©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

VECTOR ALGEBRA-I

Solved Examples

1. Represent graphically the displacement at
(i) $30 \mathrm{~km} 60^{\circ}$ west of north
(ii) $60 \mathrm{~km} 50^{\circ}$ south of east

- Watch Video Solution

2. If P and Q are two points with position vectors $4 \vec{i}-3 \vec{j}$ and $2 \vec{i}+5 \vec{j}$. Find the position vectors of the points which divide the line
joining the points. P and Q in the ration 2:3internally and externally.

- Watch Video Solution

3. Find a unit vector along the directions of the vector $5 \hat{i}-3 \hat{j}+4 \hat{k}$?

- Watch Video Solution

4. Find the direction ratio and direction cosines of the following vectors.
(i) $3 \hat{i}+4 \hat{j}-6 \hat{k}$ (ii) $3 \hat{i}-4 \hat{k}$.

- Watch Video Solution

5. Show that the points vectors are $2 \hat{i}+3 \hat{j}-5 \hat{k}, 3 \hat{i}+\hat{j}-2 \hat{k}$ and $6 \hat{i}-5 \hat{j}+7 \hat{k}$ are collinear.

- Watch Video Solution

6. Find a point whose positions vector has magnitude 5 and parallel to the vector $4 \hat{i}-3 \hat{j}+10 \hat{k}$.

- Watch Video Solution

7. Prove that the points whose position vectors
$2 \hat{i}+4 \hat{j}+3 \hat{k}, 4 \hat{i}+\hat{j}+9 \hat{k}$ and $10 \hat{i}-\hat{j}+6 \hat{k}$ form a right angled triangle.

- Watch Video Solution

8. Show that the vectors $5 \hat{i}+6 \hat{j}+7 \hat{k}, 7 \hat{i}-8 \hat{j}+9 \hat{k}, 3 \hat{i}+20 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

9. Find $\vec{a} \cdot \vec{b}$ when
(i) $\vec{a}=\hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{k}$
(ii) \vec{a} and \vec{b} represent the point ($2,3,-1$) and ($-1,2,3$).

- Watch Video Solution

10. Find $\quad(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b}) \quad$ if $\quad \vec{a}=\hat{i}+\hat{j}+2 \hat{k} \quad$ and $\hat{b}=3 \hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

11. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ be such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c} then find λ

- Watch Video Solution

12. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ prove that \vec{a} and \vec{b} are perpendicular.
13. For any vector \vec{r} prove that $\vec{r}=(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$.

- Watch Video Solution

14. Find the angle between the vectors $5 \hat{i}+3 \hat{j}+4 \hat{k}$ and $6 \hat{i}+4 \hat{k}$

- Watch Video Solution

15. find the projection of $\overline{A B}$ on $\overline{C D}$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the points $(4,-3,0)$, $(7,-5,-1),(-2,1,3)(0,2,5)$.

- Watch Video Solution

16. If \widehat{a}, \hat{b} and \hat{c} are three unit vectors satisfying $\widehat{a}-\sqrt{3} \hat{b}+\hat{c}=\hat{0}$ then find the angle between \widehat{a} and \hat{c}.
17. Show that the points $(4,-3,1)(2,-4,5)$ and $(1,-1,0)$ form a right angled triangle.

Watch Video Solution

18. Find $|\widehat{a} \times \hat{b}|$, where $\widehat{a}=3 \hat{i}+4 \hat{j}$ and $\hat{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

19. If $\vec{a}=-3 \hat{i}+\hat{j}-7 \hat{k}$ and $\vec{b}=6 \hat{i}+2 \hat{j}-3 \hat{k}$, verify
(i) \vec{a} and $\hat{a} \times \hat{b}$ are perpendicular to each other.
(ii) \vec{b} and $\vec{a} \times \vec{b}$ are perpendicular to each other.

- Watch Video Solution

20. Find the vectors of magnitude 6 which are perpendicular to both vectors $\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$

Watch Video Solution

21. Find the cosine and sine angle between the vectors $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=4 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

22. Find the area of the parallelogram whose adjacent sides are $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

23. for any two vectors \vec{a} and \vec{b}, prove that
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$.

(Watch Video Solution

24. Find the area of a triangle having the points $A(1,0,0), B(0,1,0)$ and $\mathrm{C}(0,0,1)$ as its vertices.

- Watch Video Solution

Exercise 81

1. Represent graphically the displacement of (i) $45 \mathrm{~km} 30^{\circ}$ north of east.
(ii) $80 \mathrm{~km}, 60^{\circ}$ south of west

- Watch Video Solution

2. Prove that the relation R defined on the set V of all vectors by $\vec{a} R \vec{b}$ if $\vec{a}=\vec{b}$, is an equivalence relation on V.
3. Let \vec{a} and \vec{b} be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment $A B$ are $\frac{\vec{a}+2 \vec{b}}{3}$ and $\frac{\vec{b}+2 \vec{a}}{3}$.

- Watch Video Solution

4. If D and E, are the midpoints of the sides $A B$ and $A C$ of a triangle $A B C$, prove that $\overrightarrow{B E}+\overrightarrow{D C}=\frac{3}{2} \overrightarrow{B C}$.

- Watch Video Solution

5. Prove that line segment joining the midpoints of two sides of a triangle is parallel to the third side whose length is half of the length of the third side.

- Watch Video Solution

6. Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.

- Watch Video Solution

7. If \vec{a} and \vec{b} represent a side and a diagonal of a parallelogram, find the other sides and the other diagonal.

- Watch Video Solution

8. If $\overrightarrow{P O}+\overrightarrow{O Q}=\overrightarrow{Q O}+\overrightarrow{O R}$, prove that the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, are collinear.

- Watch Video Solution

9. If D is the midpoint of the side $B C$ of a triangle $A B C$, prove that $\operatorname{vec}(A B)+v e c(A C)=2 v e c(A D)$

- Watch Video Solution

10. If G is the centroid of a triangle $A B C$, prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.

- Watch Video Solution

11. Let A, B, and C be the vertices of a triangle. Let D, E, and F be the midpoints of the sides $B C, C A$, and $A B$ respectively. Show that $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=\overrightarrow{0}$.

- Watch Video Solution

12. If $A B C D$ is a quadrilateral and E and F are the midpoints of $A C$ and $B D$ respectively, then prove that $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}=4 \overrightarrow{E F}$.

- Watch Video Solution

1. Verify whether the ratios are direction cosines of some vector or not. $\frac{1}{5}, \frac{3}{5}, \frac{4}{5}$

- Watch Video Solution

2. Find the direction cosines of a vector whose direction ratios are (i) 1,2,3,
(ii) $3,-1,3$ (iii) 0,0,7

- Watch Video Solution

3. Find the direction cosines and direction ratios for the following vectors.
\hat{j}

- Watch Video Solution

4. A triangle is formed by joining the points $(1,0,0),(0,1,0)$ and $(0,0,1)$. Find the direction cosines of the medians.

Watch Video Solution

5. If $\frac{1}{2}, \frac{1}{\sqrt{2}}$ a are the direction cosines of some vector, then find a.

- Watch Video Solution

6. If $(a, a+b, a+b+c)$ is one set of direction ratios of the line joining $(1,0,0)$ and $(0,1,0)$, then find a set of values of a, b, c.

- Watch Video Solution

7. Show that the vectors $-\hat{i}-2 \hat{j}-6 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+5 \hat{k}$, form a right angled triangle.

- Watch Video Solution

8. Find the value of λ for which the vectors $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ are parallel.

- Watch Video Solution

9. Show that the following vectors are coplaner.
(i) $\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{j}+2 \hat{k}$
(ii) $2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-\hat{j}, 7 \hat{i}+3 \hat{j}+2 \hat{k}$

- Watch Video Solution

10. Show that the points whose position vectors
$4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$ are coplanar.

- Watch Video Solution

11. If

$$
\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}-5 \hat{k}
$$

$\vec{c}=-3 \hat{i}+2 \hat{j}+3 \hat{k}$, find the magnitude and direction cosines of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

12. The position vectors of the vertices of a triangle are $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $-2 \hat{i}+3 \hat{j}-7 \hat{k}$. Find the perimeter of the triangle

- Watch Video Solution

13. Find the unit vector parallel to $3 \vec{a}-2 \vec{b}+4 \vec{c}$, if $\quad \vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}, \vec{c}=\hat{i}+2$

- Watch Video Solution

14. The position vectors $\vec{a}, \vec{b}, \vec{c}$ of three points satisfy the relation $2 \vec{a}-7 \vec{b}+5 \vec{c}=\overrightarrow{0}$. Are these points collinear?

- Watch Video Solution

15. The position vectors of the points P, Q, R, S are $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{k}+2 \hat{j}-3 \hat{k}$, and $\quad \hat{i}-6 \hat{j}-\hat{k}$ respectively. Prove that the line PQ and RS are parallel.

- Watch Video Solution

16. Find the value or values of m for which $\mathrm{m}(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

17. Show that the points $A(1,1,1), B(1,2,3)$ and $C(2,-1,1)$ are vertices of an isosceles triangle.

Exercise 83

1. Find $\vec{a} \cdot \vec{b}$ when
$\vec{a}=\hat{i}-2 \hat{j}+\hat{k} \quad$ and $\quad \vec{b}=3 \hat{i}-4 \hat{j}-2 \hat{k}$

- Watch Video Solution

2. Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k} \quad$ and $\quad \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$

- Watch Video Solution

3. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=10,|\vec{b}|=15 \quad$ and $\quad \vec{a} \cdot \vec{b}=75 \sqrt{2}$, find the angle between \vec{a} and \vec{b}.
4. Find the angle between the vectors
$2 \hat{i}+3 \hat{j}-6 \hat{k} \quad$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

$$
\begin{aligned}
& \text { 6. Show that } \\
& \vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{b}=6 \hat{i}+2 \hat{j}-3 \hat{k}, \quad \text { and } \vec{c}=3 \hat{i}-6 \hat{j}+2 \hat{k} \text {, } \\
& \text { are mutually orthogonal. }
\end{aligned}
$$

- Watch Video Solution

7. Show that the vectors $-\hat{i}-2 \hat{j}-6 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+5 \hat{k}$, form a right angled triangle.

- Watch Video Solution

8. If $|\vec{a}|=5,|\vec{b}|=6,|\vec{c}|=7$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

9. Show that the points (2,-1,3), (4,3,1) and (3,1,2) are collinear.

- Watch Video Solution

10. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that $\sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

11. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two , find $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

12. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

- Watch Video Solution

13. Find λ, when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k} \quad$ is 4 units.

- Watch Video Solution

14. Three vectors \vec{a}, \vec{b} and \vec{c} are such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.
Find $4 \vec{a} \cdot \vec{b}+3 \vec{b} \cdot \vec{c}+3 \vec{c} \cdot \vec{a}$.

- Watch Video Solution

Exercise 84

1. Find the magnitude of $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

2.

Show
that
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$.

- Watch Video Solution

3. Find the vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane which contains $\hat{i}+2 \hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+4 \hat{k}$

Watch Video Solution

4. Find the unit vectors perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

5. Find the area of the parallelogram whose two adjacent sides are determined by the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

6. Find the area of the triangle whose vertices are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.
7. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B, C of a triangle $A B C$, show that the area of the triangle $A B C$ is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$. Also deduce the condition for collinearity of the points A, B and C .

- Watch Video Solution

8. For any vector \vec{a} prove that $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2}$.

- Watch Video Solution

9. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Prove that $\vec{a}= \pm \frac{2}{\sqrt{3}}(\vec{b} \times \vec{c})$.

- Watch Video Solution

10. Find the angle between the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ using vector product.

Exercise 85

1. The value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{D A}+\overrightarrow{C D}$ is
A. $\overline{A D}$
B. $\overline{C A}$
c. $\overline{0}$
D. $-\overline{A D}$

Answer: C

2. If $\vec{a}+2 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel, then the value of m is
A. 3
B. $\frac{1}{3}$
C. 6
D. $\frac{1}{6}$

Answer: C

- Watch Video Solution

3. The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k} \quad$ and $\quad \hat{i}-2 \hat{j}+\hat{k}$ is
A. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
B. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
c. $\frac{2 \hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
D. $\frac{2 \hat{i}-\hat{j}}{\sqrt{5}}$

Answer: D

D Watch Video Solution

4. A vector $\overrightarrow{O P}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{O P}$ and the z-axis is
A. 45°
B. 60°
C. 90°
D. 30°

Answer: B

- Watch Video Solution

5. If $\overrightarrow{B A}=3 \hat{i}+2 \hat{j}+\hat{k}$ and the position vector of B is $\hat{i}+3 \hat{j}-\hat{k}$ then the position vector A is
A. $4 \hat{i}+2 \hat{j}+\hat{k}$
B. $4 \hat{i}+5 \hat{j}$
C. $4 \hat{i}$
D. $-4 \hat{i}$

Answer: B

- Watch Video Solution

6. A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{2}{3}\right)$
C. $c^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer: C

7. The vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are
A. parallel to each other
B. unit vectors
C. mutually perpendicular vectors
D. coplaner vectors

Answer: D

- Watch Video Solution

8. If $A B C D$ is a parallelogram, then $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}$ is equal to
A. $2(\overline{A B}+\overline{A D})$
B. $4 \overline{A C}$
C. $4 \overline{B D}$
D. $\overline{0}$

Answer: D

- Watch Video Solution

9. One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a}+\vec{b}$. The other diagonal $\overrightarrow{B D}$ is
A. $\vec{a}-\vec{b}$
B. $\vec{b}-\vec{a}$
C. $\vec{a}-\vec{b}$
D. $\frac{\vec{a}+\vec{b}}{2}$

Answer: B

- Watch Video Solution

10. If \vec{a}, \vec{b} are the position vectors A and B then which one of the following points whose position vector lies on $A B$, is
A. $\vec{a}+\vec{b}$
B. $\frac{2 \vec{a}-\vec{b}}{2}$
C. $\frac{2 \vec{a}-\vec{b}}{3}$
D. $\frac{\vec{a}-\vec{b}}{3}$

Answer: C

- Watch Video Solution

11. If \vec{a}, \vec{b} are the position vectors A and B then which one of the following points whose position vector lies on $A B$, is
A. $\vec{a}=\vec{b}+\vec{c}$
B. $2 \vec{a}=\vec{b}+\vec{c}$
c. $\vec{b}=\vec{c}+\vec{a}$
D. $4 \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$

Answer: B

- Watch Video Solution

12. If $\vec{r}=\frac{9 \vec{a}+7 \vec{b}}{16}$ then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio
A. 7 : 9 internally
B. 9 : 7 internally
C. 9:7 externally
D. 7:9 externally

Answer: A

13. If $\lambda \hat{i}+2 \lambda \hat{j}+2 \lambda \hat{k}$ is a unit vector, then the value of λ is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{9}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

14. Two vertices of a triangle have position vectors $3 \hat{i}+4 \hat{j}-4 \hat{k}$ and $2 \hat{i}+3 \hat{j}+4 \hat{k}$. If the position vector of the centroid is $\hat{i}+2 \hat{j}+3 \hat{k}$, then the position vector of the third vertex is

$$
\text { A. }-2 \hat{i}-\hat{j}+9 \hat{k}
$$

B. $-2 \hat{i}-\hat{j}-6 \hat{k}$
C. $2 \hat{i} \hat{j}+6 \hat{k}$
D. $-2 \hat{i}+\hat{j}+6 \hat{k}$

Answer: A

- Watch Video Solution

15. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40 \quad$ and $\quad|\vec{b}|=46$, then $|\vec{a}|$ is
A. 42
B. 12
C. 22
D. 32

Answer: C

- Watch Video Solution

16. If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is
A. 2
B. 3
C. 7
D. 1

Answer: D

- Watch Video Solution

17. The value of $\theta \in\left(0, \frac{\pi}{2}\right)$ for which the vectors $\vec{a}=(\sin \theta) \hat{i}+(\cos \theta) \hat{j}$ and $\hat{b}=\hat{i}-\sqrt{3} \hat{j}+2 \hat{k}$ are perpendicular, is equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A

(Watch Video Solution

18. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60$ then $|\vec{a} \times \vec{b}|$ is
A. 15
B. 35
C. 45
D. 25

Answer: D

19. Vectors \vec{a} and \vec{b} are inclined at an angle $\theta=120^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to
A. 225
B. 275
C. 325
D. 300

Answer: D

- Watch Video Solution

20. If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between \vec{a} and $\vec{a}+\vec{b}$ is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: A

- Watch Video Solution

21. If the projection of $5 \hat{i}-\hat{j}-3 \hat{k}$ on the vector $\hat{i}+3 \hat{j}+\lambda \hat{k}$ is same as the projection of $\hat{i}+3 \hat{j}+\lambda \hat{k}$ on $5 \hat{i}-\hat{j}-3 \hat{k}$ then λ is equal to.
A. ± 4
B. ± 3
C. ± 5
D. ± 1

Answer: C

22. If $(1,2,4)$ and $(2,-3 \lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$, then value of λ is equal to
A. $\frac{7}{3}$
B. $-\frac{7}{3}$
C. $-\frac{5}{3}$
D. $\frac{5}{3}$

Answer: B

- Watch Video Solution

23. If the points whose position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear then a is equal to
A. 6
B. 2
C. 5
D. 8

Answer: D

- Watch Video Solution

24. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+x \hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+4 \hat{k} \quad$ and
$\vec{a} \cdot(\vec{b} \times \vec{c})=70$, then x is equal to
A. 5
B. 7
C. 26
D. 10

Answer: C

25. If $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k},|\vec{b}|=5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides is
A. $\frac{7}{4}$
B. $\frac{15}{4}$
C. $\frac{3}{4}$
D. $\frac{17}{4}$

Answer: B

- Watch Video Solution

Additional Problems

1. Shown that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}+2 \vec{c}$ and $-8 \vec{a}+13 \vec{b}$ are collinear.
2. If $A B C$ and $A^{\prime} B^{\prime} C '$ are two triangles and G, G^{\prime} be their corresponding centroids, prove that $\overline{A A^{\prime}}+\overline{B B^{\prime}}+\overline{C C^{\prime}}=3 \overline{G G^{\prime}}$.

Watch Video Solution

3. Prove using vectors the mid-points of two opposite sides of a quadrilateral and the mid-points of the diagonals are the vertices of a parallelogram.

- Watch Video Solution

4. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

5. Find the unit vectors parallel to the sum of $3 \hat{i}-5 \hat{j}+8 \hat{k}$ and $-2 \hat{j}-2 \hat{k}$.
6. Show that the points whose position vectors are $4 \vec{i}+5 \vec{j}+6 \vec{k}$, $5 \vec{i}+6 \vec{j}+4 \vec{k}$, and $6 \vec{i}+4 \vec{j}+5 \vec{k}$ form an equilateral triangle.

- Watch Video Solution

7. Prove that the points $2 \hat{i}+3 \hat{j}+4 \hat{k}, 3 \hat{i}+4 \hat{j}+2 \hat{k}, 4 \hat{i}+2 \hat{j}+3 \hat{k}$ from an equilateral triangle.

- Watch Video Solution

8. Examine whether the vectors $\hat{i}+3 \hat{j}+\hat{k}, 2 \hat{i}-\hat{j}-\hat{k}$ and $7 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

9. Find λ so that the vectors $2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\hat{i}-2 \hat{j}+\hat{k}$ are perpendicular to each other.

Watch Video Solution

10. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$, then $|\vec{a}|$ is

- Watch Video Solution

11. If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

12. Show that the vectors $3 \hat{i}-2 \hat{j}+\hat{k}, \hat{i}-3 \hat{j}+5 \hat{k}$ and $2 \hat{i}+\hat{j}-4 \hat{k}$ form a right angled triangle.
13. Find the projection of:
(i) $\hat{i}-\hat{j}$ on Z-axis (ii) $\hat{i}+2 \hat{j}-2 \hat{k}$ on $2 \hat{i}-\hat{j}+5 \hat{k}$ (iii) $3 \hat{i}+\hat{j}-\hat{k}$ on
$4 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

14. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes.

- Watch Video Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors, then prove that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$

- Watch Video Solution

16. Show that the points whose positions vectors $4 \hat{i}-3 \hat{j}+\hat{k}, 2 \hat{i}-4 \hat{j}+5 \hat{k}, \hat{i}-\hat{j}$ from a right angled triangle.

- Watch Video Solution

17.

$\vec{u}, \vec{v}, \vec{w}$ be vectors such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$. If abvec $(\mathrm{u})=3$, absve is \qquad

- Watch Video Solution

18. If $\vec{p}=-3 \vec{i}+4 \vec{j}-7 \vec{k}$ ans $\vec{q}=6 \vec{i}+2 \vec{j}-3 \vec{k}$ then find $\vec{p} \times \vec{q}$. Verify that \vec{p} and $\vec{p} \times \vec{q}$ are perpendicular to each other and also verify that \vec{q} and $\vec{p} \times \vec{q}$ are perpendicular to each other.

- Watch Video Solution

19. If $\vec{a} \cdot \vec{b}$ are say two vectors, then prove that $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

- Watch Video Solution

20. Find the angle between the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ using vector product.

- Watch Video Solution

21. Find the vectors of magnitude 6 which are perpendicular to both the vectors $4 \vec{i}-\vec{j}+3 \vec{k}$ and $-2 \vec{i}+\vec{j}-2 \vec{k}$.

- Watch Video Solution

22. Find the vectors whose length 5 and which are perpendicular to the vector $\vec{a}=3 \vec{i}+\vec{j}-4 \vec{k}$ and $\vec{b}=6 \vec{i}+5 \vec{j}-2 \vec{k}$.

(D) Watch Video Solution

23. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $\vec{a}-\vec{d}$ and $\vec{b}-\vec{c}$ are parallel.

- Watch Video Solution

24. Find the angle between two vectors \vec{a} nd \vec{b} if $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$.

- Watch Video Solution

25. If $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\pi /$. Prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$

- Watch Video Solution

26. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}-2 \hat{j}+6 \hat{k}$ find the angle between \vec{a} and \vec{b}.
