^{-30} \mathrm{~cm}$
C. $6.6 \times 10^{-31} \mathrm{~cm}$
D. $6.6 \times 10^{-32} \mathrm{~cm}$

Answer: C

D View Text Solution

22. The ration of de Broglie wavelentghs of a deuterium atom to that of an a-particicle,when the velocity of the former is five times greater than that of later is
A. 4
B. 0.2
C. 2.5
D. 0.4

Answer: D

D View Text Solution

23. The energy of an electron in the $3^{r} d$ orbit of hydogen atom is -
E.The energy of an electron in the first orbit will be
A. $-3 E$
B. $-\frac{E}{3}$
C. $-\frac{E}{9}$
D. $-9 E$

Answer: D

- View Text Solution

24. Time independent Schnodinger wave equation is......

- View Text Solution

25. which of the following does not represent the mathematical expression for the Heisenberg uncertainty principle?

- View Text Solution

Textual Evaluation Solved Write Brief Answer To The Following Questions

1. Which quantum number reveal information about the shape,energy,orientation and size of orbitals?

- View Text Solution

2. How many orbitals are possible for $n=4$?

D View Text Solution

3. How many radial nodes for $2 \mathrm{~s}, 4 \mathrm{p}, 5 \mathrm{~d}$ and 4 f orbitals exbitals ? How many angulars nodes?

D View Text Solution

4. The stabilization of a half fille d-orbitals is more pronouced than that of p-orbital why?

View Text Solution

5. Consider the following electroic arrangments for the d^{5} configuration.
(a) \square (b) \square (c) $1 / 1 / 1|1| 1$
(i) Which of these represents the ground state
(ii)Which configuration has the maximum exchange energy.

- View Text Solution

6. State and explain Pauli's exclusion principle .

- View Text Solution

7. Difine orbitals/What are the n and I values for $3 p_{x}$ and
$\left(4 d_{x}^{2}-y^{2}\right)$ electron?

D View Text Solution

8. Explain briefly the time independent schrodinger wave equation?

- View Text Solution

9. Calculate the uncertaimty in position of an electron,if $\triangle v=0.1 \%$ and $v=2.2 \times 10^{6} m s^{-1}$

D View Text Solution

10. Determine the values of all the four quantum numbers of the $8^{\text {th }}$ electron in o-atom and $15^{\text {th }}$ electron in Cl atom.

- View Text Solution

11. The quantim mechanical treatment of the hydrogen atom gives the energy vale: $E_{n}=\frac{-13.6}{n^{2}} e V$ atom $^{-1}$
(i) use thios expression to find $\triangle E$ between=3 and $\mathrm{n}=4$
(ii) Calcuilate the wavelength corresponding to the above transition.

D View Text Solution

12. How fast must a 54 g tennis ball travel in order to have a de Broglie wavelength that equal to that of a photon of green light $5400{ }^{0}$?

D View Text Solution

13. For each of the following,give the level designation,the allowable m values and the number of orbitals.
(i)n=4,l=2,(ii)n=5,l=3(iii)n=7,l=0`

- View Text Solution

14. Give the electronic configuration of Mn^{2+} and Cr^{3+}

- View Text Solution

15. Describe the Aufbau principle.

D View Text Solution

16. An atom of an element contains 35 electrons and 45 neutrons.Deduce
(i)the number of protons
(ii)the electronic configuration for the element
(iii)All the four quantum numbers for the last electron

View Text Solution

17. Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wave length associated with the electron revolving around the nucleus.

- View Text Solution

18. Calculate the energy required for the process.
$H e_{g}^{+} \rightarrow \mathrm{He}_{g}^{2+}=e^{-}$
The ionization energy for the H atom in its ground state is -13.6 eV $a \rightarrow m^{-}$

- View Text Solution

19. An ion with mass number 37 possesses unit negative charge.If the ion contains 11.1% more neutrons than electrons.Find the symbol of the ion.

- View Text Solution

20. The $L i^{2+}$ ion is a hydrogen like ion that can BE DESCRIBED BY THE Bohr model.Calculate the Bohr radius of the third orbit and calculate the energy of an electron in $4^{\text {th }}$ orbit.

- View Text Solution

21. What is the de Broglie wavelength (in cum) of a 160 g cricket ball travelling at $140 \mathrm{Km} \mathrm{hr}{ }^{-1}$.

- View Text Solution

22. Suppose that the uncertainty in determining the position of an electron in an orbit is 0.6 A what is the uncertainty in its momentum?

D View Text Solution

23. Show that if the measurement of the uncertainty in the location of the particle is equal to its de Broglie wavelength,the minimum uncertinty in its velocity ($\triangle v$) is equal to $\frac{1}{4} \pi$ of its velocity $(\mathrm{V}$)

D View Text Solution

24. What is the de Broglie length of an electron,which is accelerated from the rest,through a potential difference of 100v?
25. Identify the missing quantum numbers and the sub energy level

\mathbf{n}	\mathbf{l}	m	Sub energy level
$?$	$?$	0	4 d
3	1	0	$?$
$?$	$?$	$?$	5 p
$?$	$?$	-2	3 d

- View Text Solution

In Text Question Evaluate Yourself

1. Calculate the de Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1 keV .

- View Text Solution

2. Calculate the uncertainty in the position of an electron,if the uncertainty in its velocity is $5.7 \times 10^{5} \mathrm{~ms}^{-1}$
3. How many orbitals are possible in the $4^{\text {th }}$ energy level? $(n=4)$

D View Text Solution

4. Calculate the number of angular nodes and radial nodes present in 3d and 4 f orbitals.

- View Text Solution

5. Energy of an electron in hydrogen atom in ground state is -13.6 eV.what is the energy of the electron in the second exited state?

- View Text Solution

6. How many unpaired electorns are present in the ground state of $f e^{3+}(\mathrm{z}=26), \mathrm{Mn}^{\wedge}(2+)(\mathrm{Z}=25)^{\prime}$ and argon $(\mathrm{Z}=18)$?

D View Text Solution

7. Explain the meaning of the symbol $4 f^{2}$. Write all the four quantum numbers these electrons.

D View Text Solution

8. Which ion has the stable electronic configuration? Ni^{2+} or Fe^{3+}

D View Text Solution

1. Choose the correct answer

Which of the following experiment proves the presence of an electron in an atom
A. Rutherford's x-ray scattering experiment
B. Davisson and Germer experiment
C. J.J. Thomson cathode ray experiment
D. G.P. Thomson gold foil experiment

Answer: C

- View Text Solution

2. Choose the correct answer

Who proposed the dual nature of light to all forms of matter?
A. John Dalton
B. Neils Bohr

C. Albert Einstein

D. J.J. Thomson

Answer: C

D View Text Solution

3. Choose the correct answer

Which one of the following is the time independent Schrodinger wave equation?
A. $\triangle x . \triangle p \geq \frac{h}{4 \pi}$
B. $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}=0$
C. $\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-V) \Psi=0$
D. $\widehat{H} \Psi-E \psi=-\frac{8 \pi^{2} m}{h^{2}}$

D View Text Solution

4. Choose the correct answer

Which of the following provides the experimental justification of magnetic quantum number?
A. Zeeman effect
B. Stark effect
C. Uncertainty principle
D. Quantum condition

Answer: A
5. Choose the correct answer

What are the values of n, l, m and s for $3 P x$ electron?
A. 3,2,1,0
B. $3,1,-1,+1 / 2$
C. $3,2,+1,-1 / 2$
D. $3,0,0,+1 / 2$

Answer: B

D View Text Solution

6. Choose the correct answer

Identify the quantum number for $4 \mathrm{dx} 2-\mathrm{y} 2$ electron
A. $4,2,-2,+1 / 2$
B. $4,0,0,+1 / 2$
C. $4,3,2,+1 / 2$
D. $4,3,2,-1 / 2$

Answer: A

- View Text Solution

7. Choose the correct answer

How many Orbitals are possible in 3rd energy level?
A. 16
B. 9
C. 3
D. 27

Answer: B

8. Choose the correct answer

Which one of the following is the Correct increasing order of the effective unclear Charge felt by an electron?
A. $s>p>d>f$
B. $s<p<d<f$
C. $s>p>f>d$
D. $f<p<d<s$

Answer: A

D View Text Solution

9. Choose the correct answer

Which of the following is not use in writing electronic
configuration of an atom?
A. Aufbau Principle
B. Hund's rule
C. Pauli's exclusion principle
D. Heisenberg's uncertainty principle

Answer: D

- View Text Solution

10. Choose the correct answer

Which of the following is the expected configuration of $\mathrm{Cr}(\mathrm{Z}=24)$?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4} 4 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{3}$

Answer: A

- View Text Solution

11. Choose the correct answer

Which of the following is the actual configuration of $\mathrm{Cr}(\mathrm{Z}=24)$?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4} 4 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{3}$

Answer: B

Additional Questions Solved li Match The Following

1. Match the following

1.

List-I

A. Principal quantum number
B. Azimuthal quantum number
C. Magnetic quantum number
D. Spin quantum number

Code: A B C D
(a) 3
(b) $4 \begin{array}{llll}4 & 2 & 3 & 1\end{array}$
(c) $2 \begin{array}{llll}2 & 1 & 4 & 3\end{array}$
(d) $1 \quad 3 \div 24$
A. $A-3, B-4, C-1, D-2$
B. $A-4, B-2, C-3, D-1$
C. $A-2, B-1, C-4, D-3$
D. $A-1, B-3, C-2, D-4$

Answer: a

2. Match the following

List-I

A. s-orbital
B. p - orbital
C. d-orbital
D. f-orbital

Code: A B C
(a) $1 \begin{array}{lll} & 4\end{array}$
(b) $\begin{array}{llll}3 & 1 & 2\end{array}$
(c) $\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
$\begin{array}{lllll}\text { (d) } & 4 & 2 & 1 & 3\end{array}$
A. $A-1, B-4, C-3, D-2$
B. $A-3, B-1, C-2 . D-4$
C. $A-2, B-3, C-4, D-1$
D. $A-4, B-2, C-1, D-3$

Answer: C

- View Text Solution

1. The energy of an electron of hydrogen atom in $2^{\text {nd }}$ main shell is equal to.

- View Text Solution

2. The energy of an electron of $L i^{2+}$ in the $3^{r d}$ main shell is \qquad

- View Text Solution

3. The enegy of an electron of hydrogen atom in $4^{\text {th }}$ main shell in terms of KJ mol^{0-1} is

D View Text Solution

4. The Bohr's radius of $L i^{2+}$ of $2^{n d}$ orbit is
5. The formula used to calculate the Bohr'r radius is

- View Text Solution

6. de Broglie equation is.

- View Text Solution

7. The maximum number of electrons that can be accommodated in N shell is

- View Text Solution

8. The maximum number of electrons that can be accommodated in
F shell is \qquad
9. When $\mathrm{I}=0$,the number of electrons that can be accommodated in the subshell is.......

- View Text Solution

10. The formula used to calculate the angular momentum is

- View Text Solution

11. The region where the probality density function of electron reduces to zero is called

D View Text Solution

12. The value of $n, l m$ and s of $8^{\text {th }}$ electron in an oxygen atom are respectively.

D View Text Solution

13. In a sodium atom(atomic number=11 and mass number=23) and the number of neutrons

D View Text Solution

14. The idea of stationary orbits was first given by.

D View Text Solution

15. de Broglie equation is. \qquad
16. The outermost electronic configuration of manganese (at.no.=25)is

- View Text Solution

Additional Questions Solved Iv Choose The Odd One Out

1. Choose the odd one out
A. $n=1,1=0, m=0, s=+\frac{1}{2}$
B. $n=1,1=0, m=0, s=-\frac{1}{2}$
C. $n=2,1=2, m=0, s=-\frac{1}{2}$
D.

$$
n=4,1=3, m=-3,-2,-1,0,+1,+2,+3 s=-\frac{1}{2}
$$

D View Text Solution

2. Choose the odd one out
A. $n=1, k$ shell
B. $n=3, m$ shell
C. $n=4, n$ shell
D. $\mathrm{n}=0, \mathrm{k}$ shell

Answer: D

D View Text Solution
3. Choose the odd one out
A. s-orbital,symmetrical sphere
B. p-orbital,dumb bell shape
C. d-orbital,clover bell shape
D. f-orbital,dumb bell shape

Answer: D

- View Text Solution

4. Choose the odd one out
A. k shell, $2 e^{-}$
B. I shell, $8 e^{-}$
C. m shell, $18 e^{-}$
D. n shell, $18 e^{-}$

Answer: D

- View Text Solution

Additional Questions Solved V Choose The Correct Pair

1. Choose the corrrect pair
A. copper-29: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
B. Chromium-24 : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
C. Copper-29: $[A r] 3 d^{5} 4 s^{1}$
D. Chromium-24 : $[$ Ar $] 3 d^{9} 4 s^{2}$

Answer: C

2. Choose the corrrect pair
A. Principal qutantum number: s
B. Magnetic quantum number : -m,0,+m
C. Spin quantum number : $+\frac{1}{4}$ (or $)-\frac{1}{4}$
D. Azimuthal quantum number : $+\frac{1}{4}$ (or $)-\frac{1}{4}$

Answer: D

D View Text Solution

Additional Questions Solved Vi Choose The Correct Pair

1. Choose the corrrect pair
A. $E=h v$
B. $\mathrm{E}=m c^{2}$
C. $\gamma=m \frac{v}{h}$
D. $\gamma=\frac{h}{p}$

Answer: D

- View Text Solution

2. Choose the corrrect pair
A. Spin quantum number: s
B. Magnetic quantum number : m
C. Azimuthal quantum number : 1
D. Magnetix quantum number: 0

Answer: D

1. Assertion (A) : Cr with electronic configuration [Ar]3d5 4s1 is more stable than [Ar]3d4 4s2 .

Reason (R): Half filled orbitals have been found to have extra stability than partially filled orbitals.
A. A and R are correct and R is the correct explanation of A.
B. A and R are correct but R is not the correct the explanation of A.
C. A is correct but R is wrong.
D. A is wrong but R is correct.

Answer: A

- View Text Solution

2. Assertion (A): Copper (Z=29) with electronic configuration [Ar] 4s1

3d10 is more stable than [Ar]s 2 3d9.

Reason (R): Copper with [Ar] 4s1 3d10 is more stable due to symmetrical distribution and exchange energies of 4 electrons.
A. A and R are correct and R is the correct explanation of A.
B. A and R are correct but R is not the correct the explanation of A.
C. A is correct but R is wrong.
D. A is wrong but R is correct.

Answer: A

D View Text Solution

1. Choose the incorrect statement
A. Most of the a-particles were deflected through a small angle.
B. Most of the a-particles passed through the foil.
C. Very few a-particles were reflected back by 180°
D. Later,Rutherford'sa-ray scattering experiment results proved that Thomson's model was wrong.

Answer: A

- View Text Solution

Additional Questions Solved Ix Choose The Incorrect Statement

1. Choose the incorrect statement
A. The energies of electrons are continously reduced in the form of radiation.
B. The electron is revolving around the nucleus in a dynamic orbital.
C. Electrons can revolve only in those orbits in which the angular momentum(mvr) oof the electron must be equal to an intergral multiple of $1 \frac{h}{2 \pi}$.
D. In an atom,electrons are embedded like seeds in watermelon

Answer: C

D View Text Solution

2. Choose the incorrect statement
A. The region where the probality density of electron is zero,called nodal surface.
B. The probability of finding the electron is dependent of the direction of the mucleus
C. The number of radial nodes is equal to $\mathrm{n}+\mathrm{I}+1$.
D. The angular distribution function is equal to $\frac{1}{\sqrt{\pi}}$

Answer: A

- View Text Solution

3. Choose the incorrect statement
A. For an electron that has the quantum numbers $n=4$ and $m=-2$, the electron may be in $2 p$ orbital.
B. For an electron that has the quantum numbers $n=4$ and $m=-2$,the electron may be in $4 p$ orbital.
C. For an electron that has the quantum numbers $n=4$ and $m=-2$,the electron is the second main shell.
D. For an electron that has the quantum numbers $n=4$ and $\mathrm{m}=-2$,the electron must have spin quantum numbr as $+\frac{1}{2}$

Answer: B

D View Text Solution

Additional Questions Solved 2 Mark Questions

1. Write a note about J.J. Thomson's atomic model.
2. Explain about theory of electromagnetic radiation.

- View Text Solution

3. Explain how matter has dual character.

D View Text Solution

4. Explain about the significance of de Broglie equation

- View Text Solution

5. How many electrons can be accomdated in the shell I,m and n ?

- View Text Solution

6. How many electrons that can be accommodated in the subshells,p,d,f?

D View Text Solution

7. What are quantum numbers?

- View Text Solution

8. How many orbitals are possible in the 3rd energy level ?

D View Text Solution

9. What are diagram and diagram ?
10. What is meant by nodal surface?

- View Text Solution

11. Mention the shape of $\mathrm{s}, \mathrm{p}, \mathrm{d}$ orbitals.

D View Text Solution
12. Calculate the total number of angular nodes and radial nodes present in 4 p and 4 d orbitals.

D View Text Solution

13. Write the equation to calculate the energy of $n^{\text {th }}$ orbit.
14. Energy if an electron in hydrogen atom in ground state is -13.6 eV . What is the energy of the electron in the third excited state?

- View Text Solution

15. The energies of the same orbital decreases with an increase in the atomic number.Justify this statement.

D View Text Solution

16. State Hund's rule of maxium multiplicity.

D View Text Solution

17. How many unpaired electorns are present in the ground state of
(i) $C r^{2+}(Z=24)$ (ii) $\mathrm{Ne}(\mathrm{Z}=10)$
18. What is meant by electronic configuration?Write the electronic configuration of $\mathrm{N}(\mathrm{Z}=7)$.

D View Text Solution

19. Which is the actual configuration of $\mathrm{Cr}(\mathrm{Z}=24)$.Why?

- View Text Solution

20. What is the actual configuration of copper($Z=29)$? Explain about its stability.

D View Text Solution

Additional Questions Solved 3 Mark Questions

1. What are the conclusions of Rutherford's a-rays scattering expermiment?

- View Text Solution

2. What are the limitations of Bohr's atom model?

- View Text Solution

3. Illustrate the significance of de Broglie equation with an iron ball and an electron
(i) 6.626 kg iron ball moving with $10 \mathrm{~ms}^{-1}$
(ii)An electron moving at $72.73 \mathrm{~ms}^{-1}$
4. Explain Davisson and Germer experiment.

D View Text Solution

5. Bohr radius of $1^{\text {st }}$ orbital of hyddrogen atom is 0529A.Assuming that the position of an electron in this orbit is determined with the accuracy of 0.5% of the radius, calculate the uncertainty in the velocity of the electron in hydrogen atom.

D View Text Solution

6. Write a note about principle quantum number.

D View Text Solution

7. Explain about azimuthal quantum number.

D View Text Solution

8. Draw the shapes of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s orbitals.

D View Text Solution

9. Explain how effective nuclear change is related with stability of the orbital.

- View Text Solution

10. Calculate the wavelength o fan electron moving with a velocity of $2.05 \times 10^{7} \mathrm{~ms}^{-1}$.
11. The mass of an electorn is $9.1 \times 10^{-31} \mathrm{Kg}$.If its Kinetic energy is $3.0 \times 10^{-25} J$,calculate its wavelength.

D View Text Solution

12. From the followingf sets of quantum numbers,state which are possible.Explain why the other are not possible.

$$
\begin{equation*}
\text { (i) } n=0, l=0, m_{l}=0, m_{s}=+(1) / \tag{2}
\end{equation*}
$$

(ii) $n=1, l=0, m_{l}=0, m_{s}=-(1) /(2)$
(iii) $n=1, l=1, m_{l}=0, m_{s}=+(1) /$
)(iv) $n=1, l=0, m_{l}=+1, m_{s}=+(1) /$
$\left(n=3, l=3 m_{l}=-3, m_{s}=+(1) /(2)\right.$
(vi) $n=3, l=1, m_{l}=0, m_{s}=+(1) /(2)$

- View Text Solution

13. How many electrons in an atom may have the folling quantum numbers?
(a) $n=4, m_{s}=-\frac{1}{2}$
(b) $n=3, I=0$

- View Text Solution

14. Show that the circumference of the Bohr orbit for the hydrogen atom is an intergral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.

D View Text Solution

15. An ion with mass number 56 contains 3 units of positive charge and 30.45 more neutrons than electrons .Assign symbol to the ion.
16. The uncertainty in the position of a moving bullet of mass 10 g is ${ }^{`} 10^{\wedge}(-5)$. Calculate the uncertainty in its velocity?

- View Text Solution

17. The uncertainty in the position and velocity of a particile are $10^{-10} \mathrm{~m}$ and $5.27 \times 10^{-24} \mathrm{~ms}^{-1}$ respectively.Calculate the mass of the particle.

- View Text Solution

18. With what velocity must an electron travel so that its momentum s equal to that of a photon of wavelength=5200A?
19. Using Aufau priciple,write the ground state electronic configuration of following atoms.

Boron(Z=5),(ii)Neon(Z=10),(iii)Aluminium(Z=14),(iv)Chlorine(Z=17),
(v)calcium(Z=20),(vi)Rubidium(Z=37)

D View Text Solution

20. Calculate the de Broglie wavelength of an electron moving with
1% of the speed of light?

D View Text Solution

21. What is the wavelength for the electron accelerated by 1.0×10^{4} volts?
22. In a hydrogen atom.the energy of an electron in first Bohr's orbit is $13.12 \times 10^{5} \mathrm{Jmol}^{-1}$.

What is th energy required for its excitation to Bohr's second orbit?

- View Text Solution

23. Dual behavior of matter proposed by de Broglie led to the discovery of elcetron microscope often used for the highly magnified images of biological molecules and other type of material.If the velocity of the electron in this microscopeis $1.6 \times 10^{6} \mathrm{~ms}^{-1}$,calculate de Broglie wavelength associated with this electron.

- View Text Solution

24. An element with mass number 81 contains 31.7% more neutrons as compared to protons.

Assign the sysmbol to the element.

- View Text Solution

25. The electron energy in hydrogen atom is given ny $E_{n}=\frac{-2.18 \times 10^{-18}}{n^{2}} J . C a l c u l a t e ~ t h e ~ e n e r g y ~ r e q u i r e d ~ t o ~ r e m o v e ~$ an electron completely from the $\mathrm{n}=2$ orbit.What is the longest wavelength of light in cum that can be used to cause this transition?

Additional Questions Solved 5 Mark Questions

1. Describe about Bohr atom model.

- View Text Solution

2. Derive de Broglie equation and give its significance.

D View Text Solution

3. What are the main features of quantum mechanical model of an atom

- View Text Solution

4. Explain about (i)Magnetic quantum number (ii)Spin number
(iii)Magnetic quantum number]
5. Explain about the shape of orbitals.

D View Text Solution

6. What is exchange energy?How it is related with stability of atoms? Explain with suitable example.

- View Text Solution

