

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

EXAMINATION QUESTION PAPER MARCH 2019

Mathematics

1. The value of x, for which the matrix A = $\begin{bmatrix} e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2x+3} \end{bmatrix}$ is singular is

A. 7

B. 6

C. 9

D. 8

Answer:

2. The n^{th} term of the sequence 2, 7, 14, 23, is:

A.
$$n^2 + 2n + 1$$

B.
$$n^2+2n-1$$

C.
$$n^2-2n-1$$

D.
$$n^2 - 2n + 1$$

Answer:

3.
$$\int \frac{\sec x}{\sqrt{\cos 2x}} dx$$
 is

A.
$$an^{-1}(\cos x) + c$$

$$\mathsf{B}.\sin^{-1}(\tan x) + c$$

$$\operatorname{\mathsf{C.}} \tan^{-1}(\sin x) + c$$

D.
$$2\sin^{-1}(\tan x) + c$$

Answer:

4. The line
$$\frac{x}{a} - \frac{y}{b} = 0$$
 has the slope 1,if:

A. a = b

B. only for a = 1, b = 1

 $\mathsf{C}. a > b$

 $\mathsf{D}.\, a < b$

5. The number of 5 digit numbers all digits of which are odd is

A. $4 imes 5^4$

 ${\rm B.4}\times5^5$

 $\mathsf{C.}\,5^5$

D. 5 imes 5

Answer:

6. If $f(x) = egin{cases} 2a-x, & ext{for} & -a < x < a \ 3x-2a, & ext{for} & x \geq a \end{cases}$ then

which of the following is true?

A. f (x) is continuous for all x in R

B. f (x) is differentiable for all $x \ge a$

C. f(x) is not differentiable at x = a

D. f (x) is iscontinous at x = a

7. A number is selected from the set $\{1, 2, 3, ..., 20\}$. The probability That the selected number is divisible by 3 or 4 is

A.
$$\frac{1}{2}$$

B. $\frac{2}{3}$
C. $\frac{2}{5}$
D. $\frac{1}{8}$

Answer:

8. Which of the following is not a periodic function

with period 2π ?

A. $\tan x$

B. $\cos x$

 $C.\sin x$

D. $\cos ecx$

9. Straight line joining the points (2,3) and (-1,4) passes through the point (α, β) if

A.
$$lpha+3eta=11$$

B. $3\alpha + \beta = 11$

$$\mathsf{C}.\, lpha+2eta=7$$

D.
$$3lpha+eta=9$$

10. The minimum and the maximum values of $|\cos x| - 2$ are respectively

 $\mathsf{A.0}$ and 2

B.-2 and 0

- C.-2 and -1
- D. -1 and 1

11. If $f(x) = x^2 - 3x$, then the points at which f(x) = f'(x) are

A. both irrational

B. one rational and another irational

C. both positive integers

D. both negative intergers

12. The unit vector parallel to the resultant of the vectors $\hat{i} + \hat{j} - \hat{k}$ and $\hat{i} - 2\hat{j} + \hat{k}$ is A. $\frac{2\hat{i} - \hat{j} + \hat{k}}{\sqrt{5}}$ B. $\frac{2\hat{i} - \hat{j}}{\sqrt{5}}$

C. $rac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$ D. $rac{2\hat{i}+\hat{j}}{\sqrt{5}}$

13. It is given that the events A and B are such that $P(A) = \frac{1}{4}, P(A/B) = \frac{1}{2}$ and $P(B/A) = \frac{2}{3}$. Then P(B) is

A.
$$\frac{2}{3}$$

B. $\frac{1}{2}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer:

14. If \overrightarrow{a} , \overrightarrow{b} are the position vectors A and B then which one of the following points whose position vector lies on AB, is

15. If $|x+2| \leq 8$, then x belongs to

A. (6, 10)

B.(-10, 6)

C.[6, 10]

D.[-16, 6]

Answer:

16. The expansion of $(1-x)^{-2}$ is?

A.
$$1-x+x^{2-}\dots$$

B.
$$1 + x + x^2 + \dots$$

$$\mathsf{C}.\,1-2x+3x^{2\,-}\dots$$

D.
$$1+2x+3x^2+\dots$$

Answer:

17. If $f\!:\!R o R$ is defined by f(x)=|x|-5, then

the range of f is

A.
$$(-\infty, -5)$$

B.
$$(-\infty, 5)$$

C. $[-5, \infty)$
D. $(-5, \infty)$

Answer:

O Watch Video Solution

18. Which one of the following is true about the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$?

A. an upper trangular matrix

B. a lower triangular matrix

C. a scalar matrix

D. a diagonal matrix

Answer:

Watch Video Solution

19. Write the value of

Horizontal component.

20. Write the relationship between Permutation and

Combination?

21. Count the number of positive integers greater than 6000 and less than 7000 which are divisible by 5, provided that no digits are repeated?

22. Find the separated equations from a combined equation of a straight line $2x^2 + xy - 3y^2 = 0$

24. Find a unit vector along the direction of the vector $5\hat{i} - 3\hat{j} + 4\hat{k}$

25. Define a continuous function on the closed

interval [a,b]

27. An integer is chosen at random from the first ten positive integers.Find the probability that it is a multiple of three?

28. It is correct to say $A imes A = \{(a, a) : a \in A\}$? Justify your answer.

29. A football player can kick a fotball from ground level with an initial velocity (u) of 80 ft/second. Find the maximum horixzontal distance the football travels and at what angle

(Take $R=rac{u^2\sin 2lpha}{g}, ~~ ext{and}~~g=32$)

Watch Video Solution

30. Find the coefficient of
$$x^3$$
 in the expansion of $(2-3x)^7$.

Watch Video Solution

31. Find the nearest point on the line x-2y=5

from the origin.

32. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three vectors such that $\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

34. Differentiate the following :

$$y=\sin^{-1}igg(rac{1-x^2}{1+x^2}igg)$$

35. Find
$$rac{dy}{dx}$$
 if $x=a(t-\sin t), y=a(1-\cos t)$

Watch Video Solution

36. Evaluate:
$$\int (x-3)\sqrt{x+2}dx$$
.

Watch Video Solution

37. Construct a suitable domain X such that $f \colon x \to N$ defined by f(n) = n + 3 to be one of one and onto.

38. For the given bases curve $y = \sin x$, draw $y = \frac{1}{2} \sin 2x$

View Text Solution

39. Solve the equation
$$\sqrt{6-4x-x^2}$$
 = x + 4

40. State and prove any one of the Napier's formulae.

44. Prove that
$$\sqrt[3]{x^3 + 7} - \sqrt[3]{x^3 + 4}$$
 is approximately equal to $\frac{1}{x^2}$ when x is large.
Watch Video Solution

45. Find the unit vectors perpendicular to each of the

vectors
$$\overrightarrow{a}+\overrightarrow{b}$$
 and $\overrightarrow{a}-\overrightarrow{b}$,where $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$ and $\overrightarrow{b}=\hat{i}+2\hat{j}+3\hat{k}.$

Watch Video Solution

46. Find
$$\displaystyle rac{d^2 y}{dx^2}$$
 if $x^2+y^2=4$

47. The chances of X, Y and Z becoming managers of a certain company are 4 : 2 : 3. The probabilities that bonus scheme will be introduced if X, Y and Z become managers are 0.3, 0.5 and 0.4 respectively. If the bonus scheme has been introduced, what is the probability that Z was appointed as the manager?

Watch Video Solution

48. By using properties of determinants , show that :

 $egin{bmatrix} x & x^2 & yz \ y & y^2 & zx \ z & z^2 & xy \end{bmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$

49. Evaluate: $\int \!\! \sqrt{x^2+x+1} dx$