© 'doubtnut India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER-07 (UNSOLVED)

Part I

1. Let R be the set of all real numbers. Consider the following subsets of the plane
$R \times R: S=\{(x, y): y=x+1$ and $0<x<2\}$ and $T=\{(x, y): x-y$
is an integer\}
Then which of the following is true?
A. T is an equivalence relation but S is not an equivalence relation.
B. Neither S nor T is an equivalence relation
C. Both S and T are equivalence relation
D. S is an equivalence relation but T is not an equivalence relation.

Answer:

- Watch Video Solution

2. If the set A has m elements the set B has n elements and the number of elements in $A \times B$ is
A. $m+n$
B. $m n$
C. $\frac{m}{n}$
D. m^{2}

Answer:

3. If $\frac{a x}{(x+2)(2 x-3)}=\frac{2}{x+2}+\frac{3}{2 x-3}$ than $\mathrm{a}=.$.
A. 8
B. 7
C. 5
D. 4

Answer:

- Watch Video Solution

4. The number of solutions of $x^{2}+|x-1|=1$ is
A. 1
B. 0
C. 2
D. 3

Answer:

- Watch Video Solution

5. If $a, 8, b$ are in A.P. , $a, 4, b$ are in G.P. and a, x, b are in H.P. then $\mathrm{x}=$. \qquad
A. 2
B. 1
C. 4
D. 16

Answer:

- Watch Video Solution

6. If 10 lines are drawn in a plane such that no two of them are parallel
intersection are
A. 45
B. 40
C. 10 !
D. 2^{10}

Answer:

- Watch Video Solution

7. The value of $e^{2 \log x}=\ldots$.
A. $2 x$
B. x^{2}
C. \sqrt{x}
D. $\frac{x}{2}$

Answer: B

- Watch Video Solution

8. The $n^{\text {th }}$ term of the sequence $1,2,4,7,11, \ldots$ is
A. $n^{3}+3 n^{2}+2 n$
B. $n^{3}-3 n^{2}+3 n$
C. $\frac{n(n+1)(n+2)}{3}$
D. $\frac{n^{2}-n+2}{2}$

Answer:

- Watch Video Solution

9. The last term in the expansion $(2+\sqrt{3})^{8}$ is
A. 81
B. 27
C. 9
D. 3

Answer: A

Watch Video Solution
10. If $\lambda \hat{i}+2 \lambda \hat{j}+2 \lambda \hat{k}$ is a unit vector, then the value of λ is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{9}$
D. $\frac{1}{2}$

Answer:
11. One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a}+\vec{b}$. The other diagonal $\overrightarrow{B D}$ is
A. $\vec{a}-\vec{b}$
B. $\vec{b}-\vec{a}$
C. $\vec{a}+\vec{b}$
D. $\frac{\vec{a}+\vec{b}}{2}$

Answer:

- Watch Video Solution

12. If $(1,2,4)$ and $(2,-3 \lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$, then value of λ is equal to

- Watch Video Solution

13. If $y=m x+c$ and $f(0)=f^{\prime}(0)=1$, then $f(2)$ is
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

14. The derivative of $\left(x+\frac{1}{x}\right)^{2}$ w.r.to.x is
A. $2 x-\frac{2}{x^{3}}$
B. $2 x+\frac{2}{x^{3}}$
C. $2\left(x+\frac{1}{x}\right)$
D. 0

- Watch Video Solution

15. $\int \frac{\sqrt{\tan x}}{\sin 2 x} d x$ is
A. $\sqrt{\tan x}+c$
B. $2 \sqrt{\tan x}+c$
C. $\frac{1}{2} \sqrt{\tan x}+c$
D. $\frac{1}{4} \sqrt{\tan x}+c$

Answer:

- Watch Video Solution

16. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls
of the colour drawn are put in the urn and then a ball is drawn at random. The probability that the second ball drawn is red will be
A. $\frac{5}{12}$
B. $\frac{1}{2}$
C. $\frac{7}{12}$
D. $\frac{1}{4}$

Answer:

- Watch Video Solution

17. It is given that the events A and B are such that $P(A)=\frac{1}{4}, P(A / B)=\frac{1}{2}$ and $P(B / A)=\frac{2}{3}$. Then $\mathrm{P}(\mathrm{B})$ is
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

Part li

1. If $n(p(A))=1024, n(A \cup B)=15$ and $n(P(B))=32$, then find $n(A \cap B)$.

- Watch Video Solution

2. Simplify: $(125)^{2 / 3}$

- Watch Video Solution

3. Show that $\cos 36^{\circ} \cos 72^{\circ} \cos 108^{\circ} \cos 144^{\circ}=\frac{1}{16}$
4. Find the number of ways of selecting 9 ball from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.

- Watch Video Solution

5. Find $|A|$ if $A=\left[\begin{array}{lll}0 & \sin \alpha & \cos \alpha \\ \sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right]$

- Watch Video Solution

6.

For
any
vector
prove
that
$\vec{r}=(\vec{r} \cdot \vec{i}) i+(\vec{r} \cdot \vec{j}) j+(\vec{r} \cdot \vec{k}) k$

- Watch Video Solution

7. Calculate $\lim _{x \rightarrow-2}\left(x^{3}-3 x+6\right)\left(-x^{2}+15\right)$

- Watch Video Solution

8. Find the derivatives of the following functions with respect to corresponding independent variables.
$y=e^{x} \sin x$

- Watch Video Solution

9. Integrate the following with respect to x

$$
\frac{4}{(3+4 x)}+(10 x+3)^{9}-3 \cos e c(2 x+3) \cot (2 x+3)
$$

- Watch Video Solution

10. $P(A)=0.6, P(B)=0.5$ and $P(A \cap B)=0.2$ find $P(A / B)$

Part iif

1. A quadratic polynomial has one of its zeros as $1+\sqrt{5}$ and it satisfies $p(1)=2$. find the quadratic polynomial.

- Watch Video Solution

2. Prove that $\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)=\tan ^{=-1}\left(\frac{2}{9}\right)$

- Watch Video Solution

3. Find the equation of the line passing through the point $(5,2)$ and perpendiular to the line joining the points $(2,3)$ and $(3,-1)$.

- Watch Video Solution

4. Find the area of the triangle whose vertices are (0,0), $(1,2)$ and $(4,3)$.

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

6. Evaluate: $\lim _{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{1+x}-1}$

- Watch Video Solution

7. Find the derivatives of the following :
$\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)$
8. $x^{5} e^{x^{2}}$

- Watch Video Solution

Part lv

1. If $\mathrm{f}: \mathrm{R}-(-1,1) \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}-1}$, verify whether f is one to one.

- Watch Video Solution

2. Prove that $\frac{\sin x+\sin 3 x+\sin 5 x+\sin 7 x}{\cos x+\cos 3 x+\cos 5 x+\cos 7 x}=\tan 4 x$

D Watch Video Solution

3. If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words

Q GARDEN

- Watch Video Solution

4. Find the derivatives of the following :
$\sqrt{x^{2}+y^{2}}=\tan ^{-1}\left(\frac{y}{x}\right)$

- Watch Video Solution

5. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two , find $|\vec{a}+\vec{b}+\vec{c}|$.
6. Find all the equations of the straight lines in the family of the lines $y=m x-3$, for which m and the x-coordinate of the point of intersection of the lines with $x-y=6$ are integers.

- Watch Video Solution

7. Express the matrices as the sum of a symmetric matrix and a skew symmetric matrix:
$\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$.

- Watch Video Solution

