

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER 16 (UNSOLVED

Part I

1. If the function $f{:}[-3,3] o S$ defined by

 $f(x) = x^2$ is onto, then S is

B. R

D. [0,9]

Answer:

Watch Video Solution

2. The soloution set of the inequality

$$|x-1| \leq |x-3|$$
 is

B.
$$[2,\infty)$$

D.
$$(-\infty,2]$$

Answer: B

Watch Video Solution

3. If
$$\frac{kx}{(x-2)(x+1)} = \frac{2}{x-2} + \frac{1}{x+1}$$
 then

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: C

Watch Video Solution

4. The number of ways in which the following prizes be given to a class of 30 boys, first and second in mathematics, first and second in

physics, first in chemistry and first in english

•••••

A.
$$30^4 imes 29^2$$

B.
$$30^3 imes 29^3$$

C.
$$30^2 imes 29^4$$

D.
$$30 imes 29^5$$

Answer: B::C::D

5. If $\sin \theta = \frac{24}{25}$ and θ lies in II quadrant, then $\sec \theta + \tan \theta = \dots$

$$A. - 9$$

$$B.-5$$

$$\mathsf{C.}-3$$

$$D. - 7$$

Answer:

6. $\cdot^{n-1} C_r + \cdot^{n-1} C_{r-1}$ is

A.
$$^{n+1}C_r$$

B.
$$^{n-1}C_r$$

C.
nC_r

D.
$$^nC_{r-1}$$

Answer: C

7. If (n+2) !=2550 imes n! then the value of n is

A. 48

B. 49

 $\mathsf{C.}\,50$

D. 51

Answer: D

8. The cofficient of x^5 in the series e^{-2x} is

•••••

$$\mathsf{A.}\;\frac{2}{5}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{C.} - \frac{4}{15}$$

D.
$$\frac{4}{15}$$

Answer: A::D

9. Which of the following equation is the locus

of $(at^2, 2at)$

A.
$$\displaystyle rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$

B.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

C.
$$x^2 + y^2 = a^2$$

$$\mathsf{D}.\,y^2=4ax$$

Answer: A::B::D

10. The point on the line 2x-3y=5 is equidistance form (1,2) and (3,4) is

A. (7, 3)

B.(4,1)

C. (1, -1)

D.(3,4)

Answer: A::D

A. 60^{o}

B. 90^{o}

 $\mathsf{C.}\,45^o$

D. 210^{o}

Answer:

12. A root of the equation

$$\begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} = 0 \text{ is}$$

A.6

 $\mathsf{B.}\,3$

C. 0

D. - 6

Answer:

13. The unit vector in the direction of $4\hat{i} + 5\hat{j}$

İS

A.
$$\pm \frac{4\hat{i} + 5\hat{j}}{9}$$

$$\mathsf{B.}\pm\frac{4\hat{i}+5\hat{j}}{41}$$

$$\mathsf{C.}\pm\frac{4\hat{i}+5\hat{j}}{\sqrt{41}}$$

D. none of these

Answer: A::D

14.
$$\lim_{x \to 1} \frac{x^{\frac{1}{3}} - 1}{x - 1}$$
 is

A.
$$\frac{2}{3}$$

$$\mathsf{B.}\;\frac{1}{3}$$

$$-\frac{1}{3}$$

Answer: A::C

15.
$$\lim_{x \to 0} \frac{e^{\tan x} - e^x}{\tan x - x} =$$

B.e

 $\mathsf{C.}\,\frac{1}{2}$

D. 0

Answer: A

Watch Video Solution

16.
$$\lim_{ heta o 0} \, rac{\sin \sqrt{ heta}}{\sqrt{\sin heta}} = \ldots \ldots$$

A. 1

$$B. - 1$$

Answer: A

Watch Video Solution

17. The derivative of $\frac{1-\sin x}{1+\cos x}$ with respect to

$$x$$
 at $x=rac{\pi}{2}$ is equal to

A. 0

- **B.** 1
- $\mathsf{C.}\,2$
- D. 3

Answer:

18.
$$\int \tan x dx = \dots$$
.

- A. $\log \cos x + c$
- $\mathsf{B}.\log\sec x + c$

 $\mathsf{C}.\sec^2x+c$

D.
$$\frac{\tan^2 x}{2} + c$$

Answer: C

19.
$$\int \sqrt{\frac{1-x}{1+x}} dx$$
 is

A.
$$\sqrt{1-x^2} + \sin^{-1} + c$$

$$\mathsf{B.}\sin^{-1}x - \sqrt{1-x^2} + c$$

C.
$$\log \left| x + \sqrt{1-x^2}
ight| - \sqrt{1-x^2} + c$$

D.
$$\sqrt{1-x^2} + \log \left|x + \sqrt{1-x^2}\right| + c$$

Answer: A::B::C

Watch Video Solution

20. Four persons are selected at random from a group of 3 men, 2 women and 4 children. The probability that exactly two of them are children is

A.
$$\frac{3}{4}$$

B.
$$\frac{10}{23}$$

C.
$$\frac{1}{2}$$
D. $\frac{10}{21}$

Answer: A::B

Watch Video Solution

Part li

1. Let P be the set of all triangles in a plane and R be the relation defined on P as a Rb if a is similar to b. Prove that R is an equivalence relation. B. D. Answer: A::B::C::D **Watch Video Solution**

2. Find the value of $an 315^o \cot (-405^o) + \cot 495^o \tan (-585^o)$

3. If $^{n}P_{r}=720$ and $^{n}C_{r}=120$, find n

5. If O is origin and R is a variable point on $y^2=4x$, then find the equation of the locus of the mid-point of the line segmet OR.

Watch Video Solution

6. Find $\lim_{x o 0} \frac{\left(2+x\right)^5-2^5}{x}$

7. Find $\frac{dy}{dx}$ if $\sin y = y \cos 2x$

Watch Video Solution

8. Evaluate $\int \frac{\tan x}{\cos x} dx$

Watch Video Solution

9. An integer is chosen at random from the ten positive integer. Find the pobability it is(i)an even number (ii)multiples of three

10. Without expanding the determinant prove

that
$$\begin{vmatrix} s & a^2 & b^2+c^2 \ s & b^2 & c^2+a^2 \ s & c^2 & a^2+b^2 \ \end{vmatrix} = 0$$

Part lii

1. In the set z of integers, define mRn if m-n is \div 7, prove that R is an equivalence

relation.

Watch Video Solution

2. Solve: $\log_4 2^{8x} = 2^{\log_2^8}$

Watch Video Solution

3. Find x from the equation

 $=\sin(90^{\circ}+A)$

 $\cos ec(90^o+A)+x\cos A\cot(90^o+A)$

4. Differentiate the following:

$$y=\left(x^{2}+1
ight) \sqrt[3]{x^{2}+2}.$$

Watch Video Solution

5. Show that the equation

$$2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$$

represents a pair of intersecting lines. Show further that the angle between them is $\tan^{-1}(5)$.

6. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} be three vectors such that $\left|\overrightarrow{a}\right|=3, \left|\overrightarrow{b}\right|=4, \left|\overrightarrow{c}\right|=12$ and each one of them being perpendicular to the sum of the other two. Find $\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|$.

7. Evaluate
$$\lim_{x\to 5} \frac{\sqrt{x+4-3}}{x-5}$$

8. Given f'(x) = 4x - 5 and f(2) = 1 , find f(x)

Watch Video Solution

9. Evaluate: $\int x \cos x dx$

Watch Video Solution

10. A firm manufactures PVC pipes in three plants viz, X, Y and Z. The daily production

volumes from the three firms X,Y and Z are respectively 2000 units, 3000 units 5000 units. It is known from the past experience that 3% of the output from plant X,4% from plant Y and 2% from plant Z are defective. A pipe is selected at random from a day's total production,

- (i) find the probability that the selected pipe is a defective one.
- (ii) if the selected pipe is a défective, then what is the probability that it was plant Y?

1. The formula for converting from Fahrenheit to Celsius temperatures is $y=\frac{5x}{9}-\frac{160}{9}$. Find the inverse of this function and determine whether the inverse is also a function.

Watch Video Solution

2. If one root of $k(x-1)^2=5x-7$ is double the other root, then show that k=2 or -25

3. Solve the triangle ABC if a=5, b=4 and

$$\angle A=60^{\circ}$$
 , then side c is

4. Evaluate $\lim_{x \to 1} \frac{\sqrt[3]{7 + x^3 - \sqrt{3 + x^2}}}{x - 1}$

5. Find the length of the perpendicular and the coordinates of the foot of the perpendicul from (-10, -2) to the line x+y-2=0

Watch Video Solution

6. Express the matrix $A=\begin{bmatrix} 7 & 1 & 5 \\ -4 & 0 & 3 \\ -2 & 6 & 1 \end{bmatrix}$ as

the sum of a symmetric and a skew-symmetric matrices.

7. Find
$$\displaystyle \frac{dy}{dx}$$
 for $\displaystyle y = \displaystyle \frac{\left(x^2+2\right)\left(x+\sqrt{2}\right)}{\sqrt{x+4}(x-7)}$

