



### MATHS

### BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

### **SAMPLE PAPER -19**

Sample Paper Unsolved 19

1. If A 
$$= \{(x,y): y = e^x, x \in R\}$$
 and

 $B=ig\{(x,y)\!:\!y=e^{\,-\,x},xarepsilon Rig)$  then  $n(A\cap B)$ 

is \_\_\_

### A. Infinity

B. 0

C. 1

D. 2

### Answer: C

**Watch Video Solution** 

**2.** The value of  $\left(0.32
ight)^{128}$  is \_\_\_\_

A.  $\frac{5}{7}$ B.  $\frac{7}{5}$ C. 4

D. 2

### Answer: B

### 3. The maximum value of 4 $\sin^2 x + 3\cos^2 x + \sin \frac{x}{2} + \cos \frac{x}{2}$ is

View Text Solution

A. 
$$4+\sqrt{2}$$

### $\mathsf{B.}\,3+\sqrt{2}$

C. 9

D. 4

### Answer: A

### Watch Video Solution

**4.** A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete rotations \_\_\_\_

- A.  $10\pi$  seconds
- B.  $20\pi$  seconds
- C.  $5\pi$  seconds
- D.  $15\pi$  seconds

### Answer: A

5. If 
$$\sin \theta = \frac{24}{25}$$
 and  $\theta$  lies in II quadrant, then  $\sec \theta + \tan \theta =$  \_\_\_\_\_

B. − 5 C. − 3

 $A_{-} - 9$ 

 $\mathsf{D.}-7$ 

### Answer: D

### Watch Video Solution

**6.** There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is

A. 45

B.40

C. 39

D. 38

Answer: B



7. Equation of the straight line that forms are isosceles triangle with coordinate axes in the I quadrant with perimeter  $4 + 2\sqrt{2}$  is \_\_\_\_\_

A. 
$$x + y + 2 = 0$$

B. 
$$x + y - 2 = 0$$

C. 
$$x+y-\sqrt{2}=0$$

D. 
$$x+y+\sqrt{2}=0$$

### **Answer: B**

# Watch Video Solution 8. The value of the series



A. 14

B. 7

C. 4

D. 6

Answer: B

### Watch Video Solution

**9.** The value of 2+4+6+ ....+2n is \_\_\_\_\_

A. 
$$rac{n(n-1)}{2}$$

B. 
$$rac{n(n+1)}{2}$$
  
C.  $rac{2n(2n+1)}{2}$ 

$$\mathsf{D}.\,n(n+1)$$

### Answer: D

Watch Video Solution

**10.** The value of x for which the matrix  $\frac{5}{7}$  is

singular is \_\_\_\_\_

B. 8

C. 7

D. 6

### Answer: B

View Text Solution

**11.** What must be the matrix X , is  

$$2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$$
?  
A.  $\begin{vmatrix} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} \end{vmatrix}$ 

$$B \cdot \begin{vmatrix} 1 & -3 \\ 2 & -1 \end{vmatrix} \\C \cdot \begin{vmatrix} (2, 6), (4(-2)) \end{vmatrix} \\D \cdot \begin{vmatrix} 2 & -6 \\ 4 & -2 \end{vmatrix} \end{vmatrix}$$

### Answer: A

12. The value of 
$$\theta \varepsilon \left(0, \frac{\pi}{2}\right)$$
 for which the vectors  $\overrightarrow{a} = (\sin \theta)\hat{i} + (\cos \theta)\hat{j}$  and  $\overrightarrow{b} = \hat{i} - \sqrt{3}\hat{j} + 2\hat{k}$  are perpendicular is equal to \_\_\_\_\_

A. 
$$\frac{\pi}{3}$$
  
B.  $\frac{\pi}{6}$   
C.  $\frac{\pi}{4}$   
D.  $\frac{\pi}{2}$ 





B. 1

 $\mathsf{C}.\,\sqrt{2}$ 

D. does not exist

### Answer:

> Watch Video Solution

**14.** A vector  $\overrightarrow{OP}$  makes  $60^{\circ}$  and  $45^{\circ}$  with the positive direction of the x and y axes repectively. Then the angle between  $\overrightarrow{OP}$  and the z axis is

A.  $45^{\,\circ}$ 

B.  $60^{\circ}$ 

C.  $90^{\circ}$ 

D.  $30^{\circ}$ 

### **Answer: B**

### Watch Video Solution



where [. ] denotes the greatest integer

A. 2

B. 3

C. does not exist

D. 0

### Answer: C

## Watch Video Solution

16. It is given that f'(a) exists,then  $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} is:$ 

A. 
$$f(a) - af(a)$$

 $\mathsf{B.}\,f(a)$ 

$$\mathsf{C}.-f(a)$$

$$\mathsf{D}.\,f(a)+af(a)$$

### Answer: A

### Watch Video Solution

17. 
$$\int \frac{dx}{e^x - 1} dx$$
 is

A. log  $|e^x| - \log \mid e^x - 1) \mid \ + c$ 

B. 
$$\log |e^x| + \log |e^x - 1| + c$$

$$\mathsf{C}.\log|e^x-1|-\log|e^x|+c$$

D. log  $|e^x+1| - \log|e^x| + c$ 

### Answer: C

Watch Video Solution

18. If 
$$f(x) = egin{cases} 2a-x, & ext{for} & -a < x < a \ 3x-2a, & ext{for} & x \geq a \end{cases}$$
 then which of the following is true?

A. f(X) is not differentiable at x=a

- B. f(x) is discontinous at x=a
- C. f(x) is continuous for all x in R

D. f(x) is differentiable for all  $x \ge a$ 

Answer: A

**19.** Let A and B are two events such that 
$$P(\overline{A \cup B}) = \frac{1}{6}, P(A \cap B) = \frac{1}{4}$$
 and  $P(\overline{A}) = \frac{1}{4}$ . Then the events A and B are:

A. Equally likely but not independent

B. Independent but not equally likely

C. Independent and equally likely

D. Mutually inclusive and dependent

Answer: B

Watch Video Solution

20. A number is selected from the seet {1,2,3,...

. . . 20} The probability that the selected

number is divisible by 3 or 4 is \_\_\_

A. 
$$\frac{2}{5}$$
  
B.  $\frac{1}{8}$   
C.  $\frac{1}{2}$   
D.  $\frac{2}{3}$ 

Answer: B

Watch Video Solution

Sample Paper Unsolved 19 li





**2.** If .
$$^{15} C_{2r-1} = .^{15} C_{2r+4}$$
 find r

### Watch Video Solution





5. If D is the midpoint of the side AB of a triagle ABC prove that  $\overrightarrow{BC} + \overrightarrow{AC} = -2\overrightarrow{CD}$ 

6. Find the points of discontinuity of the

function f, where,

$$f(x) = \left\{egin{array}{ccc} 4x+5 & {
m if} & x\leq 3\ 4x-5 & {
m if} & x>3 \end{array}
ight.$$

Watch Video Solution

7. Find 
$$rac{dy}{dx}$$
 if  $x^2+y^2=1$ 

8. Evaluate 
$$\int \frac{1}{\sin^2 x \cos^2 x} dx$$
.



**9.** X speaks truth in 70 percent of cases and Y in 90 percent of cases. What is the probability that they likely to c ontradict each other in stating the same fact?

Watch Video Solution

Sample Paper Unsolved 19 Iii

1. If the difference of the roots of the equation

 $2x^2-(a+1)x+a-1=0$  is equal to their

product then prove that a=2



2. If 
$$\cos heta + \sin heta = \sqrt{2} \cos heta$$
 then prove that

 $\cos heta - \sin heta = \sqrt{2}\sin heta$ 

**3.** if the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY .



**4.** If a,b,c are in geometric progression and if  $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$ , then prove that x,y,z are in arithmetic progression.

5. Find the value of the product  $\begin{vmatrix} \log_3 64 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix} \times \begin{vmatrix} \log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4 \end{vmatrix}$ 

Watch Video Solution

**6.** If 
$$\overrightarrow{a}$$
,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  are three unit vectors satisfying  $\overrightarrow{a} - \sqrt{3}\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$  then find the angle between  $\overrightarrow{a}$  and  $\overrightarrow{c}$ ?

7. Verify the existence of 
$$\lim_{x \to 1} f(x)$$
, where  

$$f(x) = \begin{cases} \frac{|x-1|}{x-1} & \text{for } x \neq 1 \\ 0 & \text{for } x = 1 \end{cases}$$
Watch Video Solution

**8.** Evaluate : 
$$\int (x-3)\sqrt{x+2}dx$$

Watch Video Solution

**9.** Suppose 4 coins are tossed. Find the probability of getting

(i) exactly two heads (ii) at least 2 head (iii)

atmost 2 heads

• Watch Video Solution  
10. If 
$$f(x) = |x + 100| + x^2$$
, test whether  
 $f'(100)$  exists.

Watch Video Solution

Sample Paper Unsolved 19 Iv

1. Expand 
$$\left(x^2 + \sqrt{1-x^2}\right)^5 + \left(x^2 - \sqrt{1-x^2}\right)^5$$
 Watch Video Solution

**2.** Solve: 
$$x^4 - 7x^3 + 8x^2 + 8x - 8 = 0$$
 given

$$3-\sqrt{5}$$
 is a root.



3. The coordinates of a moving point P are  

$$\left(\frac{a}{2}(\cos \sec \theta + \sin \theta), \frac{b}{2}(\cos \sec \theta - \sin \theta)\right)$$
where  $\theta$  is a variable parameter. Show that the  
equation of the locus of P is  
 $b^2x^2 - a^2y^2 = a^2b^2$   
Watch Video Solution  
4. If  $y = (\cos^{-1}x)^2$  prove that

$$ig(1-x^2ig)rac{d^2y}{dx^2}-xrac{dy}{dx}-2=0$$

**5.** X speaks the truth in 70 percent of cases, and Y in 90 percent of cases. What is the probabiiity that they likely to contradict each other in stating the same fact ?

Watch Video Solution

6. Differentiate the following : 
$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$