

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 2

Part I

1. The range of the function $\frac{1}{1-2\sin x}$ is

.....

B.
$$(-1, -1]$$

 $\mathsf{C.} \left[-1, \frac{1}{3} \right]$

A. $(\,-\infty,\,-1)\cup\left(rac{1}{3},\infty
ight)$

D. $(\,-\infty,\,-1]\cup\left[rac{1}{3},\infty
ight)$

Answer:

Watch Video Solution

2. The value of $\log_{\sqrt{2}} 512$ is

A. 16

B. 18

C. 9

D. 12

Answer:

Watch Video Solution

3. If a and b are the roots of the equation $x^2-kx+16=0$ and satisfy $a^2+b^2=32$ then the value of k is

A. 10

$$B. - 8$$

$$C. -8, 8$$

Watch Video Solution

4. The value of $\log_9 27$ is

A.
$$\frac{2}{3}$$
B. $\frac{3}{2}$

B.
$$\frac{3}{2}$$

$$\frac{3}{4}$$

D.
$$\frac{3}{3}$$

5. The value of
$$\frac{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta} = \dots$$

A.
$$\tan 3\theta$$

B.
$$\tan 6\theta$$

C. $\cot 3\theta$

D. $\cot 6\theta$

Answer:

Watch Video Solution

6. In 3 fingers the number of ways 4 rings can be worn in Ways.

A. $4^3 - 1$

 $B.3^4$

C. 68

Watch Video Solution

7. Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is

•

A. 11

B. 12

C. 10

D. 6

Answer:

Watch Video Solution

8. The H.M of two positive number whose AM and

G.M. are 16, 8 respectively is

A. 10

B. 6

C. 5

D. 4

Answer:

Watch Video Solution

9. The co-efficient of the term independent of x in the expansion of $\left(2x-\frac{1}{3x}\right)^6$, x>0 is

$$\mathsf{A.}\ \frac{-160}{27}$$

B.
$$\frac{-160}{37}$$

C.
$$\frac{80}{3}$$

D.
$$\frac{-80}{9}$$

Watch Video Solution

10. The value of
$$\begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix}^2$$
 is

A. abc

B.-abc

C. 0

D. $a^2b^2c^2$

Watch Video Solution

11. If
$$\Delta = egin{array}{c|cccc} a & b & c \\ x & y & z \\ p & q & r \end{array}$$
 then $egin{array}{c|cccc} ka & kb & kc \\ kx & ky & kz \\ kp & kq & kr \end{array}$ is

.....

A.
$$\Delta$$

B.
$$k\Delta$$

C.
$$3k\Delta$$

D.
$$k^3\Delta$$

Watch Video Solution

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{2}{3}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$$

D.
$$\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

Watch Video Solution

13. If the centroids of $\triangle ABC$ and $\triangle A'B'C'$ are respectively G and G' then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$

A.
$$\overrightarrow{GG}'$$

B.
$$3\overrightarrow{GG}'$$

$$\mathsf{C.}\,2\overrightarrow{GG'}$$

D. 0

Watch Video Solution

14. If
$$f(x)=\left\{egin{array}{ll} kx^2 & {
m for} & x\leq 2 \ 5 & {
m for} & x>2 \end{array}
ight.$$
 is continuous

at x=2 then the value of k is

A.
$$\frac{5}{4}$$

B. 0

C. 1

D.
$$\frac{4}{5}$$

Watch Video Solution

15. If
$$x=rac{1-t^2}{1+t^2}$$
 and $y=rac{2t}{1+t^2}$ then $rac{dy}{dx}$ at $t=2$

Watch Video Solution

16.
$$\lim_{x\to\infty} \left(\frac{x^2+5x+3}{x^2+x+3}\right)^x$$
 is

A. e^4

- B. e^2
- $\mathsf{C}.\,e^3$
- D. 1

17.
$$\int \!\! rac{e^x ig(x^2 an^{-1} x + an^{-1} x + 1ig)}{x^2 + 1} dx$$
 is

- A. $e^x \tan^{-1}(x+1) + c$
- $\mathsf{B}.\tan^{-1}(e^x)+c$

18.
$$\int \sqrt{1-\cos 2x} dx = \dots$$

Watch Video Solution

 $\mathsf{C.}\,e^x\frac{\left(\tan^{-1}x\right)^2}{2}+c$

 $D. e^x \tan^{-1} x + c$

Answer:

$$_{\circ}6\log x$$
 $_{\circ}5\log x$

19.
$$\frac{e^{6\log x} - e^{5\log x}}{e^{4\log x} - e^{3\log x}} = \dots$$

B.
$$x^3$$

$$\mathsf{C.}\,x^2$$

D.
$$\frac{1}{x^2}$$

Watch Video Solution

20. It is given that the events A and B are such that

Watch Video Solution

 $P(A) = \frac{1}{4}, P(A/B) = \frac{1}{2} \text{ and } P(B/A) = \frac{1}{3}$

then $P(B) = \dots$

A. $\frac{1}{6}$

B. $\frac{1}{3}$

c. $\frac{2}{3}$

D. $\frac{1}{2}$

1. Find
$$x$$
 such that

$$-\pi \le x \le \pi \text{ and } \cos 2x = \sin x$$

- **2.** If ${}^{(n-1)}P_3$: ${}^nP_4=1$: 10, find n.
 - Watch Video Solution

3. Find the $18^{\rm th}$ and $25^{\rm th}$ terms of the sequence defined by

 $a_n = \left\{ egin{aligned} n(n+2), & ext{if n is even natural number} \ rac{4n}{n^2+1}, & ext{if n is odd natural number} \end{array}
ight.$

4. Show that the lines are

3x + 2y + 9 = 0 and 12x + 8y - 15 = 0 are

5. Prove that
$$egin{array}{c|ccc} x+2a & y+2b & z+2c \ x & y & z \ a & b & c \ \end{array} = 0$$

6. Find the value of λ for which the vectors

$$\overrightarrow{a}=2\overrightarrow{i}+\lambda\overrightarrow{j}+\overrightarrow{k} \ \ ext{and} \ \ \overrightarrow{b}=\overrightarrow{i}-2\overrightarrow{j}+3\overrightarrow{k}$$
 are perpendicular.

7. If
$$y = \frac{\tan x}{x}$$
 find $\frac{dy}{dx}$

8. Evaluate $\int \sqrt{25x^2 - 9} dx$

Watch Video Solution

9. If A and B are two independent events such that

 $P(A) = 0.4 \text{ and } P(A \cup B) = 0.9. \text{ Find } P(B).$

Watch Video Solution

10. A rope of length 12 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed.

Watch Video Solution

Part lii

1. Let

 $A = \{a, b, c\} \text{ and } R = \{(a, a), (b, b), (a, c)\}.$

Write down the minimum number of ordered pairs to be included to R to make it

(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

2. Solve: $2|x+1|-6 \le 7$ and graph the solution set in a number line.

3. If the different permutantions of all letters of the word BHASKARA are listed as in a dictionary, how many strings are there in this list before the first word starting with B?

4. Find the sum up to n terms of the series:

$$1 + \frac{6}{7} + \frac{11}{49} + \frac{16}{343} + \dots$$

5. Area of the triangle formed by a line with the coordinate axes, is 36 square units. Find the equation of the line if the perpendicular drawn from the origin to the line makes an angle of 45° with positive the x - axis.

6.

$$A^T = \left(egin{array}{ccc} 4 & 5 \ -1 & 0 \ 2 & 3 \end{array}
ight) \; ext{and} \; B = \left(egin{array}{ccc} 2 & -1 & 1 \ 7 & 5 & -2 \end{array}
ight)$$

verify that $\left(A-B
ight)^T=A^T-B^T$

Watch Video Solution

7. For any vector \overrightarrow{a} prove that

$$\left|\overrightarrow{a} imes\hat{i}
ight|^{2}+\left|\overrightarrow{a} imes\hat{j}
ight|^{2}+\left|\overrightarrow{a} imes\hat{k}
ight|^{2}=2{\left|\overrightarrow{a}
ight|^{2}}.$$

8. Given $y=\cos^{-1}\!\left(\frac{1-x^2}{1+x^2}\right)$ find $\frac{dy}{dx}$

Watch Video Solution

9. A wound is healing in such a way that t days since Sunday the area of the wound has been decreasing at a rate of $-\frac{3}{(t+2)^2}cm^2$ per day. If on Monday the area of the wound was $2cm^2$ What was the area of the wound on Sunday?

10. An integer is chosen at random from the first 50 positive integers. What is probability that the integer chosen is a prime or multiple of 4?

Watch Video Solution

11. If $f\colon R o R$ is defined by f(x)=2x-3prove that f is a bijection and find its inverse.

12. If the equations

13. A straight line passes through a fixed point (6, 8). Find the locus of the foot of the perpendicular on it drawn from the origin is.

14. Express the matrix $A=egin{bmatrix}1&3&5\\-6&8&3\\-4&6&5\end{bmatrix}$ as the

sum of a symmetric and a skew - symmetric matrices.

15. If
$$y=e^{\tan^{-1}x}$$
, show that $\left(1+x^2\right)y'$ ' $+\left(2x-1\right)y'=0$

16. Evaluate: $\int_0^2 \sin^{-1} x dx$

Watch Video Solution

17. A factory has two machines A and B. Machine A produces $40\,\%$ of items of the output and Machine B produces $60\,\%$ of the items. Further $4\,\%$ of items produced by Machine A are defective and $5\,\%$ produced by Machine B are defective. An item is drawn at random. If the drawn item is defective, find the probability that it was produced by Machine B.

