

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER 4

Part I

1. The	number	of relations	s on a se	t containi	ng 3 el	ements

A. 9

B. 81

C. 512

D. 1024

Answer:

Watch Video Solution

2. If $n[(A \times B) \cap (A \times C)] = 12$ and $n(B \cap C) = 2$

then n(A) is

A. 2

B. 3

C. 4

D. 6

Answer:

Watch Video Solution

- **3.** If $|x-3| \geq 5$ then x belongs to.....
 - A. [-2, 8]
 - B. (-2, 8)
 - C. $[\,-2,\infty]$
 - D. $(-\infty, -2]U[8, \infty)$

Answer:

rateri video Solutioni

4. The number of solutions of $x^2 + |x-1| = 1$ is

A. 1

В. О

C. 2

D. 3

Answer:

Watch Video Solution

5. If a, b, b are in A.P and a, b are in G.P and a, b are in H.P then b

A. 1				
В. О				
C. 2				
D. 3				
Answer:				
Watch	ı Video Solı	ution		

A. 45

B. 40

C. 10!

 $\mathsf{D.}\,2^{10}$

Answer:

Watch Video Solution

7. The value of $e^{2\log x} = \dots$

A. 2x

 $B. x^2$

C. \sqrt{x} D. $\frac{x}{2}$

Watch Video Solution

8. The n^{th} term of the sequence 1,2,4,7,11 is

A.
$$n^3 + 3n^2 + 2n$$

B.
$$n^3 - 3n^2 + 3n$$

$$\mathsf{C.}\ \frac{n(n+1)(n+2)}{3}$$

D.
$$\frac{n^2-n+2}{2}$$

Answer:

9. The last term in the expansion $\left(2+\sqrt{3}\right)^8$ is

A. 81

B. 27

C. 9

D. 3

Answer:

10. A line perpendicular to the line 5x-y=0 forms a triangle with the coordinate axes . If the area of the triangle is 5 sq. Units, then its equation is

A.
$$x+5y\pm5\sqrt{2}=0$$

B.
$$x-5y\pm 5\sqrt{2}=0$$

C.
$$5x + y \pm 5\sqrt{2} = 0$$

D.
$$5x - y + 5\sqrt{2} = 0$$

Answer:

11. A factor of the determinant
$$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix}$$
 is

A.
$$x + 3$$

B.
$$2x - 1$$

$$\mathsf{C.}\,x-2$$

D.
$$x - 3$$

12. If λ \overrightarrow{i} + 2λ \overrightarrow{j} + 2λ \overrightarrow{k} is a unit vector then the value of λ is

- A. $\frac{1}{3}$
- B. $\frac{1}{4}$
- c. $\frac{1}{9}$
- D. $\frac{1}{2}$

Answer:

Watch Video Solution

13. One of the diagonals of parallelogram ABCD with

 \overrightarrow{a} and \overrightarrow{b} are adjacent sides is $\overrightarrow{a} + \overrightarrow{b}$. The other

diagonal BD is

A.
$$\overrightarrow{a} - \overrightarrow{b}$$

B.
$$\overrightarrow{b} - \overrightarrow{a}$$

$$\mathsf{C.}\stackrel{\displaystyle \rightarrow}{a} + \stackrel{\displaystyle \rightarrow}{b}$$

D.
$$\frac{\overrightarrow{a} + \overrightarrow{b}}{2}$$

Answer:

Watch Video Solution

14. If (1,2,4)and $(2,-3\lambda,-3)$ are the intial and terminal points of the vetcor $\overrightarrow{i}+5\overrightarrow{j}-7\overrightarrow{k}$ then the value of λ

A.
$$\frac{7}{3}$$

$$\mathsf{B.}-\frac{7}{3}$$

C.
$$\frac{5}{3}$$
D. $\frac{-5}{3}$

Watch Video Solution

15. If y = mx + c and f(0) = f'(0) = 1, then f(2)

is

B. 2

- C. 3
- D. 4

Watch Video Solution

16. The derivative of $\left(x+rac{1}{x} ight)^2$ w.r.to . X is

A.
$$2x-rac{2}{x^3}$$

$$\mathsf{B.}\,2x+\frac{2}{x^3}$$

$$\mathsf{C.}\,2\bigg(x+\frac{1}{x}\bigg)$$

D. 0

Watch Video Solution

17. If
$$f(x) = rac{ax^2 - b, \quad -1 < x < 1}{rac{1}{|x|}, \qquad ext{elsewhere}}$$
 is differentiable at

$$x = 1$$
, then

A.
$$a = \frac{1}{2}, b = \frac{-3}{2}$$

B.
$$a = \frac{-1}{2}, b = \frac{3}{2}$$

C.
$$a = -rac{1}{2}, b = rac{3}{2}$$

D.
$$a=-rac{1}{2}, b=-rac{3}{2}$$

Answer: $a=\frac{1}{2}b=\frac{3}{2}$

18.
$$\int \sin 7x \cos 5x dx = \dots$$

A.
$$\frac{1}{2} \left[\frac{\cos 12x}{2} + \frac{\cos 2x}{2} \right] c$$

$$\mathsf{B.} - \frac{1}{2} \left\lceil \frac{\cos 12x}{2} + \frac{\cos 2x}{2} \right\rceil + c$$

$$\mathsf{C.} - \frac{1}{2} \left\lceil \frac{\cos 6x}{6} + \cos x \right\rceil + c$$

$$\mathrm{D.} - \frac{1}{2} \left\lceil \frac{\sin 12x}{2} + \frac{\sin 2x}{2} \right\rceil + c$$

19.
$$\int \frac{1}{e^x} dx = \dots$$

A.
$$\log e^x + c$$

$$B.x+c$$

$$\mathsf{C.}\,\frac{1}{e^x}+c$$

$$\mathsf{D.}\,\frac{-1}{e^x}+c$$

Watch Video Solution

A.
$$\frac{19}{23}$$

c.
$$\frac{23}{33}$$

$$\mathsf{D.}\ \frac{13}{34}$$

Watch Video Solution

Part li

1. Prove that the relation " friendship " is not an equivalence relation on the set of all people in Chennai.

2. How many triangles can be formed by joining 15 points on the plane, in which no line joining any three points?

Watch Video Solution

3. How many triangles can be fromed by joining 15 points on the plane, in which no line joining any three points?

4. Expand $(2x+3)^5$ with the help of binomial theorem

5. If $\lambda=-2$, determine the value of

6. Compute
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

7. Differentiate the following . $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

8. Integrate $\frac{1}{\left(x+1\right)^2-25}$

Watch Video Solution

9. Given that $P(A)=0.52, P(B)=0.43 \,\, ext{and} \,\, P(A\cap B)=0.24 \,\, ext{find}$ $pig(A\cap \overline{B}ig)$

Watch Video Solution

10. Show that $4x^2 + 4xy + y^2 - 6x - 3y - 4 = 0$ represents a pair of parallel lines.

Part lii

1. If A and B are two sets so that

$$n(B-A)=2n(A-B)=4n(A\cap B)$$
 and if

$$n(A \cup B) = 14$$
 then find n(P(A))

- **2.** Resolve $\frac{1}{x^2-a^2}$ into partial fraction .
 - **Watch Video Solution**

3. Count the number of positive integers greater than 7000 less than 8000 which are divisible by 5 provided are that no digits are repeated .

Watch Video Solution

4. Find the $\sqrt[3]{126}$ approximately to two decimal places .

5. Find the equation of the line through the intersection of the lines 3x+2y+5=0 and 3x-4y+6=0 and the point (1,1)

6. Show that
$$\begin{vmatrix} b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \\ a+b & ab & a^2b^2 \end{vmatrix} = 0$$

7. Evaluate
$$\lim_{x o 2} \frac{x-2}{x^2-x-2}$$

- **8.** Differentiate $\frac{e^{3x}}{1+e^x}$ with respect to x
 - Watch Video Solution

9. Differentiate : $e^x(\tan x + \log \sec x)$

Watch Video Solution

10. The position vectors of the vertices of a triangle are

$$\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}, 3\overrightarrow{i} - 4\overrightarrow{j} + 5\overrightarrow{k} \text{ and } -2\overrightarrow{i} + 3\overrightarrow{j} - 7\overrightarrow{k}$$

Find the perimeter of a triangle .

Watch Video Solution

Part Iv

1. If $f\!:\!R o R$ is defined by f(x)=3x-5 , prove that f is a bijection and find its inverse .

2. (a) Find the values of k so that the equation $x^2=2x(1+3k)+7(3+2k)=0$ has real and equal roots.

(b) If the roots of the equation $(q-r)x^2+(r-p)x+(p-q)=0 \ \ {\rm are} \ \ {\rm equal} \ \ {\rm then}$ show that p,q and r are in A. P .

3. (a) Find the sum of all 4 digit numbers that can be formed using the digits 1,2,3,4 and 5 repetition not allowed?

(b) Three vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are such that $\left|\overrightarrow{a}\right| = 2, \left|\overrightarrow{b}\right| = 3, \left|\overrightarrow{c}\right| = 4$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$

Find
$$4\overrightarrow{a}$$
 . \overrightarrow{b} $+$ $3\overrightarrow{b}$. \overrightarrow{c} $+$ $3\overrightarrow{c}$. \overrightarrow{a}

4. Intergrate the following $\dfrac{\sqrt{x}}{1+\sqrt{x}}dx$

5. If $y=Ae^{6x}+Be^{-x}$ $rac{d^2y}{dx^2}-5rac{dy}{dx}-6y=0$

prove

that

6. (a) Evaluate : $\lim_{x
ightarrow 0} rac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}$

