©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

GRAVITATION

In Textual Solved Examples

1. Consider two point masses m_{1} and m_{2}
which are separated by a distance of 10 metre
as shown in the following figure. Calculate the
force of attraction between them and draw the directions of forces on each of them. Take $m_{1}=1 \mathrm{~kg} \quad$ and $m_{2}=2 \mathrm{~kg}$

D Watch Video Solution

2. Moon and an apple are accelerated by the same gravitational force due to Earth.

Compare the acceleration of the two.
3. Two particles of masses m_{1} are m_{2} placed along the x and y axes respectively at a distance from the origin. Calculate the gravitational field at a point P shown in figure below.

4. Match the columns

1.	H. Thomion	(a)	Atomic model for
2.	Rutherford	(b)	Theorrtical atom model
3.	Gelger and Manden	(c)	Nuclews
4.	Neils Bohr	(d)	Scattering of alpha particles

- Watch Video Solution

5. Water falls from the top of a hill to the ground. Why?

- Watch Video Solution

6. Consider four masses m_{1}, m_{2}, m_{3} and m_{4} arranged on the circumference of a circle as shown in figure below: Calculate:
(a) The gravitational potential energy of the system of 4 masses shown in figure.
(b) The gravitational potential at the point O due to all the 4 masses.
7. Calculate the value of g in the following two

cases:

(a) If a mango of mass $\frac{1}{2} \mathrm{~kg}$ falls from a tree from a height of 15 metres, what is the acceleration due to gravity when it beigns to fall?
(b) Consider a satellite orbiting the Earth in a circular orbit of radius 1600 km above the surface of the Earth. What is the acceleration experienced by the satellite due to Earth's gravitational force?
8. Find out the value of g in your school laboratory?

D Watch Video Solution

9. Moon is the natural satellite of Earth a f it takes 37 days to go once around its orbit.

Calculate the distance of the Moon from the surface of the Earth assuming the orbit of the Moon as circular.

Watch Video Solution

10. Calculate the energy of the (i) Moon orbiting the Earth and (ii) Earth orbiting the Sun.
(Watch Video Solution

Textual Evaluation Solved I Multiple Choice

 Questions1. The linear momentum and position vector of
the planet is perpendicular to each other at
A. perihelion and aphelion
B. at all points
C. only at parihelion
D. no point

Answer:
(D) Watch Video Solution
2. If the masses of the Earth and Sun suddenly double, the gravitational force between them will
A. remain the same
B. increase 2 times
C. increase 4 times
D. decrease 2 times

Answer:

3. A planet moving along an elliptical orbit is
closest to the Sun at distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are linear speeds at these points respectively. Then the ratio $\frac{v_{1}}{v_{2}}$ is
A. $\frac{r_{2}}{r_{1}}$
B. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
C. $\frac{r_{1}}{r_{2}}$
D. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$

Answer:

- Watch Video Solution

4. The time period of a satellite orbiting Earth in a circular orbit is independent of
A. Radius of the orbit
B. The mass of the satellite
C. Both the mass and radius of the orbit
D. Neither the mass nor the radius of its
orbit

Answer:

- Watch Video Solution

5. If the distance between the Earth and Sun were to be doubled from its present value, the number of days in a year would be
A. 64.5
B. 1032
C. 182.5
D. 730

Answer:

- Watch Video Solution

6. According to Kepler's second law, the radial vector to a planet from the Sun sweeps out equal areas in equal intervals of time. This law is a consequence of:
A. conservation of linear momentum
B. conservation of angular momentum
C. conservation of energy

D. conservation of kinetic energy

Answer:

D Watch Video Solution

7. The gravitational potential energy of the Moon with respect to Earth is:
A. always positive
B. always negative
C. can be positive or negative
D. always zero.

Answer:

D Watch Video Solution

8. Find the value of x in the given figure.

A. $K_{A}<K_{B}<K_{C}$
B. $K_{B}<K_{A}<K_{C}$
C. $K_{A}<K_{B}<K_{C}$

$$
\text { D. } K_{B}>K_{A}>K_{C}
$$

Answer:

- Watch Video Solution

9. The work done by the Sun's gravitational force on the Earth is
A. always zero

B. always positive

C. can be positive or negative

D. always negative

Answer:

- Watch Video Solution

10. If the mass and radius of the Earth are
both doubled, then the accelration due to gravity g
A. remains same
B. $\frac{g}{2}$
C. $2 g$
D. $4 g$

Answer:

D Watch Video Solution
11. The magnitude of the Sun's gravitational
field as experienced by Earth is:
A. same over the year
B. decreases in the month of January and increases in the month of July
C. decreases in the month of July and increases in the month of January
D. increases during day time and decreases
during night time.

Answer:

D Watch Video Solution

12. If a person moves from Chennai to Trichy, his weight:
A. increases
B. decreases
C. remains same
D. increases and then decreases

Answer:

D Watch Video Solution
13. An object of mass 10 kg is hanging on a spring scale which is attached to the roof of a lift. If the lift is in free fall, the reading in the spring scale is
A. 98 N
B. zero
C. 49 N
D. 9.8 N

Answer:

14. If the accelaration due to gravity becomes

4 times its original value, then escape speed
A. remains same
B. 2 times of original value
C. becomes halved
D. 4 times of original value

Answer:

D Watch Video Solution
15. The kinetic energy of the satellite orbiting around the Earth is
A. equal to potential energy
B. less than potential energy
C. greater than kinetic energy
D. zero

Answer:

D Watch Video Solution

Textual Evaluation Solved li Short Answer

Questions

1. State Kepler's three laws.

- Watch Video Solution

2. State Newtons Universal law of gravitaion.

- Watch Video Solution

3. Will the angular momentum of a planet be conserved? Justify your answer.

- Watch Video Solution

4. Define the gravitational field. Give its unit.

- Watch Video Solution

5. What is meant by superposition of gravitational field?

- Watch Video Solution

6. Define gravitational potential energy.

- Watch Video Solution

7. Is potential energy the property of a single object? Justify.

- Watch Video Solution

8. Define gravitational potential.

D Watch Video Solution

9. What is the difference between gravitational potential and gravitational potential energy?

- Watch Video Solution

10. What is meant by escape speed in the case of the Earth?

- Watch Video Solution

11. Why is the energy of a satellite negative?

D Watch Video Solution

12. What are geostationary and polar satellites?

- Watch Video Solution

13. Define weight.

D Watch Video Solution

14. Why is there no lunar eclipse and solar eclipse every month?

- Watch Video Solution

15. How will you prove that Earth itself is spinning?

- Watch Video Solution

Textual Evaluation Solved lif Long Answer

 Questions1. Discuss the important features of the law of gravitation

- Watch Video Solution

2. Explain how Newton derived his law of gravitation from Kepler's third law.
3. Explain how Newton verified his law of gravitation.

- Watch Video Solution

4. Derive the expression for gravitational potential energy.
5. Prove that at points near the surface of the

Earth, the gravitational potential energy of the object is $\mathrm{U}=\mathrm{mgh}$.

- Watch Video Solution

6. Explain in detail the idea of weightlessness
using lift as an example.

- Watch Video Solution

7. Derive an expression for escape speed.

D Watch Video Solution

8. Explain the variation of ' g ' with latitude.

- Watch Video Solution

9. Explain the variation of g with altitude from
the Earth's surface.
10. Explain the variation of g with depth from the Earth's surface.

D Watch Video Solution

11. Derive the time period of satellite orbiting
the Earth.

D Watch Video Solution
12. Derive an expression for energy of satellite.

D Watch Video Solution

13. What are geostationary and polar satellites?

D Watch Video Solution

14. Explain how geocentric theory is required
by helliocentric theory using the idea of
retrograde motion of planets.

- Watch Video Solution

15. Explain in detail the Eratosthenes method of finding the radius of Earth.

D Watch Video Solution

16. Describe the measurement of Earth's
shadow (umbra) radius during total lunar eclipse.
17. In the following what are the quantities which that are conserved?
A. Linear momentum of planet
B. Angular momentum of planet
C. Total energy of planet
D. Potential energy of planet

Answer:

- Watch Video Solution

2. The work done by sun on Earth at any finite interval of time is
A. positive, negative or zero
B. Strictly positive
C. Strictly negative
D. It is always zero

Answer:

D Watch Video Solution

Textual Evaluation Solved Iv Conceptual
 Questions

1. The work done by Sun on Earth in one year
will be:
A. Zero
B. None zero
C. positive
D. negative

Answer:

- Watch Video Solution

2. If a comet suddenly hits the moon and imparts energy which is more than the toat energy of the moon, what will happen?
3. If the Earth's pull on the Moon suddenly disappears, what will happen to the Moon?

D Watch Video Solution

4. If the Earth has no tilt what happens to the seasons of the Earth?

D Watch Video Solution
5. A student was asked a question 'why are there summer and winter for us? He replied as
'since Earth is orbiting in an elliptical orbit, when the Earth is very faraway from the Sun
(aphelion) there will be winter, when the Earth
is nearer to the Sun (perihelion) there will be winter\}. Is this answer correct? If not, what is the correct explanation for the occurrence of summer and winter?

- Watch Video Solution

6. The following photographs are taken from the recent lunar eclipse which occurred on January 31, 2018. Is it possible to prove that Earth is a sphere from these photographs?

Textual Evaluation Solved V Numerical Problems

1. An unknown planet orbits the sun with
distance twice the semi major axis distance of
the Earth's orbit. It the Earths time period is
T_{1}, what is the time period of this period is planet?

D Watch Video Solution

2. Assume that you are in another solar system and provided with the set of data given below consisting of the planets' semi major axes and time periods. Can you infer the relation connecting semi major axis and time period?

D Watch Video Solution

3. If the masses and mutual distance between the two objects are doubled, what is the change in the gravitational force between them?

D Watch Video Solution

4. Two bodies of masses m and 4 m are placed at a distance r. Calculate the gravitational potential at a point on the joining them where the gravitational field is zero.
5. If the ratio of the orbital distance of the two planets $\frac{d_{1}}{d_{2}}=2$, what is the ratio of gravitational field experienced by these two planets?

- Watch Video Solution

6. The Moon lo orbits jupiter once in 1.769 days. The orbital radius of the Moon lo is 421700 Km . Caculate the mass of jupiter?

- Watch Video Solution

7. If the angular momentum of a planet is given by $\vec{L}=5 t^{2} \hat{i}-6 t \hat{j}+3 \hat{k}$. What is the torque experienced by the planet? Will the torque be in the same direction as that of the angular momentum?

D Watch Video Solution

8. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. Calculate the speed of each particle

D Watch Video Solution

9. Suppose unknowingly you wrote the universal gravitational constant value as $G=6.67 \times 10^{11}$ Instead of the correct value
$G=6.67 \times 10^{-11}$, what is the acceleration
due to this new acceleration due to gravity, what will be your weight W'?

D Watch Video Solution

10. Calculate, the gravitational field at point O
due to three masses m_{1}, m_{2} and m_{3} whose
positions are given by the following figure. If
the masses m_{1} and m_{2} are equal what is the
change in gravitational field at the point O ?

D Watch Video Solution

11. What is the gravitational potential energy of the Earth and sun ? The Earth to sun distance is arouund 150 million Km . The mass of the Earth is $5.9 \times 10^{24} \mathrm{~kg}$ and the mass of the sun is $1.9 \times 10^{30} \mathrm{~kg}$.

- Watch Video Solution

12. Earth revolves around the sun at $30 \mathrm{~km}^{-1}$
calculated the kinetic energy of the
Earth.What is the total energy of the Earth in
that case? Is the total energy positive?Give reasons.(Potential energy of earth = $\left.-49.84 \times 10^{32}\right)$

D Watch Video Solution

13. An object is thrown from Earth is such a way that it reaches a point at infinity with nonzero kinetic energy

$$
\left[K . E(r=\infty)=\frac{1}{2} M V_{\infty}^{0}\right], \quad \text { with } \quad \text { what }
$$

velocity should the object be thrown from
Earth?

- Watch Video Solution

14. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?

- Watch Video Solution

15. Calculated the change in g value in your district of Tamil nadu. (Hint : Get the latitude of your district of Tamil nadu from the

Google). What is the difference in g values at

Chennair and Kanyakumari?

D Watch Video Solution

Additional Questions Solved I Choose The

 Correct Answer From The Following1. According to Kepler's planet move in
A. Circular orbits around the Sun

B. Elliptical orbits around the Sun with Sun

 at exact centreC. Straight lines with constant velocity

D. Elliptical orbits around the Sun with Sun at one of its foci.

Answer: D

- Watch Video Solution

2. Kepler's second law regarding constancy of

 aerial velocity of a planet is consequence of the law of conservation ofA. energy
B. angular momentum
C. linear momentum
D. None of these

Answer: B

- Watch Video Solution

3. Accorrding to Kepler, the period of revolution of a planet (T) and its mean distance from the Sun ${ }^{\circledR}$ related by the equation.
A. $T^{3} a^{3}=$ constant
B. $T^{2} a^{-3}=$ constant
C. $T a^{3}=$ constant
D. $T^{2} a=$ constant

Answer: B
4. The period of Moon's rotation around the

Earth is nearly 29 days.If Moon's mass were 2
fold its present value and all other things remained unchanged the period of Moon's rotation would be nearlydays.
A. $29 \sqrt{2}$
B. $\frac{29}{\sqrt{2}}$
C. 29×2
D. 29

Answer: D

D Watch Video Solution

5. The period of revolution of planet A around
the Sun is 8 times that of B. The distance of A
from the Sun is how many times greater than
that of B from the Sun.
A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

6. The radius of orbit of a planet is two times
that of Earth. The time period of planet is
........... . years.
A. 4.2
B. 2.8
C. 5.6
D. 8.4

Answer: B

D Watch Video Solution

7. A Geo-stationary satellite bits around the earth in a circular of radius $36,000 \mathrm{~km}$ then what will be the time period of a spy satellite orbiting a few hundred km above the earth's surface $\left(R_{\text {earth }}=6400 \mathrm{~km}\right)$
A. (a) $\frac{1}{2}$
B. (b) 1
C. (c) 2
D. (d) 4

Answer: C

D Watch Video Solution

8. What does not change in the field of central force?
A. Potential energy
B. kinetic energy
C. linear momentum
D. Angular momentum

Answer: D

D Watch Video Solution

9. A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the center of earth in new orbit
is two times of the earlier orbit. The time period in second orbit is......... hours.
A. 4.8
B. $48 \sqrt{2}$
C. 24
D. $24 \sqrt{2}$

Answer: B
(Watch Video Solution
10. If Earth be at one fourth its present
distance from the Sun, how many days will
there be in a year?
A. half the present year
B. one-eight the present year
C. one-fourth the present year
D. one-sixth the present year

Answer: B

D Watch Video Solution
11. The Earth E moves in an elliptical orbit with
the Sun S at one of the foci as shown in figure.

Its speed of motion will be maximum at a point
A. C
B. A
C. B
D. D

Answer: A
12. Rockets are launched in eastward direction to take advantage of.
A. the clear sky on eastern side
B. Earth's rotation
C. the thinner atmosphere on this side
D. Earth's tilt

Answer: B

13. Two sphere of mass M_{1} are M_{2} situated in
air and the gravitational force between them
is F . The space around the masses is now filled
with liquid of specific gravity 3 . The gravitational force will now be....... . .
A. F
B. 3 F
C. $\frac{F}{3}$
D. $\frac{F}{9}$

D Watch Video Solution

14. Which of the following statement about the gravitational constant is true?
A. It is a force
B. It has same value in all system of unit
C. It has not unit

D. It does not depend on the nature of the

 medium in which the bodies are kept.
Answer: A

D Watch Video Solution

15. Energy required to move a body of mass ' M ' from an orbit of radius $2 R$ to $3 R$ is....... .
A. $\frac{G M}{12 R}$
B. $\frac{G M m}{3 R^{2}}$

> c. $\frac{G M m}{8 R}$
> D. $\frac{G M m}{6 R}$

Answer: D

D Watch Video Solution

16. The mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and that of the Moon is $7.4 \times 10^{22} \mathrm{~kg}$. The constant of gravitation G is $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ The potential energy of the system is -7.79×10^{28}

J The mean distance between the Earth and

Moon is.......... metre.

A. 3.80×10^{8}
B. 3.37×10^{8}
C. $7 . .60 \times 10^{8}$
D. 1.90×10^{2}

Answer: A
(Watch Video Solution
17. What is the intensity of gravitational field at the center of spherical shell?

$$
\text { A. } \frac{G m}{r^{2}}
$$

B. g
C. zero
D. None of these

Answer: C
(D) Watch Video Solution
18. A body of mass m is taken from the Earth's
surface to a height equal to the radius R of
the earth. If g is the acceleration to gravity at
the surface of the Earth, then find the change
in the potential energy of the body.......

> A. $\frac{1}{4} m g R$
> B. $\frac{1}{2} \mathrm{mgR}$
C. mgR
D. 2 mgR

Answer: B
19. A satellite is orbiting around the Earth in a circular orbit with velocity v. If m is the mass of the satellite, its total energy is
A. $m v^{2}$
B. $\frac{1}{2} m v^{2}$
C. $-\frac{1}{2} m v^{2}$
D. $\frac{3}{4} m v^{2}$

- Watch Video Solution

20. Escape velocity of a body of 1 kg . On a planet is $100 \mathrm{~ms}^{-1}$. Gravitational potential energy of the body at the planet is
A. -5000 J
B. -1000 J
C. $-2400 J$
D. 4000 J
21. A particle falls towards earth from infinity.

It's velocity reaching the Earth would be
A. infinity
B. $\sqrt{2 g R}$
C. $2 \sqrt{g R}$
D. zero
22. An artificial satellite is revolving round the

Earth in a circular orbit, its velocity is half the eacape velocity. Its height from the Earth surface is......... km.
A. 6400
B. 12800
C. 3200
D. 1600

Answer: A

- Watch Video Solution

23. The escape velocity of a body on the surface of the Earth is $11.2 \mathrm{~km} / \mathrm{s}$ if the mass of the Earth is increase to twice its present value and the radius of the earth becomes half, the escape velocity becomes $=\ldots . . \mathrm{kms}^{-1}$
A. 5.6
B. 22.4
C. 7.6
D. 8.6

Answer: C

- Watch Video Solution

24. The velocity with which a projectile must be fired so that it escapes Earth's gravitational does not depend on...........
A. Mass of Earth
B. Radius of the projectile's orbit
C. Mass of the projectile
D. Gravitational constant

Answer: C

D Watch Video Solution

25. The escape velocity for a body projected vertically upwards from the surface of Earth is
$11 \mathrm{kms}^{-1}$ If the body is projected at an angle

A. $\frac{11}{\sqrt{2}}$
 B. $11 \sqrt{2}$
 C. 22
 D. 11

Answer: D
(Watch Video Solution
26.
Two satellites
of
masses
m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are moving around the earth in orbits of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$
. Which one of the following statements about their velocities is correct?
A. $v_{1}=v_{2}$
B. $v_{1}<v_{2}$
C. $v_{1}>v_{2}$
D. $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{r_{2}}$

Answer: B

- Watch Video Solution

27. As astronaut orbiting the earth in a circular orbit 120 km above the surface of Earth, gently drops a spoon out of space-ship. The spoon will.
A. fall vertically down to the Earth
B. move towards the moon
C. will move along with space-ship

D. will move in an irregular way then fall

down to Earth

Answer:

D Watch Video Solution

28. A satellite revolves around the Earth in an elliptical orbit. Its speed.
A. is the same at all point in the orbit
B. is greatest when it is closest to the Earth
C. is greatest when it is farthest to the

Earth

D. goes on increasing or decreasing
continuously depending upon the mass
of the satellite.

Answer:
(Watch Video Solution
29. A satellite is moving around the Earth with speed v in a circular orbit of radius r. If the orbit radius is decreased by 1% its speed will
A. increase by 1%
B. increase by 0.5\%
C. decrease by 1%
D. decrease by 0.5\%

Answer:

30. Orbital velocity of earth satellite does not depend on:
A. mass of Earth
B. mass of satellite
C. radius of Earth
D. acceleration doe to gravity

Answer:

31. The orbital speed of Jupiter is.........
A. greater than the orbital speed of Earth
B. less then the orbital speed of Earth
C. zero
D. equal to the orbital speed of Earth

Answer:

D Watch Video Solution
32. As we go from the equator to the poles, the value of g.
A. remains constant
B. decreases
C. increases
D. decreases upto latitude of 45°

Answer:

D Watch Video Solution
33. The value of g on the Earth surface is $980 \mathrm{~cm} / \mathrm{sec}^{2}$ Its value at a height of 64 km from the Earth surface iscms ${ }^{-2}$
A. 960.4
B. 961.4
C. 962.4
D. 963.4

Answer:

34. The Moon's radius is $\frac{1}{4}$ that of earth and its mass is $\frac{1}{80}$ times that of the Earth. If g represents the acceleration due to gravity on the surface of Earth, that on the surface of the

Moon is
A. $\frac{g}{4}$
B. $\frac{g}{5}$
C. $\frac{g}{6}$
D. $\frac{g}{7}$

Answer:

- Watch Video Solution

35. If the density of small planet is that of the same as that of the earth while the radius of the planet is 0.2 times that of the Earth, the gravitational acceleration on the surface for the planet is....... .
A. 0.2 g
B. $0.4 g$
C. 2 g

D. 4 g

Answer:

D Watch Video Solution

36. Assuming Earth to be a sphere of a uniform density, what is value of gravitational acceleration in mine 100 km below the Earth surface $=\ldots \mathrm{ms}^{-2}$
A. 9.66
B. 7.64
C. 5.00
D. 3.1

Answer:

D Watch Video Solution

37. The radii of two planets are respectively R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the
accelerations due to gravity $\left(g_{1} / g_{2}\right)$ at their surfaces is:

$$
\begin{aligned}
& \text { A. } g_{1}: g_{2}=\frac{\rho_{1}}{R_{1}^{2}}: \frac{\rho_{2}}{R_{2}^{2}} \\
& \text { B. } g_{1}, g_{2}=R_{1} R_{2}, \rho_{1} \rho_{2} \\
& \text { C. } g_{1}, g_{2}=R_{1} \rho_{2}: R_{2} \rho_{1} \\
& \text { D. } g_{1}: g_{2}=R_{1} \rho: R_{2} \rho_{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

38. The acceleration due to gravity near the surface of a planet of radius R and density d is
proportional to:
A. $\frac{d}{R^{2}}$
B. $d R^{2}$
C. $d \mathrm{R}$
D. $\frac{d}{R}$

Answer:

- Watch Video Solution

39. The acceleration of a body due to the attraction of the Earth (radius R) at a distance 2R from the surface of the Earth is
A. $\frac{g}{9}$
B. $\frac{g}{3}$
C. $\frac{g}{4}$
D. 9

Answer:

D Watch Video Solution
40. If density of Earth increased 4 times and
its radius become half of then our weight will be....... .
A. four times its present value
B. doubled
C. remains same
D. halved

Answer:

D Watch Video Solution
41. The radius of the Earth is 6400 km and $\mathrm{g}=$ 10 in order that a body of 5 kg weights zero at the equator, the angular speed of the Earth is rad

> A. $\frac{1}{80}$
> B. $\frac{1}{400}$
> C. $\frac{1}{800}$
> D. $\frac{1}{600}$

Answer:

42. Weight of a body is maximum at..........
A. Moon
B. poles of Earth
C. equator of Earth
D. center of Earth

Answer:

43. The weight of an astronaut, in an artificial satellite revolving around the Earth is:
A. zero
B. equal to that on the Earth
C. more than that on Earth
D. less than that on Earth

Answer:

D Watch Video Solution

1. Distinguish between the terms gravitation and gravity.

- Watch Video Solution

2. Why is G called the universal gravitational constant?

- Watch Video Solution

3. What is meant by the term free fall?

D Watch Video Solution

4. What is meant by acceleration due to gravity? Is is a scalar or a vector?

D Watch Video Solution

5. What do you mean by weight of a body? Is it a scalar or vector?
6. Define orbital velocity.

D Watch Video Solution

7. Give some uses of geostationary satellites.

- Watch Video Solution

8. Give the uses of polar satellites.

Additional Questions Solved Numerical Problems

1. A geo-stationary satellite is orbiting the

Earth of a height of 6 R above the surface of
Earth R being the radius of the Earth calculate
the time period of another satellite at a height of 2.5R from the surface of Earth.

- Watch Video Solution

2. The time period of a satellite of Earth is 5 hours. If the separation between the Earth and the satellite is increased to four times the previous value, the new time period will become.

- Watch Video Solution

3. The figure shows elliptical orbit of a planet
' M ' about the Sun ' S ', the shaded area SCD is
twice the shaded area SAB. If t_{1} is the time for
the planet to move from C and D and t_{2} is the time to move from A to B then.

D Watch Video Solution

4. A satellite moves in a circle around the

Earth, the radius of this circle is equal to one
half of the radius of the Moon's orbit. The satellite completes one revolution in lunar month.
5. Two identical solid copper sphere of radius
R are placed in contact with each other. The gravitational force between them is proportional to.

D Watch Video Solution

6. Two satellite A and B of the same mass are revolving around the Earth in circular orbits such that the distance of B from the centre of the Earth is thrice as compared to the
distance of A from the centre. What will be the ratio of centripetal force on B to that on A.

D Watch Video Solution

7. An infinite number of bodies, each of mass 2 kg , are situated on at distance $1 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}$
from the origin. What will be the resultant gravitational potential due to this system at the origin.

D Watch Video Solution

8. A body of mass ' m ' kg starts falling from a point $2 R$ above the Earth's surface. What is its
K.E. When it has fallen to a point ' R ' above the Earth's surface.

D Watch Video Solution

9. A particle of mass 10 g is kept on the surface of a uniform sphere of mass 100 kg and radius

10 cm . Find the work to done against the gravitational force between them to take the particle is away from the sphere.

- Watch Video Solution

10. The mass of a space ship is 1000 kg . It is to
be launched from Earth's surface out into free
space the value of g and R (radius of Earth) are $10 \mathrm{~ms}^{2}$ and 6400 km respectively. The required energy for this work will be.

- Watch Video Solution

11. If the mean radius of the Earth is R, its angular velocity is ω and the acceleration due to gravity at the surface of the Earth is g , then what will be the cube of the radius of the orbit of a geostationary satellite.

- Watch Video Solution

12. The escape velocity of a body from Earth's surface is v_{e}. What will be the escape velocity
of the same body from a height equal to 7R from Earth's surface.

D Watch Video Solution

13. If R is the radius of the Earth and g is the acceleration due to gravity on the Earth's surface. Find the mean density of the Earth.

D Watch Video Solution

14. If the mass of Earth is 80 times of that of a planet and ' g ' diameter is double that of planet and ' g ' on the Earth is $9.8 \mathrm{~ms}^{-2}$ Calculate te value of on that planet?

- Watch Video Solution

15. At what distance from the centre of Earth,
the value acceleration due to gravity 'g' will be half that of the surface?
16. A body weight 700 g on the surface of

Earth. How much it weight on the surface of
planet whose mass is $\frac{1}{7}$ and radius is half that of the Earth.

D Watch Video Solution

17. An object weight 72 N the Earth. What its
weight at a height $\frac{R}{2}$ from Earth.
18. A body weight 500 N on the surface of the

Earth. How much would it weight half way below the surface of Earth.

D Watch Video Solution

