©゙doubtnut
 India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

COMBINATORICS AND MATHEMATICAL INDUCTION

Example

1. Suppose one girl or one boy has to be selected for a competition from a calss comprising 17 boys and 29 girls. In how many different ways can this selection be made?

- Watch Video Solution

2. Consider the 3 cities chennai, Trichy and Tirunelveli. In order to reach Tirunelveli from chennai, one has to pass through Trichy . There are 2
roads connecting chennai with Trichy and there are 3 roads conecting Trichy with Tirunelveli. What are the total number of ways of going chennai to Tirunelveli?

- Watch Video Solution

3. A school library has 75 books on Mathematics, 35 books on physics. A student can choose only one book, In how many ways a student can choose a book on Mathematics or physics?

- Watch Video Solution

4. If an electricity consumer has the consumer number say 238:110:29, then describe the linking and count of house connections upto the 29th consumer "connection" linked to the larger capacity transformer number 238 subject to the condtition that each smaller capacity transformer can have a maximal consumer link of say 100.
5. A person wants to buy a car. There are two brands of car available in the market and each brand has 3 veriant models and each model comes in five different colours. In how many ways she can choose a car to buy?

- Watch Video Solution

6. A Women wants to select one silk saree and one sungudi saree from a textile shop located at kancheepuram. In that shop, there are 20 different varieties of silk saree and 8 different varieties of sungudi saree, In how many ways she can select her serees?

- Watch Video Solution

7. In a village, out of the total number of people, 80 percentage of the people own coconut groves and 65 percent of the people own paddy fields. What is the minimum percentage of people own both?
8. (i) Find the number of strings of length, which can be firmed using the letters of the word BIRD , without repetition of the letters.
(ii) How many strings of length 5 cm be formed out of the letters of the word "PRIME" taking all the letters at a time without repetition.

- Watch Video Solution

9. How many strings of length 6 can be forms using letters of the word FLOWER if (i) either starts with F or ends with R ? (ii) neither starts with F nor ends with R?

- Watch Video Solution

10. How many licence plates may be made using either two distinct letters followed by four digits or two digits followed by 4 distinct letters where all digits and letters are distinct?
11. Count the number of positive integers greater than 7000 and less than 8000 which are divisible by 5 , provided that no digits are repeated.

(Watch Video Solution

12. How many 4 - digit even numbers can be forms using the digits $0,1,2,3$ and 4 , if repetition of digits are not permitted?

- Watch Video Solution

13. Find the total number of outcomes when 5 coins are tossed once.

D Watch Video Solution

14. In how many ways (i) 5 diffrents balls be distributed among 3 boxes?
(ii) 3 different balls be distributed among 5 boxes?
15. There are 10 bulbs in a room. Each one of them can be operated independently. Find the number of ways in which the room can be illuminated.

D Watch Video Solution

16. Find the value of (i) 5 ! (ii) $6!-5!$ (iii) $\frac{8!}{5!\times 2!}$

- Watch Video Solution

17. Simplify $\frac{7!}{2!}$

- Watch Video Solution

18. Evaluate $\frac{n!}{r!(n-r)!}$ when (i) $n=7, r=5$ (ii) $n=50, r=47$ (iii) For any n with r $=3$

- Watch Video Solution

19. Let N denote the number of days. If the value of N ! is equal to the total number of hours in N days then find the value of N ?

- Watch Video Solution

20. If $\frac{6!}{n!}=6$, then find the value of n.

- Watch Video Solution

21. If $n!+(n-1)!=3$, then find the value of n.
A. 5
B. 4
C. 3
D. 2

Answer: D

- Watch Video Solution

22. What is the unit digit of the sum $2!+3!+4!+\ldots . .22$!?

- Watch Video Solution

23. If $\frac{1}{7!}+\frac{1}{8!}=\frac{A}{9!}$ then the value of A is

- Watch Video Solution

24. Show that $\frac{(2 n)!}{n!}=2^{n}\{1,3,5, \ldots(2 n-1)\}$
25. Evaluate: (i) ${ }^{4} P_{4}$ (ii) ${ }^{5} P_{2}$ (iii) ${ }^{8} P_{4}$ (iv) ${ }^{6} P_{4}$

- Watch Video Solution

26. If ${ }^{(n+2)} P_{4}=42 \times{ }^{n} P_{2}$, find n .

- Watch Video Solution

27. If ${ }^{10} P_{r}={ }^{7} P_{r+2}$ find r.

- Watch Video Solution

28. How many 'letter strings' together can be formed with the letters of the "VOWELS" so that
(i) the strings begin with E
(ii) the strings begin with E and end with W .

- Watch Video Solution

29. A number of four different digits is formed with the use of the digits

1,2,3,4 and 5 in all possible ways. Find the following
(i) How many such numbers can be formed?
(ii) How many of these are even?
(iii) How many of these are exactly divisible by 4?

- Watch Video Solution

30. How many different strings can be formed together using the letters of the word "EQUATION" so that
(i) the vowels always come together?
(ii) the vowels never come together?

- Watch Video Solution

31. There are 15 candidates for an examination. 7 candidates are appearing for mathematics examination while the remaining 8 are appearing for different subjects . In how many ways can they be seated in a row so that no two mathematics candidates are together ?

- Watch Video Solution

32. In how many ways 5 boys and 4 girls can be seated in a row so that no two girls are together.

- Watch Video Solution

33.4 boys and 4 girls from a line with the boys and girls alternating. Find the number of ways of marking this line.

- Watch Video Solution

34. A van has 8 seats. It has two seats in the froot with two row of three seats behind. The van belongs to a family, consisting of seven members, $F, M, S_{1}, S_{2}, S_{3}, D_{1}, D_{2}$. How many ways can the family sit in the van if i. Ther are no restriction?
ii. Either F or M drives the van ?
iii. D_{1}, D_{2} sits next to a window and is driving ?

- Watch Video Solution

35. If the letter of the word TABLE are permuted in all possible ways and the word thus formed are arranged in the dictionary order (alphabetical order), find the ranks of the word TABLE

- Watch Video Solution

36. Find the number of ways of arrangeung the letters of the word BANANA.
37. Find the number of ways of arranging the letters of the word RAMANUJAN so that the relative positions of vowels and consonants are not changed.

- Watch Video Solution

38. Three twins pose for a photograph standing in a line. How many arrangement are there (i) when there are no restrictions. (ii) when each person is standing next to his or her twin?

- Watch Video Solution

39. How many numbers can be formed using the digits $1,2,3,4,2,1$ such that even digits occupies even place?
40. How many paths are there from start to end on a 6×4 grid as shown in the picture?

How Many Paths?

- Watch Video Solution

41. If the different permutations of all letters of the word BHASKARA are listed as in a dictionary, how many strings are there in the list before the first word starting with B ?

- Watch Video Solution

42. If the letters of the word IITJEE are permuted in all possible ways and the strings thus are arranged in the dictionary order find the rank of the

- Watch Video Solution

43. Evaluate the following (i) ${ }^{10} C_{3}$ (ii) ${ }^{15} C_{13}$ (iii) ${ }^{100} C_{99}$ (iv) ${ }^{50} C_{50}$

- Watch Video Solution

44. Find the value of ${ }^{5} C_{2}$ and ${ }^{7} C_{3}$ using the property 5

- Watch Video Solution

45. If $n C_{4}=495$, what is n ?

- Watch Video Solution

46. If $n P_{r}=11880$ and $n C_{r}=495$ find n and r .
47. Prove that ${ }^{24} C_{4}+\sum_{r=0}^{4}{ }^{(28-r)} C_{3}={ }^{29} C_{4}$

- Watch Video Solution

48. Prove that ${ }^{10} C_{2}+2 \times{ }^{10} C_{3}+{ }^{10} C_{4}={ }^{12} C_{4}$

- Watch Video Solution

49. If ${ }^{(n+2)} C_{7}:^{(n-1)} P_{4}=13: 24$ find n .

- Watch Video Solution

50. A salad at a certain restaurant consists of 4 of the following fruits: apple, banana, guava, pomegranate,grapes,papaya and pineapple. Find the total possible number of fruit salads.
51. A Mathematics club has 15 members. In that 8 are girls. 6 of the members are to be selected for a competition and half of them should be girls. How many ways of these selections are possible?

- Watch Video Solution

52. In rating 20 brands of cars, a car magazine picks a first,second,third,fourth and fifth best brand and then 7 more as acceptable, In how many ways can it be done?

- Watch Video Solution

53. From a class of 25 students, 10 students are to be chosen for an excursion party, There are 4 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
54. A box of one dozen apple contains a rotten apple. If we are choosing 3 apples simultaneously, in how many ways, one can get only good apples.

- Watch Video Solution

55. Are exam paper contains 8 questions, 4 in Part A and 4 in Part B.

Examiners are required to answer 5 questions. In how many ways can this be done if (i) There are no restrictions of choosing a number of questions in either parts.(ii) At least two questions from Part A must be answered

- Watch Video Solution

56. Out of 6 consonants and 4 vowels, how many strings of 3 consonants and 2 vowels can be formed ?
57. If a set of m paralled lines intersect another set of n parallel lines (not parallelto the lines in the first set), then find the number of parallelograms fromed in this lattice structure.

- Watch Video Solution

58. What is the formula to find how many diagonals are there in a polygon with n sides?

- Watch Video Solution

59. By the principle of mathematical induction, prove that, for all integers $\mathrm{n} \geq 1$,
$1+2+3+\ldots+n=\frac{n(n+1)}{2}$

- Watch Video Solution

60. Prove that the sum of first n positive odd numbers is n^{2}

- Watch Video Solution

61. Using the principle of Mathematical Induction, $\forall n \in N$, prove that $1^{2}+2^{2}+3^{2}+\ldots . n^{2}=\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

$\begin{array}{lcccr}\text { 62. } & \text { Prove } & \text { by } & \text { mathematical } & \text { induction } \\ \frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{(n)(n+1)}=\frac{n}{(n+1)} & \end{array}$

- Watch Video Solution

63. Prove that $x^{n}-y^{n}$ is divisible by $\mathrm{x}-\mathrm{y}$ for all positive integers n .

- Watch Video Solution

64. Prove by mathematical induction that for every natural number n, $3^{2 n+2}-8 n-9$ is divisible by 8 for all $n \geq 1$.

- Watch Video Solution

65. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^{n}-1$ is divisible by 5 .

- Watch Video Solution

66. Evaluate : $\frac{(n+2)!}{n!}$

- Watch Video Solution

67. By the principle of mathematical induction, prove that, for $n \in \mathbb{N}$
$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots .+\cos (\alpha+(n-1) \beta)=\cos (\alpha$
68. Using the mathematical induction, show that for any natural number
n, with the assumption $i^{2}=-1$,
$(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos n \theta+i \sin n \theta)$

- Watch Video Solution

Exercise 41

1. (i) A person went to a restaurant for dinner. In the menu card, the person saw 10 Indian and 7 Chinese food items. In how many was the person can select either an Indian or a Chinese food?
(ii) There are 3 typesof toy car and 2 types of toy train available in a shop.

Find the number of ways a baby can buy a toy car and a toy train?
(iii) How many of two-digit numbers can be formed using 1,2,3,4,5 without repetiton of digits?
(iv) There persons enter in to a conference hall in which there are 10
seats, In how many ways they can take their place?
(v) In how many ways 5 persons can be seated in a row?

- Watch Video Solution

2. (i) A mobile phone has a passcode of 6 digits. What is the maximum number of attempts one makes to retrieve the passed.
(ii) Given four flags of different colours, how many different signals can be generated if each signal requires the use three flags, One below the other?

- Watch Video Solution

3. Four children are running a race .
(i) In how many ways can the first two places be filled ?
(ii) In how many different ways could they finish the race?

- Watch Video Solution

4. Count the number of three - digit numbers which can be formed from the digits $2,4,6,8$, if
(i) repetitions of digits is allowed?
(ii) repetitions of digits is not allowed ?

- Watch Video Solution

5. How many three - digit numbers are there with 3 in the unit place ?
(i) With repetition (ii) without repetition

- Watch Video Solution

6. How many numbers are there between 100 and 500 with the digits
$0,2,3,4,5$ if
(i) repetition of digits allowed (ii) the repetition of digits is not allowed

- Watch Video Solution

7. How many three-digit odd numbers can be formed by using the digits 0,1,2,3,4,5 ? If
(i) the repetition of digits is not allowed
(ii) the repetition of digits is allowed

- Watch Video Solution

8. Count the numbers between 999 and 10,000 subject to the condition that there are .
(i) no restriction.
(ii) no digit is repeated.
(iii) at least one of the digits is repeated.

- Watch Video Solution

9. How many three- digit numbers, which are divisible by 5 , can be formed using the digits $0,1,2,3,4,5$ if
(i) repetition of digits are not allowed ?
(ii) repetition of digits are allowed ?

- Watch Video Solution

10. To travel from a place A to place B, there are two different bus routes B_{1}, B_{2}, two different train routes T_{1}, T_{2} and one air route A_{1}. From place B to place C there is one bus route say B_{1} two different train routes say T_{1}, T_{2} and one air route A_{1}. Find the number of routes of commuting from place A to place C via place B without using similar mode of transportation.

- Watch Video Solution

11. How many numbers are there between 1 and 1000 (both inclusive)
which are divisible neither by 2 nor by 5 ?

- Watch Video Solution

12. How many strings can be formed using the letters of the word LOTUS if the word .
(i) either starts with L or ends with S.
(ii) neither starts with L nor ends with S ?

- Watch Video Solution

13. (i) Count the total number of ways of answering 6 objective type questions, each question having 4 choices.
(ii) In how many ways 10 pigeons can be placed in 3 different pigeon holes
?
(iii) Find the number of ways of distributing 12 distance prizes to 10 students?

- Watch Video Solution

14. Find the value of
(ii) $4!+5!$
(iii) 3 ! - 2!
(iv) $3!\times 4$!
(v) $\frac{12!}{9!\times 3!}$ (vi) $\frac{(n+3)!}{(n+1)!}$

- Watch Video Solution

15. Evaluate $\frac{n!}{r!(n-r)!}$ when
(i) $n=6, r=2$
(ii) $n=10, r=3$
(iii) for any n with $r=2$

- Watch Video Solution

16. Find the value of n if
(i) $(n+1)!=20(n-1)$!
(ii) $\frac{1}{8!}+\frac{1}{9!}=\frac{n}{10!}$
17. If. ${ }^{n-1} P_{3}: P_{4}=1,10$ find n .

- Watch Video Solution

2. IF . ${ }^{10} P_{r-1}=2 \times 6 P_{r^{2}}$ find r

- Watch Video Solution

3. Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?

- Watch Video Solution

4. Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time ?

- Watch Video Solution

5. A test consists of 10 multiple choice questions. In how many ways can the test be answered if
(i) Each question has four choices ?
(ii) The first four questions have three choices and the remaining have five choices ?
(iii) Question number n has $\mathrm{n}+1$ choices ?

- Watch Video Solution

6. A student appears in an objective test which contain 5 multiple choice questions. Each question has 4 choices out of which one correct answer.
(i) What is the maximum number of different answers can the students give?
(ii) How will the answer change if each question may have more than one correct answers ?

- Watch Video Solution

7. How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places ?

- Watch Video Solution

8.8 woman and 6 man are standing in a line.
(i) How many arrangements are possible if any individual can stand in any position?
(ii) In how may arrangements will be 6 men be standing next to one another?
(iii) In how many arrangements will no two men be standing next to one another?
9. Find the distinct permutations of the letters or the word MISSISSIPPI ?

- Watch Video Solution

10. How many ways can the product $a^{2} b^{3} c^{4}$ be expressed without exponents?

- Watch Video Solution

11. In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together ?

- Watch Video Solution

12. In how many ways can the letters of the word SUCCESS be arranged so that all S's are together ?

(D) Watch Video Solution

13. A coin is tossed 8 times.
(i) How many different sequences of heads and tails are possible ?
(ii) How many different sequences containing six heads and two tails are possible?

- Watch Video Solution

14. How many strings are there using the letters of the word INTERMEDIATE, if
Q The vowels and consonants are alternative.

- Watch Video Solution

15. If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then
find the ranks of the words

Q GARDEN

- Watch Video Solution

16. Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the $85^{\text {th }}$ string ?

- Watch Video Solution

17. if the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY.

- Watch Video Solution

18. Find the sum of all 4-digit numbers that can be formed using digits 1 , $2,3,4$, and 5 repetitions not allowed?

Watch Video Solution

19. Find the sum of all 4-digit numbers that can be formed using digits 0 , 2, $5,7,8$ without repetition?

- Watch Video Solution

Exercise 43

1. If. ${ }^{n} C_{12}=.{ }^{n} C_{9}$ find.${ }^{21} C_{n}$

- Watch Video Solution

2. If. ${ }^{15} C_{2 r-1}=.{ }^{15} C_{2 r+4}$ find r
3. If. ${ }^{n} P_{r}=720$. If $.{ }^{n} C_{r}=120$ find n, r

- Watch Video Solution

4. Prove that. . ${ }^{15} C_{3}+2 \times .{ }^{15} C_{4}+.{ }^{15} C_{5}=.{ }^{17} C_{5}$

- Watch Video Solution

5. Prove that. ${ }^{35} C_{5}+\sum_{r=0}^{4^{(39-r)}} C_{4}=.{ }^{40} C_{5}$
6. If. ${ }^{n+2} C_{8}:{ }^{(n-2)} P_{4}=57: 16$, find the value of n.
7. Prove that $.{ }^{2 n} C_{n}=\frac{2^{n} \times 1 \times 3 \times \ldots(2 n-1)}{n!}$

- Watch Video Solution

8. Prove that if $1 \leq r \leq n$ then $n \times{ }^{(n-1)} C_{r-1}=(n-r+1) .{ }^{n} C_{r-1}$

(Watch Video Solution

9. (i) A kabaddi coach has 14 players ready to play. How many different teams of 7 players could the coach put on the court?
(ii) There are 15 persons in a party and if, each 2 of them shakes hands wit each with each other. How many handshakes happen in the party?
(iii) How many chords can be drawn through 20 points on a circle?
(iv) In a parking lot one hunderd, one year old cars are parked. Out of them five are to be chosen at random for to check its pollution devices. How many different set of five cars are possible?
(v) How many ways can a team of 3 boys, 2 girls and 1 transgender be selected from 5 boys, 4 girls and 2 transgender?

Watch Video Solution

10. Find the total number of subsets of a set with .
(i) 4 elements (ii) 5 elements
(iii) n elements

- Watch Video Solution

11. A trust has 25 members .
(i) How many ways 3 officers can be selected ?
(ii) In how many ways can a president, Vice president and a Secretary be selected ?

- Watch Video Solution

12. How many ways a committee of six persons from 10 persons can be chosen along with a chair person and a secretary ?
13. How many different selections of 5 books can be made from 12 different books if,
(i) Two particular books are always selected ?
(ii) Two particular books are never selected ?

- Watch Video Solution

14. There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in hdw many of these committees.

Q a particular teacher is included?

- Watch Video Solution

15. In an examination a student has a answer 5 questions, out of 9 questions in which 2 are compulsory. In how many ways a student can

- Watch Video Solution

16. Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly three aces in each combination.

- Watch Video Solution

17. Find the number of ways of forming a committee of 5 members out of 7 Indians and 5 Americans so that always Indians will be majority in the committee.

- Watch Video Solution

18. A committee of 7 peoples has to be formed from 9 men and 4 women .

In how many can this be done when then committee consists of
(i) exactly 3 women ?
(ii) at least 3 woman ?
(iii) at most 3 women ?

- Watch Video Solution

19. 7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen, so that there are 3 of man's relative and 3 of the wife ,s relatives ?

(Watch Video Solution

20. A box contains two white balls, three black balls and four balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw?

(Watch Video Solution

21. Find the number of strings of 4 letters that can be formed with the letters of the word EXAMINATION.

Watch Video Solution

22. How many triangle can be formed by joining 15 points on the plane, in which on line joining any three points?

- Watch Video Solution

23. How many triangles can be formed by 15 points, in which 7 of them lie on one line and the remaining 8 on another parallel line?

- Watch Video Solution

24. There are 11 points in a plane. No three of these lies in the same straight line except 4 points, which are collinear. Find,
(i) the number of straight lines that can be obtained from the pairs of these points?
(ii) the number of triangles that can be formed for which the points are their vertices?

- Watch Video Solution

25. A polygon has 90 diagonals. Find the number of its sides?

- Watch Video Solution

Exercise 44

1. By the principle of mathematical induction, prove that, for $n \geq 1$
$1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

2. By the principle of mathematical induction, prove that, for $n \geq 1$ $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\left(\frac{n(2 n-1)(2 n+1)}{3}\right)$

- Watch Video Solution

3. Prove that the sun of first n ' non-zero even numbers in $n^{2}+n$

- Watch Video Solution

4. By the principal of mathematic induction, prove that, for $n \geq 1$
$1.2+2.3+3.4+\ldots+n .(n+1)=\frac{n(n+1)(n+2)}{3}$

- Watch Video Solution

5. Using the mathematical induction, show that for any natural number,
$n \geq 2,\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$
6. Using the mathematical induction, show that for any natural number $n \geq 2, \frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\ldots+\frac{1}{1+2+3+\ldots+n}$

- Watch Video Solution

7. Using the mathematical induction, show that for any natural number n,

$$
\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n \cdot(n+1) \cdot(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

- Watch Video Solution

8. Using the mathematical induction, show that for any natural number n,

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}
$$

- Watch Video Solution

9. Prove by the mathematical induction that $1!+(2 \times 2!)+(3 \times 3!)+\ldots+(n X n!)=(n+1)!-1$

- Watch Video Solution

10. Using the mathematical induction, show that for any natural numbern
, $x^{2 n}-y^{2 n}$ is divisible by $(x+y)$.e

- Watch Video Solution

11. By the principle of mathematic induction, prove that, for $n \geq 1$,
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}>\frac{n^{3}}{3}$

- Watch Video Solution

12. Use induction to prove that $n^{3}-n+3$, is divisible by 3 , for all natural numbers n
13. Use induction to prove that $5^{n+1}+4 \times 6^{n}$ when divided by 20 leaves a remainder 9 for all natural numbers n .

- Watch Video Solution

14. Use induction to prove that $10^{n}+3 \times 4^{n+2}+5$, is dvisible by 9 , for all natural no. n.

- Watch Video Solution

15. Prove that using the Mathematical induction
$\sin (\alpha) \sin \left(\alpha+\frac{\pi}{6}\right)+\sin \left(\alpha+\frac{2 \pi}{6}\right)+\ldots .+\sin \left(\alpha+\frac{(n-1) \pi}{6}\right)=-$

- View Text Solution

1. The sum of the digits at the 10th place of all numbers formed with the help of 2,4,5,7 taken all at a time is
A. 432
B. 108
C. 36
D. 18

Answer: A

- Watch Video Solution

2. In an examination there are three multiple choice questions and each question has 5 choices Number of ways in which a student can fail to get all answer correct is
A. 125
B. 124
C. 64
D. 63

Answer: A::B::D

- Watch Video Solution

3. The number of ways in which of following prize be given to a class of 30 boys first and second in mathematics, first and second in physics, first in chemistry and first in English is
A. $30^{4} \times 29^{2}$
B. $30^{3} \times 29^{3}$
C. $30^{2} \times 29^{4}$
D. 30×29^{5}
4. The number of 5 digit numbers all digits of which are odd is
A. 25
B. 5^{5}
C. 5^{6}
D. 625

Answer:

- Watch Video Solution

5. In 3 fingers, the number of ways four rings can be worn is \qquad
A. $4^{3}-1$
B. 3^{4}
C. 68
D. 64

Answer: C::D

- Watch Video Solution

6. If. ${ }^{n+5} P_{n+1}=\left(\frac{11(n-1)}{2}\right) \cdot{ }^{n+3} P_{n}$ then the value of n are
A. 7 and 11
B. 6 and 7
C. 2 and 11
D. 2 and 6

Answer: A::D

- Watch Video Solution

7. The product of r consecutive positive integers is divisible by
A. r !
B. $(r-1)$!
C. $(r+1)$!
D. $r!$

Answer:

- Watch Video Solution

8. The number of five digit telephone numbers having at least one of their digits repeated is
A. 90000
B. 10000
C. 30240
D. 69760

Answer:

9. If. $a^{a^{2-a}} C_{2}=a^{2-a} C_{4}$ then the value of a is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

10. There are 10 points in a plane and 3 of them are collinear. The number of straight line joining any two points is \qquad
A. 45
B. 43
C. 39
D. 38

Answer:

- Watch Video Solution

11. The number of ways in which a host lady invite 8 people for a party of 8 out of 12 people of whom two do not want to attend the party together is
A. $2 \times{ }^{11} C_{7}+{ }^{10} C_{8}$
B. ${ }^{11} C_{7}+{ }^{10} C_{8}$
C. ${ }^{12} C_{8}-{ }^{10} C_{6}$
D. ${ }^{10} C_{6}+(2!)$

Answer: A::B::C

12. The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
A. 6
B. 9
C. 12
D. 18

Answer: A

- View Text Solution

13. Everybody in a room shakes hands with everybody else. The total number of shake hands is 66 . The number of persons in the room is
A. 11
B. 12
C. 10
D. 6

Answer: A: B

- Watch Video Solution

14. Number of sides of a polygon having 44 diagonals is
A. 4
B. 4 !
C. 11
D. 22

Answer: A

15. If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, then the total number of points of intersection are
A. 45
B. 40
C. 10!
D. 2^{10}

Answer: D

- Watch Video Solution

16. In a plane are 10 points are there out of which 4 points are collinear, then the number of triangles formed is
A. 110
B. ${ }^{10} C_{3}$
C. 120
D. 116

Answer: A

- Watch Video Solution

17. In ${ }^{2 n} C_{3} \therefore{ }^{n} C_{3}=11: 1$ then n is
A. 5
B. 6
C. 11
D. 7

Answer:

18. . ${ }^{(n-1)} C_{r}+{ }^{(n-1)} C_{(r-1)}$ is
A. ${ }^{(n+1)} C_{r}$
B. ${ }^{(n-1)} C_{r}$
C. ${ }^{n} C_{r}$
D. ${ }^{n} C_{(r-1)}$

Answer: C

- Watch Video Solution

19. The number of ways of choosing 5 cards out of a deck of 52 which include at least one king is
A. ${ }^{52} C_{5}$
B. ${ }^{48} C_{5}$
C. ${ }^{52} C_{5}+{ }^{48} C_{5}$
D. ${ }^{52} C_{5}-{ }^{48} C_{5}$

D Watch Video Solution

20. The number of rectangles that a chessboard has
A. 81
B. 9^{9}
C. 1296
D. 6561

Answer: A::B

Watch Video Solution
21. The number of 10 digit number that can be written by using the digits

2 and 3 is
A. ${ }^{10} C_{2}+{ }^{9} C_{2}$
B. 2^{10}
C. $2^{10}-2$
D. 2 !

Answer: A::B

- Watch Video Solution

22. If P_{r} stands for ${ }^{r} P_{r}$ then the sum of the series
$1+P_{1}+2 \times P_{2}+3 \times P_{3}+\ldots+n \times P_{n}$ is:
A. P_{n+1}
B. $P_{n+1}-1$
C. $P_{n-1}+1$
D. ${ }^{(n+1)} P_{(n-1)}$
23. The product of first n odd natural numbers equals:
A. ${ }^{2 n} C_{n} \times{ }^{n} P_{n}$
B. $\left(\frac{1}{2}\right)^{n} \times{ }^{2 n} C_{n} \times{ }^{n} P_{n}$
C. $\left(\frac{1}{4}\right)^{n} \times{ }^{2 n} C_{n} \times{ }^{2 n} P_{n}$
D. ${ }^{n} C_{n} \times{ }^{n} P_{n}$

Answer: A::B::C

- Watch Video Solution

24. If ' ' $C_{4},{ }^{\prime}{ }^{\prime} C_{5},{ }^{\prime}{ }^{\prime} C_{6}$ are in AP then value of n is
A. 14
B. 11
C. 9

D. 5

Answer: A::D

- Watch Video Solution

$25.1+3+5+7+\ldots .17$ is equal to
A. 101
B. 81
C. 71
D. 61

Answer: A

- Watch Video Solution

1. If the letter of the word 'RACHIT' are arrenged in all possible ways as listed in dictionary, then what is the rank of the word 'RACHIT'?

- Watch Video Solution

2. Count the number of positive integers greater than 6000 and less than 7000 which are divisible by 5 , provided that no digits are repeated?

- Watch Video Solution

3. Find the number of integers greater than 7000 that can be formed with the digits $3,5,7,8$ and 9 where no digits are repeated.

- Watch Video Solution

4. How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated

	C_{1}		C_{2}
$($ a $)$	4 letters are used at a time	$($ i $)$	720
$($ b $)$	All letters are used at a time	(ii)	240
(c)	All letters are used but the first is a vowel	(iii)	360

- Watch Video Solution

5. How many automobile license plates can be made, if each plate contains two different letters followed by three different digits?

- Watch Video Solution

6. If $\frac{n!}{3!(n-4)!}$ and $\frac{n!}{5!(n-5)!}$ are in the ratio 5:3 find the value of n.

- Watch Video Solution

7. How many 3-digit even numbers can be made using the digits 1,2,3,4,6,7
if no digit is repeated?
8. If ${ }^{n-1} P_{3}:{ }^{n} P_{4}=1: 9$ find n.

- Watch Video Solution

9. Out of 18 points in a plane, no three are in the same line except five points which are collinear. Find the number of lines that can be formed joining the points.

- Watch Video Solution

10. We wish to select 6 person from 8 but, if the person A is choosen , then B must be choosen. In how many ways can selections be made?

- Watch Video Solution

11. How many 3 -digit numbers can be made using digit $1,2,3,4,6,7$ if no digit is repeated ?

Watch Video Solution

12. Find the number of 4 -digit numbers that can be formed using the digits $1,2,3,4,5$ if no digit is repeated. How many of these will be even ?

- Watch Video Solution

13. Iff ${ }^{5} P_{r}={ }^{6} P_{r-1}$ find r .

- Watch Video Solution

14. How many words, with or without meaning, can be made from the letters of the word MONDAY, assuming that no letters is repeated , if
(i) 4 letters are used at a time
(ii) all letters are used at a time

- Watch Video Solution

15. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected, if the team has
(i) no girls (ii) atleast one boy and one girl (iii) at least three girls

- Watch Video Solution

16. A committee of 6 is to be choosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done?

- Watch Video Solution

17. Using the digits $1,2,3,4,5,6,7$ a number of 4 different digits is formed. Find

C_{1}		C_{2}	
(a)	How many numbers are formed?	(i)	840
(b)	How many number are exactly divisible by 2?	(ii)	200
(c)	How many numbers are exactly divisible by 25?	(iii)	360
(d)	How many of these are exactly divisible by 4?	(iv)	40

- Watch Video Solution

18. If ${ }^{22} P_{r+1}:{ }^{20} P_{r+2}=11: 52$, find r .

- Watch Video Solution

- Watch Video Solution

20. A committee of 7 peoples has to be formed from 9 men and 4 women .

In how many can this be done when then committee consists of
(i) exactly 3 women ?
(ii) at least 3 woman ?
(iii) at most 3 women ?

- Watch Video Solution

21. In $.{ }^{2 n} C_{3} \therefore{ }^{n} C_{3}=11: 1$ then n is

- Watch Video Solution

22. Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls fo each colour.

- Watch Video Solution

23. If $\frac{1}{7!}+\frac{1}{9!}=\frac{x}{10!}$, find x .

- Watch Video Solution

24. If ${ }^{n} C_{4},{ }^{n} C_{5}$ and ${ }^{n} C_{6}$ are in A.P. then find n .

- Watch Video Solution

25. Prove by induction the inequality $(1+x)^{n} \geq 1+n x$. whenever x is positive and n is a positive interger.

- View Text Solution

26. Prove that $3^{2 n}-1$ is divisible by 8 .

- Watch Video Solution

27. Prove that $x^{n}-y^{n}$ is divisible by $\mathrm{x}-\mathrm{y}$ for all positive integers n .

- Watch Video Solution

28. Prove by mathematical induction that for every natural number n, $3^{2 n+2}-8 n-9$ is divisible by 8 .

Watch Video Solution

29. Use the principle of mathematical induction to prove that for every natural number n.

$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}
$$

(Watch Video Solution

30. $n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2$

- View Text Solution

31. Prove that For any natural number $n, 7^{n}-2^{n}$ is divisible by 5 .
32. Find $\frac{10!}{5!\times 2!}$

- Watch Video Solution

33. Compute $10 C 1$

Watch Video Solution

