©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

KINEMATICS

IN-TEXT SOLVED EXAMPLES

1. Two vectors \vec{A} and \vec{B} of magnitude 5 units
and 7 units make an angle 60° with each
other. Find the magnitude of the difference vector $\vec{A}-\vec{B}$ and its direction with respect to the vector \vec{A}.

D Watch Video Solution

2. Two vectors \vec{A} and \vec{B} of magnitude 5 units and 7 units make an angle 60° with each other. Find the magnitude of the difference vector $\vec{A}-\vec{B}$ and its direction with respect to the vector \vec{A}.
3. What are the unit vectors along the negative x-direction, negative y-direction, and negative z-direction?

D Watch Video Solution

4. Two vectors \vec{A} and \vec{B} are given in the
component
form
as
$\vec{A}=5 \hat{i}+7 \hat{j}-4 \hat{k}$ and $\vec{B}=6 \hat{i}+3 \hat{j}+2 \hat{k}$.
Find $\vec{A}+\vec{B}, \vec{B}+\vec{A}, \vec{A}-\vec{B}, \vec{B}-\vec{A}$.
5. Given the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ what is $3 \vec{A}$?

D Watch Video Solution

6. A vector \vec{A} is given as in the following
figure. Find $4 \vec{A}$ and $-4 \vec{A}$

- View Text Solution

$$
\begin{aligned}
& \text { 7. } \begin{array}{l}
\text { Given } \\
\vec{A}=2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \vec{B}=\hat{i}+3 \hat{j}+6 \vec{k}
\end{array}
\end{aligned}
$$

Find the product $\vec{A} \cdot \vec{B}$ and the magnitudes of \vec{A} and \vec{B}. What is the angle between them?

D Watch Video Solution

8. Check whether the following vectors are orthogonal.
(i) $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=4 \hat{i}-5 \hat{j}$
$\vec{C}=5 \hat{i}+2 \hat{j}$ and $\vec{D}=2 \hat{i}+5 \hat{j}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 9. Two vectors are given as } \\
& \vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k} \text { and } \vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k} .
\end{aligned}
$$

Find the resultant vector $\vec{\tau}=\vec{r} \times \vec{F}$.

- Watch Video Solution

10. Compare the components for the following
vector equations
(a) $\vec{F}=m \vec{a}$ Here m is a positive number (b)
$\vec{p}=0$

D Watch Video Solution

11. Determine the value of the T from the given
vector equation.

$$
5 \hat{j}-T \hat{j}=6 \hat{j}+3 T \hat{j}
$$

12. Compare the components of vector equation $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\vec{F}_{4}$.

- Watch Video Solution

13. Determine the position vectors for the following particles which are located at points
P.Q.R.S.

D View Text Solution
14. A person initially at rest starts to walk 2 m towards north, then 4 m towards east, then 5 m towards south and then 3 m towards west.

What is the position vector of the person at the end of the trip?

D Watch Video Solution

15. Assume your school is located 2 km away
from your home. In the morning you are going to school and in the evening you come back
home. In this entire trip what is the distance travelled and the displacement covered?

D Watch Video Solution

16. An athlete covers 3 rounds on a circular track of radius 50 m . Calculate the total distance and displacement travelled by him.

- Watch Video Solution

17. Calculate the displacement vector for a particle moving from a point P to Q as shown below. Calculate the magnitude of displacement.

D View Text Solution

18. Consider the function $y=x^{2}$. Calculate the derivative $\frac{d y}{d x}$ using the concept of limit, at the point $\mathrm{x}=2$.

Watch Video Solution

19. Find the derivative with respect to t, of the

function $\quad x=A_{0}+A_{1} t+A_{2} t^{2} \quad$ where
A_{0}, A_{1} and A_{2} are constants.

D Watch Video Solution

20. Fill in the blanks.

\mathbf{A}		\mathbf{B}	\mathbf{C}
a.	Photoelectric effect	Experimental studyby	$\ldots \ldots \ldots \ldots$.
b.	Photoemissive cell	$\ldots \ldots \ldots \ldots \ldots \ldots$	Burglar's alarm
c. \quad de-Broglie wavelength	$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$	$\lambda=\ldots \ldots \ldots \ldots$.	
d. $\quad \mathrm{h} v=\frac{1}{2} \mathrm{~m} \mathrm{v}_{\max }^{2}+\phi_{0}$	$\mathrm{~h} v=\ldots \ldots \ldots \ldots \ldots$	$\frac{1}{2} \mathrm{~m} \mathrm{v}_{\max }^{2}=\mathrm{hc}\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)$	

21. A particle moves along the x-axis in such a way that its coordinates x varies with time ' t ' according to the equation $x=2-5 t+6 t^{2}$. What is the initial velocity of the particle?

- Watch Video Solution

22. Suppose two cars A and B are moving with uniform velocities with respect to ground along parallel tracks and in the same direction.

Let the velocities of A and B be $35 k m h^{-1}$ due east and $40 \mathrm{kmh}^{-1}$ due east respectively. What is the relative velocity of car B with respect to A ?

- Watch Video Solution

23. Suppose two trains A and B are moving with uniform velocities along parallel tracks but in opposite directions. Let the velocity of train A be $40 \mathrm{kmh}^{-1}$ due east and that of train

B be $40 \mathrm{kmh}^{-1}$ due west. Calculate the relative velocities of the trains.

D Watch Video Solution

24. Consider two trains A and B moving along parallel tracks with the same velocity in the same direction. Let the velocity of each train be $50 \mathrm{kmh}^{-1}$ due east. Calculate the relative velocities of the trains.

D Watch Video Solution

25. How long will a boy willing near the window of a train travelling at $36 \mathrm{kmh}^{-1} \mathrm{sec}$ a train passing by in the opposite direction with a speed of $18 \mathrm{kmh}^{-1}$. The length of slowmoving train is 90 m .

- Watch Video Solution

26. A swimmer's speed in the direction of flow of a river is $12 \mathrm{kmh}^{-1}$. Against the direction of flow of the river the swimmer's speed is
$6 \mathrm{kmh}^{-1}$. Calculate the swimmer's speed in
still water and the velocity of the river flow.

D Watch Video Solution

27. A velocity time graph is given for a particle moving in x direction, as below R
(a) Describe the motion qualitatively in the interval 0 to 55s.
(b) Find the distance and displacement
travelled from 0 to 40 s.

Find the acceleration at $t=5 \mathrm{~s}$ and at 20 s .

D View Text Solution

28. If the position vector of the particle is
given by $\vec{r}=3 \hat{t}^{2} \hat{i}+5 t \hat{j}+4 \hat{k}$, Find the
(a) The velocity of the particle at $t=3 \mathrm{~s}$
(b) Speed of the particle at $t=3 \mathrm{~s}$
(c) Acceleration of the particle at time $t=3 s$

D Watch Video Solution

29. An object is thrown vertically downward.

What is the acceleration experienced by the object?

- Watch Video Solution

30. An iron ball and a feather are both falling
from a height of 10 m .
(a) What are the time taken by the iron ball and feather to reach the ground? (b) What are the velocities of iron ball and feather when
they reach the ground? (Ignore air resistance and take $g=10 m s^{-2}$

D Watch Video Solution

31. Is it possible to measure the depth of a well using kinematic equations?

- Watch Video Solution

32. A train was moving at the rate of
$54 \mathrm{kmh}^{-1}$ when brakes were applied. It came
to rest within a distance of 225 m. Calculate the retardation produced in the train.

D Watch Video Solution

33. Suppose an object is thrown with initial speed of $10 \mathrm{~ms}^{-1}$ at an angle $\pi / 4$ with the horizontal, what is the range-covered?

Suppose the same object is thrown similarly in
the moon, will there be any change in the range? If yes, what is the change? (The
acceleration due to gravity in the moon

$$
\left.g_{\text {moon }}=1 / 6 g\right)
$$

D Watch Video Solution

34. In the cricket game, a batsman strikes the ball such that it moves with the speed $30 \mathrm{~ms}^{-1}$ at an angle 30° with the horizontal as shown in the figure. The boundary line of
the cricket ground is located at a distance of

75 m from the batsman? Will the ball go for a
six? (Neglect the air resistance and take acceleration due to gravity $g=10 m s^{-2}$.

- Watch Video Solution

35. Find the value of x in the given figure.

- Watch Video Solution

36. A particle moves in a circle of radius 10 m .

Its linear speed is given by $v=31$ where is in second and v is in $m s^{-1}$.
(a) Find the centripetal and tangential acceleration at $1=2 \mathrm{~s}$.
(b) Calculate the angle between the resultant acceleration and the radius vector.
37. A particle is in circular motion with an acceleration $\alpha=0.2$ rads $^{-2}$.
(a) What is the angular displacement made by the particle after 5 s ?
(b) What is the angular velocity at 15 s ?

Assume the initial angular velocity is zero.

- Watch Video Solution

38. The position vector for a particle is represented be $\vec{r}=3 t^{2} \hat{i}+5 t \hat{j}+6 \hat{k}$, find the
velocity and speed of the particle at $\mathrm{t}=3 \mathrm{sec}$.

- Watch Video Solution

39. A gun is fired from a place which is at distance 1.2 km from a hill. The echo of the sound s heard back at the same place of firing after 8 second. Find the speed of sound.

D Watch Video Solution

40. A train 100 m long is moving with a speed of $60 \mathrm{kmh}^{-1}$. In how many seconds will it cross a bridge of 1 km long?

D Watch Video Solution

41. Draw the resultant direction of the two
unit vectors \hat{i} and \hat{j} Use a 2 -dimensional
Cartesian ystem. Is $\hat{i}+\hat{j}$ a unit vector?

D Watch Video Solution

42. A swimmer moves across the Cauvery river of 750 m wide. The velocity of the swimmer relative to water $\left(\vec{v}_{S W}\right)$ is $1.5 m s^{-1}$ and directed perpendicular to the water current.

The velocity of water relative to the bank
$\left(\vec{v}_{w b}\right)$ is $1 m s^{-1}$. Calculate the
velocity of the swimmer with respect to the
bank of the river $\left(\vec{v}_{s b}\right)$.
(b) time taken by the swimmer to cross the

Cauvery river.
43. A monkey hangs on a tree. A hunter aims a gun at the monkey and fires the bullet with
velocity v_{0} which makes angle θ with horizontal direction. At the instant gun fires, monkey leaves the branch and falls straight down to escape from the bulletas shown in the figure. Will bullet hit the monkey or will the monkey escape the bullet? (ignore air resistance)

- View Text Solution

44. A three storey building of height 100 m is
located on Earth and a similar building is also
located on Moon. If two people jump from the top of these buildings on Earth and Moon simultaneously, when will they reach the ground and at what speed? $\left(g=10 \mathrm{~ms}^{-2}\right)$

- Watch Video Solution

45. The following graphs represent position -
time graphs. Arrange the graphs in ascending
order of increasing speed.

D View Text Solution

46. Two vectors \vec{A} and \vec{B} of magnitude 5 units and 7 units respectively make an anlge 60° with each other as shown below. Find the magnitude of the resultant vector and its direction with respect to the vector \vec{A}.

D View Text Solution

47. Two vectors \vec{A} and \vec{B} of magnitude 5
units and 7 units make an angle 60° with each other. Find the magnitude of the difference vector $\vec{A}-\vec{B}$ and its direction with respect to the vector \vec{A}.

D Watch Video Solution

48. What are the unit vectors along the negative x-direction, negative y-direction, and negative z-direction?

- Watch Video Solution

49. Two vectors \vec{A} and \vec{B} are given in the component form as
$\vec{A}=5 \hat{i}+7 \hat{j}-4 \hat{k}$ and $\vec{B}=6 \hat{i}+3 \hat{j}+2 \hat{k}$.
Find $\vec{A}+\vec{B}, \vec{B}+\vec{A}, \vec{A}-\vec{B}, \vec{B}-\vec{A}$.

- Watch Video Solution

50. Given the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ what is $3 \vec{A}$?
51. A vector \vec{A} is given as in the following figure. Find $4 \vec{A}$ and $-4 \vec{A}$

D View Text Solution

$$
\begin{aligned}
& \text { 52. } \begin{array}{c}
\text { Given } \\
\vec{A}=2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \vec{B}=\hat{i}+3 \hat{j}+6 \vec{k}
\end{array}
\end{aligned}
$$

Find the product $\vec{A} \cdot \vec{B}$ and the magnitudes
of \vec{A} and \vec{B}. What is the angle between them?

- Watch Video Solution

53. Check whether the following vectors are orthogonal.
(i) $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=4 \hat{i}-5 \hat{j}$
$\vec{C}=5 \hat{i}+2 \hat{j}$ and $\vec{D}=2 \hat{i}+5 \hat{j}$

- Watch Video Solution

54. Two vectors are given as
$\vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k}$.
Find the resultant vector $\vec{\tau}=\vec{r} \times \vec{F}$.

- Watch Video Solution

55. Compare the components for the following vector equations
(a) $\vec{F}=m \vec{a}$ Here m is a positive number (b)
$\vec{p}=0$
56. Determine the value of the T from the given vector equation.
$5 \hat{j}-T \hat{j}=6 \hat{j}+3 T \hat{j}$

- Watch Video Solution

57. Compare the components of vector equation $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\vec{F}_{4}$.

- Watch Video Solution

58. Determine the position vectors for the following particles which are located at points P.Q.R.S.

D View Text Solution
59. A person initially at rest starts to walk 2 m towards north, then m towards east, then 5 m towards south and then 3 m towards west.

What is the position vector of the person at
the end of the trip?

D View Text Solution

60. Assume your school is located 2 km away
from your home. In the morning you are going to school and in the evening you come back
home. In this entire trip what is the distance travelled and the displacement covered?

D View Text Solution
61. An athlete covers 3 rounds on a circular track of radius 50 m . Calculate the total distance and displacement travelled by him.

- Watch Video Solution

62. Calculate the displacement vector for a particle moving from a point P to Q as shown below. Calculate the magnitude of displacement.

- View Text Solution

63. Consider the function $y=x^{2}$. Calculate the derivative $\frac{d y}{d x}$ using the concept of limit, at the point $\mathrm{x}=2$.

- Watch Video Solution

64. Find the derivative with respect to t, of the
function $\quad x=A_{0}+A_{1} t+A_{2} t^{2} \quad$ where
A_{0}, A_{1} and A_{2} are constants.

Watch Video Solution

65. Consider an object travelling in a semicircular path from point to point P in 5 second, as is shown in the Figure given below.

Calculate the average velocity and average speed.

- View Text Solution

66. A particle moves along the x-axis in such a way that its coordinates x varies with time ' t ' according to the equation $x=2-5 t+6 t^{2}$. What is the initial velocity of the particle?

D Watch Video Solution

67. Suppose two cars A and B are moving with
uniform velocities with respect to ground along parallel tracks and in the same direction.

Let the velocities of A and B be $35 k m h^{-1}$ due
east and $40 \mathrm{kmh}^{-1}$ due east Velocity Ve respectively. What is the relative velocity of car B with respect to A?

D View Text Solution

68. Suppose two trains A and B are moving with uniform velocities along parallel tracks but in opposite directions. Let the velocity of train A be $40 \mathrm{kmh}^{-1}$ due east and that of train

B be $40 \mathrm{kmh}^{-1}$ due west. Calculate the relative velocities of the trains.

D Watch Video Solution

69. Consider two trains A and B moving along parallel tracks with the same velocity in the same direction. Let the velocity of each train be $50 \mathrm{kmh}^{-1}$ due east. Calculate the relative velocities of the trains.

D Watch Video Solution

70. How long will a boy willing near the window of a train travelling at $36 \mathrm{kmh}^{-1} \mathrm{sec} \mathrm{a}$ train passing by in the opposite direction with a speed of $18 \mathrm{kmh}^{-1}$. The length of slowmoving train is 90 m .

D Watch Video Solution

71. A swimmer's speed in the direction of flow of a river is $12 \mathrm{~km}^{-1}$. Against the direction of flow of the river the swimmer's speed is
$6 \mathrm{kmh}^{-1}$. Calculate the swimmer's speed in
still water and the velocity of the river flow.

D Watch Video Solution

72. A velocity time graph is given for a particle moving in x direction, as below
(a) Describe the motion qualitatively in the interval 0 to 55s.
(b) Find the distance and displacement
travelled from 0 to 40 s.

Find the acceleration at $t=5 \mathrm{~s}$ and at 20 s .

D View Text Solution

73. If the position vector of the particle is
given by $\vec{r}=3 \hat{t}^{2} \hat{i}+5 t \hat{j}+4 \hat{k}$, Find the
(a) The velocity of the particle at $t=3 \mathrm{~s}$
(b) Speed of the particle at $t=3 \mathrm{~s}$
(c) Acceleration of the particle at time $t=3 s$

D Watch Video Solution

74. An object is thrown vertically downward. What is the acceleration experienced by the object?

- Watch Video Solution

75. An iron ball and a feather are both falling
from a height of 10 m .
(a) What are the time taken by the iron ball and feather to reach the ground? (b) What are the velocities of iron ball and feather when
they reach the ground? (Ignore air resistance and take $g=10 m s^{-2}$

D Watch Video Solution

76. Is it possible to measure the depth of a well using kinematic equations?

- Watch Video Solution

77. A train was moving at the rate of $54 \mathrm{kmh}^{-1}$ when brakes were applied. It came to rest
within a distance of 225 m . Calculate the retardation produced in the train.

D Watch Video Solution

78. Suppose an object is thrown with initial speed of $10 \mathrm{~ms}^{-1}$ at an angle $\pi / 4$ with the horizontal, what is the range-covered?

Suppose the same object is thrown similarly in
the moon, will there be any change in the range? If yes, what is the change? (The
acceleration due to gravity in the moon

$$
\left.g_{\text {moon }}=1 / 6 g\right)
$$

D Watch Video Solution

79. In the cricket game, a batsman strikes the ball such that it moves with the speed $30 \mathrm{~ms}^{-1}$ at an angle 30° with the horizontal as shown in the figure. The boundary line of
the cricket ground is located at a distance of

75 m from the batsman? Will the ball go for a
six? (Neglect the air resistance and take acceleration due to gravity $g=10 m s^{-2}$.

D Watch Video Solution

80. Calculate the angle θ subtended by the two adjacent wooden spokes of a bullock cart wheel is shown in the figure. Express the angle in both radian and degree.

- View Text Solution

81. A particle moves in a circle of radius 10 m .

Its linear speed is given by $\mathrm{v}=31$ where is in second and v is in $m s^{-1}$.
(a) Find the centripetal and tangential acceleration at $1=2 \mathrm{~s}$.
(b) Calculate the angle between the resultant acceleration and the radius vector.

- Watch Video Solution

82. A particle is in circular motion with an
acceleration $\alpha=0.2$ rads $^{-2}$.
(a) What is the angular displacement made by the particle after 5 s ?
(b) What is the angular velocity at 15 s ?. Assume the initial angular velocity is zero.

- Watch Video Solution

83. The position vector for a particle is represented be $\vec{r}=3 t^{2} \hat{i}+5 t \hat{j}+6 \hat{k}$, find the velocity and speed of the particle at $\mathrm{t}=3 \mathrm{sec}$.

D Watch Video Solution

84. A gun is fired from a place which is at distance 1.2 km from a hill. The echo of the sound s heard back at the same place of firing after 8 second. Find the speed of sound.

D Watch Video Solution

85. A train 100 m long is moving with a speed
of $60 \mathrm{kmh}^{-1}$. In how many seconds will it cross a bridge of 1 km long?
86. Draw the resultant direction of the two
unit vectors \hat{i} and \hat{j} Use a 2-dimensional
Cartesian ystem. Is $\hat{i}+\hat{j}$ a unit vector?

D Watch Video Solution

87. A swimmer moves across the Cauvery river of 750 m wide. The velocity of the swimmer relative to water $\left(\vec{v}_{S W}\right)$ is $1.5 m s^{-1}$ and directed perpendicular to the water current.

The velocity of water relative to the bank
$\left(\vec{v}_{w b}\right)$ is $1 m s^{-1}$. Calculate the
velocity of the swimmer with respect to the bank of the river $\left(\vec{v}_{s b}\right)$.
(b) time taken by the swimmer to cross the

Cauvery river.

D Watch Video Solution

88. A monkey hangs on a tree. A hunter aims a gun at the monkey and fires the bullet with velocity v_{0} which makes angle θ with horizontal direction. At the instant gun fires,
monkey leaves the branch and falls straight down to escape from the bulletas shown in the figure. Will bullet hit the monkey or will the monkey escape the bullet? (ignore air resistance)

D View Text Solution
89. A three storey building of height 100 m is
located on Earth and a similar building is also
located on Moon. If two people jump from the
top of these buildings on Earth and Moon simultaneously, when will they reach the ground and at what speed? $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

90. The following graphs represent position -
time graphs. Arrange the graphs in ascending order of increasing speed.

D View Text Solution

TEXTUAL QUESTIONS SOLVED (MULTIPLE CHOICE QUESTIONS:)

1. Which one of the following Cartesian coordinate systems is not follwed in physics?
A.
B.
c.
D.

Answer: D
2. Identify the unit vector in the following .
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
c. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: A: B

-

3. Which one of the following physical quantities cannot be represented by a scalar?
A. Mass
B. Length
C. Momentum
D. Magnitude of acceleration
4. Two objects of masses m_{1} and m_{2} fall from
the heights h_{1} and h_{2} respectively. The ratio
of the magntidue of their momenta when they
hit the ground is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{h_{1}}{h_{2}}} \\
& \text { B. } \sqrt{\frac{m_{1} h_{1}}{m_{1} h_{2}}} \\
& \text { C. } \frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}} \\
& \text { D. } \frac{m_{1}}{m_{2}}
\end{aligned}
$$

Answer: A::B
5. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A::C

6. If the velocity is $\vec{v}=2 \hat{i}+t^{2} \hat{j}-9 \hat{k}$ then
the magntidue of acceleration at $t=0.5 \mathrm{~s}$ is
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. zero
D. $-1 m s^{-2}$

Answer: A::B
7. If an object is dropped from the top of a building and it reaches the ground at $\mathrm{t}=4 \mathrm{~s}$, then the height of the building is (ignoring air resistance) $\left(g=9.8 m s^{-2}\right)$
A. 77.3 m
B. 78.4 m
C. 80.5 m
D. 79.2 m

Answer: D

8. A ball is projected vertically upwards with a velocity v. It comes back to ground in time t. which v-t graph shows the motion correctly?
A.
B.
C.
D.

Answer: C
9. If one object is dropped vertically downward and another object is thrown horizontally from the same height, then the ratio of
vertical distance covered by both objects at any instant t is
A. 1
B. 2
C. 4
D. 0.5

Answer: A

D Watch Video Solution

10. A ball is dropped from some height towards the ground : Which one of the
following represents the correct motion of the ball?
A.
B.
C.

Answer: A

D Watch Video Solution

11. If a particle executes uniform circular motion in the xy plane in clock wise direction, then the angular velocity is in :
A. $+y$ direction
B. $+z$ direction
C. $-z$ direction
D. $-x$ direction

Answer: C::D

D Watch Video Solution

12. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant
B. The acceleration and speed are constant
C. The velocity and acceleration are constant.

D. The speed and magnitude of

acceleration are constant,

Answer: A::C::D

D Watch Video Solution

13. If an object is thrown vertically up with initial speed u from the ground, then the time
taken by the object to return back to ground
is

$$
\begin{aligned}
& \text { A. } \frac{u^{2}}{2 g} \\
& \text { B. } \frac{u^{2}}{g} \\
& \text { C. } \frac{u}{2 g} \\
& \text { D. } \frac{2 u}{g}
\end{aligned}
$$

Answer: B
(Watch Video Solution
14. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following.
A. $R_{30^{\circ}}=R_{60^{\circ}}$
B. $R_{30^{\circ}}=4 R_{60^{\circ}}$
C. $R_{30^{\circ}}=\frac{R_{60^{\circ} \gamma}}{2}$
D. $R_{30^{\circ}}=2 R_{60^{\circ}}$
15. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s .

The acceleration due to gravity in this
unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$
16. Which one of the following Cartesian coordinate systems is not follwed in physics?
A.
B.
c.
D.

Answer: D
17. Identify the unit vector in the following .
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
C. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: A::B
18. Which one of the following physical quantities cannot be represented by a scalar?
A. Mass
B. Length
C. Momentum
D. Magnitude of acceleration
19. Two objects of masses m_{1} and m_{2} fall
from the heights h_{1} and h_{2} respectively. The ratio of the magntidue of their momenta when they hit the ground is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{h_{1}}{h_{2}}} \\
& \text { B. } \sqrt{\frac{m_{1} h_{1}}{m_{1} h_{2}}} \\
& \text { C. } \frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}} \\
& \text { D. } \frac{m_{1}}{m_{2}}
\end{aligned}
$$

Answer: A::B
20. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A::C

21. If the velocity is $\vec{v}=2 \hat{i}+t^{2} \hat{j}-9 \hat{k}$ then
the magntidue of acceleration at $t=0.5 \mathrm{~s}$ is
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. zero

$$
\text { D. }-1 m s^{-2}
$$

Answer: A::B

22. If an object is dropped from the top of a building and it reaches the ground at $t=4 \mathrm{~s}$, then the height of the building is (ignoring air resistance) $\left(g=9.8 m s^{-2}\right)$
A. 77.3 m
B. 78.4 m
C. 80.5 m
D. 79.2 m

Answer: D

23. A ball is projected vertically upwards with a velocity v. It comes back to ground in time t. which v-t graph shows the motion correctly?
A.
B.
C.
D.

Answer: C
24. If one object is dropped vertically downward and another object is thrown horizontally from the same height, then the ratio of vertical distance covered by both objects at any instant t is
A. 1
B. 2
C. 4
D. 0.5

Answer: A

D Watch Video Solution

25. A ball is dropped from some height towards the ground : Which one of the following represents the correct motion of the ball?
A.
B.
C.
D.

Answer: A

D Watch Video Solution

26. If a particle executes uniform circular motion in the xy plane in clock wise direction, then the angular velocity is in :
A. $+y$ direction
B. $+z$ direction
C. $-z$ direction
D. $-x$ direction

Answer: C::D

D Watch Video Solution

27. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant
B. The acceleration and speed are constant
C. The velocity and acceleration are constant.

D. The speed and magnitude of

acceleration are constant,

Answer: A::C::D

D Watch Video Solution

28. If an object is thrown vertically up with initial speed u from the ground, then the time
taken by the object to return back to ground
is

$$
\begin{aligned}
& \text { A. } \frac{u^{2}}{2 g} \\
& \text { B. } \frac{u^{2}}{g} \\
& \text { C. } \frac{u}{2 g} \\
& \text { D. } \frac{2 u}{g}
\end{aligned}
$$

Answer: B
(Watch Video Solution
29. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following.
A. $R_{30^{\circ}}=R_{60^{\circ}}$
B. $R_{30^{\circ}}=4 R_{60^{\circ}}$
C. $R_{30^{\circ}}=\frac{R_{60^{\circ} \gamma}}{2}$
D. $R_{30^{\circ}}=2 R_{60^{\circ}}$
30. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s .

The acceleration due to gravity in this unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

(D) Watch Video Solution

TEXTUAL QUESTIONS SOLVED (SHORT ANSWER QUESTIONS)

1. What is meant by Cartesian coordinate system?

- Watch Video Solution

2. Define a vector. Give examples.

3. Define a scalar. Give examples

- Watch Video Solution

4. Write a short note on the scalar product between two vectors.

- Watch Video Solution

5. Write a short note on vector product between two vectors.

- Watch Video Solution

6. How do you deduce that two vectors are perpendicular?

D Watch Video Solution

7. Define displacement and distance.

- Watch Video Solution

8. Define velocity and speed.

- Watch Video Solution

9. Define acceleration.

- Watch Video Solution

10. What is the difference between velocity and average velocity?

D Watch Video Solution
11. Define a radian.

D Watch Video Solution

12. Define angular displacement and angular
velocity.

- Watch Video Solution

13. What is non uniform circular motion?

- Watch Video Solution

14. Write down the Kinematic equations for Angular motion.

- Watch Video Solution

15. Write down the expression for angle made by resultant acceleration and radius vector in the non uniform circular motion.

D Watch Video Solution

16. What is meant by Cartesian coordinate system?

- Watch Video Solution

17. Define a vector. Give examples.

D Watch Video Solution

18. Define a scalar. Give examples

D Watch Video Solution
19. Write a short note on the scalar product
between two vectors.
20. Write a short note on vector product between two vectors.

D Watch Video Solution

21. How do you deduce that two vectors are perpendicular?

D Watch Video Solution

22. Define displacement and distance.

- Watch Video Solution

23. Define velocity and speed.

- Watch Video Solution

24. Define acceleration.
(D) Watch Video Solution
25. What is the difference between velocity and average velocity?

- Watch Video Solution

26. Define a radian.

- Watch Video Solution

27. Define angular displacement and angular
velocity.

- Watch Video Solution

28. What is non uniform circular motion?

D Watch Video Solution

29. Write down the Kinematic equations for Angular motion.

- Watch Video Solution

30. Write down the expression for angle made
by resultant acceleration and radius vector in
the non uniform circular motion.

(D) Watch Video Solution

TEXTUAL QUESTIONS SOLVED (LONG ANSWER QUESTIONS)

1. Explain in detail the triangle law of addition.

Watch Video Solution

2. Discuss the properties of scalar and vector

D Watch Video Solution

3. Derive the kinematic equations of motion

for constant acceleration.

- Watch Video Solution

4. Derive the equations of motion for a particle (a) falling vertically (b) projected
vertically.

D Watch Video Solution

5. Derive the equation of motion, range and maximum height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.

D Watch Video Solution

6. Derive the expression for centripetal acceleration.

D Watch Video Solution

7. Derive the expression for total acceleration in the non-uniform circular motion.

- Watch Video Solution

8. Explain in detail the triangle law of addition.

D Watch Video Solution

9. Discuss the properties of scalar and vector

D Watch Video Solution
10. Derive the kinematic equations of motion
for constant acceleration.

D Watch Video Solution
11. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.

D Watch Video Solution

12. Derive the equation of motion, range and maximum height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.
13. Derive the expression for centripetal acceleration.

- Watch Video Solution

14. Derive the expression for total acceleration
in the non-uniform circular motion.

- Watch Video Solution

ADDITIONAL

1. The radius of the Earth was measured by

A. Newton

B. Eratosthenes

C. Galileo
D. Ptolemy

Answer: A
2. Kinematics is the branch of mechanics which delas with the motion of objects without taking _______ into account
A. kinetics
B. dynamics
C. kinematics
D. statics

Answer: A::C
3. If the coordinate axes (x, y, z) are drawn in anticlockwise direction then the coordinate system is known as
A. Cartesian coordinate system
B. right handed coordinate system
C. left handed coordinate system
D. cylindrical coordinate system

Answer: A::C::D

D Watch Video Solution

4. The dimension of point mass is

A. 0
B. 1
C. 2
D. kg
5. If an object is moving in a straight line then
the motion is known as Motion
A. linear
B. circular
C. curvilinear

D. rotational

Answer: A

(Watch Video Solution
6. An athlete running on a straight track is an example for the whirling motion of a stone attached to a string is a.............. motion.
A. linear

B. circular

C. curvilinear
D. rotational

Answer: A

7. The whirling motion of a stone attached to a

 string is a motion.A. linear

B. circular

C. curvilinear

D. rotational

Answer: A::C

D Watch Video Solution

8. Spinning of the Earth about its own axis is

 known as motion.A. linear
B. circular
C. curvilinear
D. rotational

Answer: A

D Watch Video Solution
9. If an object executes a to and fro motion about a fixed point, is an example for
A. rotational motion
B. vibratory motion
C. circular motion
D. curvilinear motion

Answer: A::B

D Watch Video Solution
10. Vibratory motion is also known as
A. circular motion
B. rotational motion
C. oscillatory motion
D. spinning

Answer: A::C
11. The motion of satellite around the Earth is an example for
A. circular motion
B. rotational motion
C. elliptical motion
D. spinning

Answer: A::C
(D) Watch Video Solution
12. An object falling freely under gravity close to Earth is
A. one dimensional

B. circular motion

C. rotational motion
D. spinning motion

Answer: A::D

D Watch Video Solution
13. Motion of a coin on a carrom board is an example of
A. one dimensional motion
B. one dimensional motion
C. three dimensional motion
D. none

Answer: A::D
(Watch Video Solution
14. Spreading smoke of incense stick is an example of
A. one dimensional motion
B. two dimensional motion
C. three dimensional motion
D. none

Answer: A::D

D Watch Video Solution

15. A bird flying in the sky is an example of

A. one dimensional motion

B. two dimensional motion

C. three dimensional motion
D. none

Answer: A::D

16. Example for scalar is

A. distance
B. displacement
C. velocity

D. angular momentum

Answer: A::C::D

17. Which of the following is not a scalar ?
A. Volume
B. Angular momentum
C. Relative density
D. Time

Answer: A

18. Vector is having

A. only magnitude
B. only direction
C. both magnitude and direction
D. either magnitude or direction

Answer: A::B::C::D

- Watch Video Solution

19. "norm" of the vector represents
A. only magnitude
B. only direction
C. both magnitude and direction
D. either magnitude or direction

Answer: A::D

- Watch Video Solution

20. If two vectors are having equal magnitude and same direction is known as
A. equal vectors
B. collinear vectors
C. parallel vectors
D. on it vector

Answer: A::C
(Watch Video Solution
21. The angle between two collinear vectors
is/are,
A. 0°
B. 90°
C. 180°
D. 0° or 180°

Answer: A

D Watch Video Solution

22. The angle between parallel vectors is

A. 0°
B. 90°
C. 180°
D. 0° or 180°

D Watch Video Solution
23. The angle between anti-parallel vectors is
A. 0°
B. 90°
C. 180°
D. 0° or 180°

Answer: A

- Watch Video Solution

24. Unit vector is
A. having magnitude one but no direction
B. $A \widehat{A}$
C. $\frac{A}{|A|}$
D. $|A|$

Answer: A

- Watch Video Solution

25. A unit vector is used to specify

A. only magnitude
B. only direction

C. either magnitude (or) direction

D. absolute value

Answer: C::D

D Watch Video Solution

26. The angle between any two orthogonal unit vectors
A. 0
B. 90°
C. 180°
D. 360°

D Watch Video Solution

27. If \widehat{n} is a unit vector along the direction of \vec{A} then \widehat{n} is
A. $\vec{A} A$
B. $n \times A$
C. $\vec{A} /|A|$
D. $\vec{A}|A|$

Answer: A::C

D Watch Video Solution

28. The magnitude of a vector cannot be
A. positive
B. negative
C. zero
D. unity

Answer: A

D Watch Video Solution

29. If $\vec{R}=\vec{P}+\vec{Q}$, then which of the following is true?
A. $P>Q$
B. $Q>P$
C. $\mathrm{P}=\mathrm{Q}$
D. $R>P, Q$

D Watch Video Solution

30. A force of $3 N$ and $4 N$ are acting perpendicular to an object, the resultant force is
A. 9 N
B. 16 N
C. 5 N
D. 7 N

D Watch Video Solution

31. Torque is a
A. scalar
B. vector
C. either scalar (or) vector
D. none

Answer: C
32. The resultant of $\vec{A}+\vec{B}$ acts along x-axis.

If $A=2 \hat{i}-3 \hat{j}+2 \hat{k}$ then B is
A. $-2 \hat{i}+\hat{j}+\hat{k}$
B. $3 \hat{j}-2 \hat{k}$
C. $-2 \hat{i}-3 \hat{j}$
D. $-2 \hat{i}-2 \hat{k}$

Answer: A::B::C

33. The angle between
$(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ can be
A. only 0°
B. only 90°
C. between 0° and 90°
D. between 0° and 180°

Answer: A::B::D
34. If a vector $\vec{A}=3 \hat{i}+2 \hat{j}$ then what is 4 A ?
A. $12 \hat{i}+8 \hat{j}$
B. $0.75 \hat{i}+0.5 \hat{j}$
C. $3 \hat{i}+2 \hat{j}$
D. $7 \hat{i}+6 \hat{j}$

Answer: A::B
35. If $\vec{P}=m \vec{V}$ then the direction of \vec{P} along
A. m
B. v
C. both (a) and (b)
D. neither m nor v

- Watch Video Solution

36. The scalar product $\vec{A} \cdot \vec{B}$ is equal to
A. $\vec{B}+\vec{A}$
B. $A B \sin \theta$
C. $A B \cos \theta$
D. $\vec{B}+\vec{A}$

Answer: A::B::C
37. The scalar product $\vec{A} \cdot \vec{B}$ is equal to
A. $\vec{B}+\vec{A}$
B. $\vec{B} \cdot \vec{A}$
C. $A B \sin \theta$
D. $(\vec{A} \times \vec{B})$

Answer: A::B::C
38. The scalar product of two vectors will be maximum when θ is equal to
A. 0°
B. 90°
C. 180°
D. 270°
39. The scalar product of two vectors will be maximum. When θ is equal to
A. 0°
B. 45°
C. 180°
D. 60°

Answer: A
(D) Watch Video Solution
40. The vectors \vec{A} and \vec{B} to be mutually orthogonal when
A. $\vec{A}+\vec{B}=0$
B. $\vec{A}-\vec{B}=0$
C. $\vec{A} \cdot \vec{B}=0$
D. $\vec{A} \times \vec{B}=0$

Answer: A::B::C

D Watch Video Solution
41. The magnitude of the vector is
A. A^{2}
B. \sqrt{A}^{2}
C. \sqrt{A}
D. $\sqrt[3]{A}$

Answer: A::B
42. $\hat{i} . \hat{j}$ is
A. 0
B. 1
C. ∞
D. none

D Watch Video Solution
43. If \vec{A} and \vec{B} are two vectors which are acting along x,y respectively, then $\vec{A} \times \vec{B}$ lies along
A. x
B. y
C. z
D. none
44. The direction of $\vec{A} \times \vec{B}$ is given by
A. right hand screw rule
B. right hand thumb rule
C. both (a) and (b)

D. neither (a) and (b)

Answer: A::B::D

(Watch Video Solution
45. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
A. $A B \cos \theta$
B. $A B \sin \theta$
C. $A B \tan \theta$
D. $A B \sec \theta$

Answer: A: B

- Watch Video Solution

46. $\vec{A} \times \vec{B}$ is equal to
A. $\vec{B} \times \vec{A}$
B. $\vec{A}+\vec{B}$
C. $-(\vec{B} \times \vec{A})$
D. $\vec{A}-\vec{B}$

Answer: A::B::C
47. The vector product of any two vectors gives a
A. vector
B. scalar
C. tensor

D. collinear

Answer: C

D Watch Video Solution
48. $|\bar{A} \times \bar{B}|$ is equal to

$$
\begin{aligned}
& \text { A. (a) }-|\bar{A} \times \bar{B}| \\
& \text { B. (b) }|\bar{B} \times \bar{A}| \\
& \text { C. (c) }-|\bar{B} \times \bar{A}| \\
& \text { D. (d) } \frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

49. The vector product of two vectors will have maximum magnitude when θ is equal to
A. (a) 0°
B. (b) 90°
C. (c) 180°
D. (d) 360°
50. The vector product of two non-zero vectors
will be minimum when θ is equal to
A. (a) 0°
B. (b) 180°
C. (c) both (a) and (b)
D. (d) neither (a) nor (b)

Answer: A::B::D
(Watch Video Solution
51. The product of a vector with itself is equal to
A. (a) 0
B. (b) 1
C. (c) ∞
D. (d) A^{2}

D Watch Video Solution

52. $\hat{i} \times \hat{i}$ is
A. (a) 0
B. (b) 1
C. (c) 00
D. (d) \hat{j}

- Watch Video Solution

53. $\hat{i} \times \hat{j}$ is

$$
\text { A. (a) } \hat{i}
$$

B. (b) \hat{j}
C. (c) \hat{k}
D. (d) \vec{z}

Answer: A

- Watch Video Solution

54. $\hat{j} \times \hat{i}$ is
A. (a) $-\hat{i}$
B. (b) $-\hat{j}$
C. (c) $-\hat{k}$
D. (d) \vec{z}

Answer: A

D Watch Video Solution

55. If two vectors \vec{A} and \vec{B} form adjacent sides of parallelogram, then the $|\vec{A} \times \vec{B}|$ will give- of parallelogram
A. (a) length
B. (b) area

C. (c) volume

D. (d) diagonal

Answer: A

- Watch Video Solution

56. If $\vec{P}-\vec{Q}$ then which of the following is
incorrect?

$$
\text { A. } \vec{P}=\vec{Q}
$$

B. $|\vec{P}|=|\vec{Q}|$
C. $P \widehat{Q}=Q \widehat{A}$
D. $\widehat{P} \widehat{Q}=P Q$

Answer: A

D Watch Video Solution

57. The momentum of a particle is
$\vec{P}=\cos \theta \hat{i}+\sin \theta \hat{j}$. The angle between
momentum and the force acting on a body is
A. 0°
B. 45°
C. 90°
D. 180°

D Watch Video Solution

58. vce A and \vec{B} are two vectors, if \vec{A} and \vec{B}
are perpendicular to each other
A. $\bar{A} \times \bar{B}=0$
B. $\bar{A} \times \bar{B}=1$
C. $\bar{A} \cdot \bar{B}=0$
D. $\bar{A} \times \bar{B}=A B$

Answer: A::B

D Watch Video Solution

59. The angle between two vectors
$-3 \hat{i}+6 \hat{k}$ and $2 \hat{i}+3 \hat{j}+\hat{k}$ is
A. (a) 0°
B. (b) 45°
C. (c) 60°
D. (d) 90°

D Watch Video Solution

60. The radius vector is $2 \hat{i}+\hat{j}+\hat{k}$ while linear momentum is $2 \hat{i}+3 \hat{j}+\hat{k}$. Then the angular momentum is

$$
\text { A. }-2 \hat{i}+4 \hat{k}
$$

B. $4 \hat{i}-8 \hat{k}$
C. $2 \hat{i}-4 \hat{j}+2 \hat{k}$
D. $4 \hat{i}-8 \hat{j}$

Answer: A::B::D

D Watch Video Solution

61. Which of the following cannot be a resultant of two vectors of magnitude 3 and $6 ?$
A. 3
B. 6
C. 10
D. 7

Answer: A

D Watch Video Solution

62. Twelve forces each of magnitude 10 N acting on a body at an angle of 30° with other forces then their resultant is
A. (a) 10 N
B. (b) 120 N
C. (c) $\frac{10}{\sqrt{3}}$
D. (d) zero

D Watch Video Solution

63. Two forces are in the ratio of $3: 4$. The maximum and minimum of their resultants are in the ratio is
A. $4: 3$
B. 3: 4
C. $7: 1$
D. 1:7

Answer: A

D Watch Video Solution

64. If $|\vec{P}+\vec{Q}|=|\vec{P}|+|\vec{Q}|$. The angle between the vectors \vec{P} and \vec{Q} is
A. 0°
B. 180°
C. 60°
D. 90°

(Watch Video Solution

65. If $|\vec{P}+\vec{Q}|=|\vec{P}|-|\vec{Q}|$, the the angle between the vectors \vec{P} and \vec{Q}
A. 0°
B. 90°
C. 180°
D. 360°

Answer: A

- Watch Video Solution

66. If $|\vec{P} \times \vec{Q}|=|\vec{P} \cdot \vec{Q}|$ then angle between Pand will be
A. 0°
B. 30°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

67. If $|\vec{P}+\vec{Q}|=|\vec{P}|-|\vec{Q}|$, the the angle between the vectors \vec{P} and \vec{Q}
A. 0°
B. 45°
C. 90°
D. 180°

D Watch Video Solution

68. If \vec{A} and \vec{B} are the sides of triangle, then area of triangle

$$
\begin{aligned}
& \text { A. } \frac{1}{2}|\vec{A} \cdot \vec{B}| \\
& \text { B. } \frac{1}{2}|\vec{A} \times \vec{B}|
\end{aligned}
$$

C. $A B \sin \theta$

D. $A B \cos \theta$

Answer: A::B::C

- Watch Video Solution

69. A particle moves in a circular path of radius

2 cm . If a particle completes 3 rounds, then the distance and displacement of the particle are
A. 0 and 37.7
B. 37.7 and 0
C. 0 and 0
D. 37.7 and 37.7

Answer: A::C::D

D Watch Video Solution

70. If \vec{r}_{1} and \vec{r}_{2} are position vectors, then
the displacement vector is
A. $\vec{r}_{1} \times \vec{r}_{2}$
B. $\vec{r}_{1} \cdot \vec{r}_{2}$
C. $\vec{r}_{1}-\vec{r}_{2}$
D. $\vec{r}_{2}+\vec{r}_{1}$

Answer: A::B::C

D Watch Video Solution

71. The ratio of the displacement vector to the corresponding time interval is
A. average speed
B. average velocity
C. instantaneous speed
D. instantaneous velocity

Answer: A::C

D Watch Video Solution

72. The ratio of total path length travelled by
the particle in a time interval
A. average speed
B. average velocity
C. instantaneous speed
D. instantaneous velocity

Answer: A::D

D Watch Video Solution

73. The product of mass and velocity of a particle is
A. acceleration
B. force
C. torque
D. momentum

D Watch Video Solution

74. The area under the force, displacement curve is
A. potential energy
B. work done

C. impulse

D. distance

Answer: D

D Watch Video Solution

75. The area under the force, time graph is

A. momentum
B. force
C. workdone

D. impulse

D Watch Video Solution

76. The unit of momentum in SI system is
A. $k g m s^{-1}$
B. $k g m s^{-2}$
C. $k g m^{2} s^{-1}$
D. $k g^{-1} m^{2} s^{-1}$

Answer: A

- Watch Video Solution

77. The slope of the position-time graph will

give

A. displacement
B. velocity
C. acceleration
D. force

Answer: C

D Watch Video Solution

78. The area under velocity-time graph gives
A. (a) positive
B. (b) negative
C. (c) either positive (or) negative
D. (d) zero

79. The magnitude of distance is always

A. positive

B. negative
C. either positive or negative
D. zero
80. If two objects A and B are moving along a straight line in the same direction with the velocities V_{A} and V_{B} respectively, then the relative velocity is
A. $V_{A}+V_{B}$
B. $V_{A}-V_{B}$
C. $V_{A} V_{B}$
D. V_{A} / V_{B}

Answer: A::B
81. If two objects A and B are moving along a straight line in the opposite direction with the
velocities $\quad V_{A}$ and V_{B} respectively, then
relative velocity is
A. $V_{A}+V_{B}$
B. $V_{A}-V_{B}$
C. $V_{A} V_{B}$
D. V_{A} / V_{B}

- Watch Video Solution

82. If two objects moving with a velocities of
V_{A} and V_{B} at an angle of θ between them, the relative velocity is

$$
\begin{aligned}
& \text { A. } V_{A B}=\sqrt{V_{A}^{2}+V_{B}^{2}-2 V_{A} V_{B} \cos \theta} \\
& \text { B. } V_{A B}=\sqrt{V_{A}^{2}+V_{B}^{2}+2 V_{A} V_{B} \cos \theta} \\
& \text { C. } V_{A B}=V_{A}^{2}+V_{B}^{2} \\
& \text { D. } V_{A B}=V_{A} V_{B} \cos \theta
\end{aligned}
$$

83. A person moving horizontally with velocity
\bar{V}_{m}. The relative velocity of rain with respect to the person is
A. $V_{R}+V_{m}$
B. $\sqrt{V_{R}+V_{m}}$
C. $V_{R}-V_{m}$
D. $\sqrt{V_{R}^{2}+V_{m}^{2}}$

- Watch Video Solution

84. A person moving horizontally with velocity
\bar{V}_{m}. Rain falls vertically with velocity \bar{V}_{R}. To
save himself from the rain, he should hold an
umbrella with vertical at an angle of
A. (a) $\tan ^{-1}\left(\frac{V_{R}}{V_{m}}\right)$
B. (b) $\tan ^{-1}\left(\frac{V_{m}}{V_{R}}\right)$
C. (c) $\tan \theta=V_{m}+V_{R}$
D. (d) $\tan ^{-1}\left(V_{R}+V_{m} / V_{R}-V_{m}\right)$

Answer: A

- Watch Video Solution

85. A car starting from rest, accelerates at a constant rate x for sometime after which it decelerates at a constant rate y to come to rest. If the total time elapsed is t, the maximum velocity attained by the car is given by
A. (a) $\frac{x y}{x+y} t$

$$
\begin{aligned}
& \text { B. (b) } \frac{x y}{x-y} t \\
& \text { C. (c) } \frac{x^{2} y^{2}}{x^{2}+y^{2}} t \\
& \text { D. (d) } \frac{x^{2} y^{2}}{x^{2}-y^{2}} t
\end{aligned}
$$

D Watch Video Solution

86. A car covers half of its journey with a speed
of $10 \mathrm{~ms}^{-1}$ and the other half by $20 \mathrm{~ms}^{-1}$.

The average speed of car during the total
journey is
A. $70 m s^{-1}$
B. $15 m s^{-1}$
C. $13.33 m s^{-1}$
D. $7.5 m s^{-1}$

Answer: A::C

D Watch Video Solution

87. A swimmer can swim in still water at of
$10 \mathrm{~ms}^{-1}$. While crossing a river his average
speed is $6 \mathrm{~ms}^{-1}$. If he crosses the river in the
shortest possible time, what is the speed of flow of water?

A. $16 m s^{-1}$
B. $4 m s^{-1}$
C. $60 m s^{-1}$
D. $8 m s^{-1}$

Answer: A
(Watch Video Solution
88. A 100 m long train is travelling from North
to South at a speed of $30 \mathrm{~ms}^{-1}$. A bird is flying
from South to North at a speed of $10 \mathrm{~ms}^{-1}$.
How long will the bird take to cross the train?
A. 3 s
B. 2.5 s
C. 10s
D. 5 s

Answer: B
89. The first derivative of position vector with
respect to time is
A. velocity
B. acceleration
C. force
D. displacement

Answer: C

D Watch Video Solution
90. The second derivative of position vector with respect to time is
A. velocity
B. acceleration
C. force
D. displacement

Answer: A:C

- Watch Video Solution

91. Slope of displacement-time graph at any instant gives :
A. velocity
B. acceleration
C. force
D. displacement

Answer: C
(D) Watch Video Solution

92. The slope of velocity-time graph gives

A. velocity

B. acceleration
C. force
D. displacement

Answer: A::C

- Watch Video Solution

93. The position vector of a particle is
$\vec{r}=4 t^{2} \hat{i}+2 t \hat{j}+3 t \hat{k}$. The acceleration of a
particle is having only
A. X-component
B. Y-component
C. Z-component
D. $X-Y$ component

Answer: C

D Watch Video Solution
94. The position vector of a particle is $\vec{r}=4 t^{2} \hat{i}+2 t \hat{j}+3 \hat{k}$. The speed of the particle $t=5 s$ is
A. $42 m s^{-1}$
B. 3 s
C. $3 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: A::B::D

D Watch Video Solution

95. An object is moving in a straight line with

uniform acceleration a, the velocity-time relation is
A. (a) $u=v+a t$
B. (b) $v=u+a t$
C. (c) $v^{2}=u^{2}+a^{2} t^{2}$
D. (d) $v^{2}-u^{2}=a t$

Answer: A

- Watch Video Solution

96. An object is moving in a straight line with
uniform acceleration, the displacement-time relation is

$$
\begin{aligned}
& \text { A. (a) } S=u t^{2}+\frac{1}{2} a t^{2} \\
& \text { B. (b) } S=u t-\frac{1}{2} a t^{2} \\
& \text { C. (c) } S=u t+\frac{1}{2} a t^{2} \\
& \text { D. (d) } S=u t=a t^{2}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution
97. An object is moving in a straight line with
uniform acceleration, the velocity- displacement relation is
A. (a) $V=u+2 a s$
B. (b) $S=u t+\frac{1}{2} a t^{2}$
C. (c) $V^{2}=u^{2}-2 a s$
D. (d) $V^{2}=u^{2}+2 a s$

Answer: A::B

D Watch Video Solution
98. For free falling body, its initial velocity is
A. 0
B. 1
C. ∞
D. none

- Watch Video Solution

99. An object falls from a height $\mathrm{h}(h \ll R)$
.the speed of the object when it reaches the ground is
A. $\frac{1}{2} \mathrm{gt}^{2}$
B. $\sqrt{\mathrm{gt}}$
C. gh
D. $\sqrt{2 g h}$

Answer: B

D Watch Video Solution
100. An object falls from a height h
($h \ll R$).the speed of the object when it
reaches the ground is

> A. $\frac{1}{2} \mathrm{gt}^{2}$
> B. $\sqrt{2 g h}$
> C. $\sqrt{\frac{h}{2 g}}$
> D. $\sqrt{\frac{2 g}{h}}$

Answer: B
101. In the absence of air resistance, horizontal velocity of the projectile is
A. always negative
B. equal to'g'
C. directly proportional to g
D. a constant

Answer: A::C
(D) Watch Video Solution
102. In the horizontal projection, the range of the projectile is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 h}{g}} \\
& \text { B. } \sqrt[u]{\frac{h}{g}} \\
& \text { C. } \sqrt[u]{\frac{g}{2 h}} \\
& \text { D. } \sqrt[u]{\frac{g}{2 h}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

103. In oblique projection, maximum height attained by the projectile is

$$
\begin{aligned}
& \text { A. } \frac{t}{u \cos \theta} \\
& \text { B. } \frac{u \sin \theta}{2 g} \\
& \text { C. } \frac{2 g}{u \sin \theta} \\
& \text { D. } \frac{u^{2} \sin ^{2} \theta}{2 g}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

104. In oblique projection time of flight of a projectile is
A. $\frac{u^{2} \sin ^{2} \theta}{2 g}$
B. $\frac{u \sin \theta}{g}$
C. $\frac{u^{2} \sin 2 \theta}{g}$
D. $\frac{u^{2}}{g}$

Answer: A

D Watch Video Solution
105. In oblique projection, maximum
horizontal range of the projectile is
A. $\frac{u^{2} \sin ^{2} \theta}{2 g}$
$u \sin \theta$
B. $\frac{g}{g}$
C. $\frac{u^{2} \sin 2 \theta}{g}$
D. $\frac{u^{2}}{g}$

Answer: A::B

D Watch Video Solution

106. In oblique projection horizontal range of the projectile is
A. $\frac{u^{2} \sin ^{2} \theta}{2 g}$
B. $\frac{u \sin \theta}{g}$
C. $\frac{u^{2} \sin 2 \theta}{2 g}$
D. $\frac{u^{2}}{g}$

Answer: B

D Watch Video Solution

107. One radian is equal to

A. $\frac{\pi}{180}$ degree
B. 60°
C. 57.295°
D. 53.925°

Answer: B
108. The relation between linear velocity and angular velocity of a body moving in a circle is

$$
\begin{aligned}
& \text { A. } \omega=v r \\
& \text { B. } \omega=\frac{v}{r} \\
& \text { C. } \omega=\frac{r}{v} \\
& \text { D. } v=\frac{r}{\omega}
\end{aligned}
$$

Answer: A
(Watch Video Solution
109. Centripetal acceleration is given by

$$
\begin{aligned}
& \text { A. } \frac{v^{2}}{r} \\
& \text { B. }-\frac{v^{2}}{r} \\
& \text { C. } \frac{r}{v^{2}} \\
& \text { D. }-\frac{r}{v^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
110. In uniform circular motion
A. Speed changes but velocity constant
B. Velocity changes but speed constant
C. both speed and velocity are constant
D. both speed and velocity are variable

Answer: A::B::C::D

D Watch Video Solution

111. In non-uniform circular motion, the resultant acceleration is given by
A. $a_{R}=\sqrt{a_{t}^{2}-\left(\frac{V^{2}}{r}\right)^{2}}$
B. $a_{R}=\sqrt{a_{t}^{2}+\left(\frac{V^{2}}{r}\right)^{2}}$
C. $a_{R}=\sqrt{a_{t}^{2}-\left(\frac{r}{V^{2}}\right)^{2}}$
D. $a_{R}=\sqrt{a_{t}^{2}+\left(\frac{r}{V^{2}}\right)^{2}}$

Answer: A::B

D Watch Video Solution

112. In non-uniform circular motion, the resultant acceleration makes an angle with the
radius vector is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{r a_{t}}{v^{2}}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{a_{t}}{\left(\frac{r}{v^{2}}\right)}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{r v^{2}}{a t}\right) \\
& \text { D. } a_{R}=\sqrt{a_{t}^{2}+\left(\frac{r}{V^{2}}\right)^{2}}
\end{aligned}
$$

Answer: A::B

- Watch Video Solution

113. A compartment of an uniformly moving train is suddenly detached from the train and stops after covering some distance. The distance covered by the compartment and distance covered by the train in the given time
A. both will be equal
B. second will be half of first
C. first will be half of second
D. none
114. object is dropped from rest. Its v-t graph is
A.
B.
C.
D.

Answer: B
115. A cyclist starts from the center O of a circular park of radius 1 km , reaches the edge P of the park, then cycles along the circumference, and returns to the center along

QO as If the round trip takes 10 min , what is
the net displacement,
A. 0
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution

116. Which of the following graph represents
the equation $\mathrm{y}=\mathrm{mx}-\mathrm{C}$?
A.
B.
C.

Answer: B

D View Text Solution

117. the displacement in metres of a body
varies with time t in second as $\mathrm{y}=\mathrm{t} 2-\mathrm{t}-2$.

The displacement is zero for a positive of t equal to
A. 1s
B. 2s
C. 3 s
D. 4 s

Answer: B

D Watch Video Solution

118. A particle with radius R is moving in a circular path with constant speed. The time period of the particle is T. Calculate the time
for the following after $\mathrm{t}=\mathrm{T} 6$. What is the average velocity of the particle
A. $3 \mathrm{R} / \mathrm{T}$
B. $4 \mathrm{R} / \mathrm{T}$
C. $6 \mathrm{R} / \mathrm{T}$
D. $12 \mathrm{R} / \mathrm{T}$

Answer: C

D Watch Video Solution
119. What does the area under acceleration-
time graph represent for any given time interval
A. Final velocity
B. Distance travelled
C. Change in the velocity in that time interval
D. Displacement of the particle

Answer: C
120. A meter long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?
A.
B.
C.
D.

- Watch Video Solution

121. Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory $\mathrm{PV}=2 / 3 \mathrm{E}, \mathrm{E}$ is the total energy per unit volume
122. for oxygen molecule with three angstrom
value find the molecular volume in fraction of
actual volume

D Watch Video Solution

123. $y=-k x^{2}$ is represented by
A.
B.
C.
D.

Answer: D

D View Text Solution

124. $X \propto \frac{1}{y}$ (or) $X Y=$ constant is represented by
A.
B.
C.
D.

Answer: B

D View Text Solution

125. $y=-e^{-k x}$ is represented by
A.
B.
C.
D.

Answer: B

D View Text Solution

126. $Y=1-e^{-k x}$ is represented by
A.
B.
C.
D.
127. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is represented by
A.
B.
C.
D.

Answer: D

D View Text Solution
128. Let $y=f(x)$ is a function. Its maximal (or)
minimal can be obtained by
A. $y=0$
B. $f(x)=0$
C. $\frac{d y}{d x}=0$
D. $\frac{d^{2} y}{d x^{2}}=0$

Answer: D
129. A particle at rest starts moving in a horizontal straight line with uniform acceleration The ratio of the distance covered during the fourth and the third second is
A. $\frac{4}{3}$
B. $\frac{26}{9}$
C. $\frac{7}{5}$
D. 2
130. The distance travelled by a body, falling
freely from rest in $t=1 s, t=2 s$ and $t=3 s$ are in the ratio of
A. $1: 2: 3$
B. 1:3:5
C. 1:4:9
D. 9:4:1

Answer: A::D
131. The displacement of the particle along a straight line at time t is given by $X=a+b t+c t^{2}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.

The acceleration of the particle is
A. a
B. b
C. c
D. 2c

Answer: B::C
132. Two bullets are fired at an angle of θ and ($90-\theta$) to the horizontal with same speed. The ratio of their times of flight is
A. 1:1
B. $1: \tan \theta$
C. $\tan \theta: 1$
D. $\tan ^{2} \theta: 1$
133. A particle moves along a circular path
under the action of a force. The work done by the force is
A. positive and non-zero
B. zero
C. egative and non-zero
D. none
134. For a particle, revolving in a circle with
speed, the acceleration of the particle is (a)
along the tangent
A. along the tangent
B. along the radius
C. along its circumference
D. zero
135. A gun fires two bullets with same velocity at 60° and 30° with horizontal. The bullets strike at the same horizontal distance. The ratio of maximum height for the two bullets is in the ratio of
A. 1:2
B. 3:1
C. 2:1

D. 1:3

Answer: A::C

D Watch Video Solution

136. A ball is thrown vertically upward at a speed of $10 \mathrm{~m} / \mathrm{s}$. When it has reached one half of its maximum height. How high does the ball rise? ($\left.g=10 m s^{\wedge}(-2)^{\prime}\right)$
A. 5 m
B. 7 m
C. 10 m
D. 12 m

Answer: A

D Watch Video Solution
137. A car moves from X to Y with a uniform
speed V_{u} and returns to Y with a uniform
speed V_{d} The average speed for this round
trip is
A. $\sqrt{v_{u} v_{d}}$
B. $\frac{v_{u} v_{d}}{v_{u}+v_{d}}$
C. $\frac{v_{u}+v_{d}}{2}$
D. $\frac{2 v_{u} v_{d}}{v_{d}+v_{u}}$

Answer: B::D

D Watch Video Solution

138. Two projectiles of same mass and with same velocity are thrown at angle of 60°
and 30° with the horizontal then which of the

following will remain same?

A. time of flight
B. range of projectile
C. maximum height reached
D. all the above

Answer: A::C

D Watch Video Solution

139. An object of mass 3 kg is at rest. Now a force of $\vec{F}=6 t^{2} \hat{i}+4 t \hat{j}$ is applied on the object, then the velocity of object at $t=3$ second is
A. $18 \hat{i}+3 \hat{j}$
B. $18 \hat{i}+6 \hat{j}$
C. $3 \hat{i}+18 \hat{j}$
D. $18 \hat{i}+4 \hat{j}$

Answer: A
140. During a projectile motion if the maximum height equals the horizontal range,then the angle of projection with the horizontal is :
A. 32°
B. 48°
C. 76°
D. 84°

- Watch Video Solution

141. A bullet is dropped from some height, when another bullet is fired horizontally from
the same height. They will hit the ground
A. depends upon mass of bullet
B. depends upon the observer
C. one after another
D. simultaneously
142. From this velocity-time graph, which of the following is correct?
A. a)Constant acceleration
B. b)Variable acceleration
C. c)Constant velocity
D. d)Variable velocity

Answer: A::B::C

D Watch Video Solution

143. When a projectile is at its maximum height, the direction of its velocity and acceleration are
A. parallel to each other
B. perpendicular to each other
C. anti-parallel to each other
D. depends on its speed

Answer: A::C::D

D Watch Video Solution
144. At the highest point of oblique projection, which of the following is correct?
A. velocity of the projectile is zero
B. acceleration of the projectile is zero
C. acceleration of the projectile is vertically
downwards
D. velocity of the projectile is vertically downwards

Answer: A::B::C::D

- Watch Video Solution

145. The range of the projectile depends

A. The angle of projection
B. Velocity of projection
C. g
D. all the above

Answer: A::B::C::D
146. A constant force is acting on a particle and also acting perpendicular to the velocity
of the particle. The particle describes the motion in a plane. Then
A. angular displacement is zero
B. its velocity is zero
C. its velocity is constant
D. it moves in a circular path

Answer: A::C

147. If a body moving in a circular path with uniform speed, then
A. the acceleration is directed towards its
centre
B. velocity and acceleration are
perpendicular to each other
C. speed of the body is constant but its
velocity is varying

D. all the above

Answer: A::B::C::D

D Watch Video Solution

148. A body is projected vertically upward with
the velocity $v=3 \hat{i}+4 \hat{j} m s^{-1}$. The maximum height attained by the body is ($g=10 m s^{-2}$).

A. 7 m

B. 1.25 m
C. 8 m
D. 0.08 m

Answer: A::B

- Watch Video Solution

149. The radius of the Earth was measured by

A. Newton

B. Eratosthenes
C. Galileo

D. Ptolemy

Answer: A

D Watch Video Solution

150. Kinematics is the branch of mechanics
which delas with the motion of objects
without taking ________ into account
A. kinetics
B. dynamics

C. kinematics

D. statics

Answer: A::C

- Watch Video Solution

151. If the coordinate axes (x, y, z) are drawn in
anticlockwise direction then the coordinate
system is known as
A. Cartesian coordinate system
B. right handed coordinate system
C. left handed coordinate system

D. cylindrical coordinate system

Answer: A::C::D

D Watch Video Solution

152. The dimension of point mass is
A. 0
B. 1
C. 2

D. kg

(Watch Video Solution

153. If an object is moving in a straight line then the motion is known as Motion

A. linear

B. circular

C. curvilinear

D. rotational

Answer: A

D Watch Video Solution

154. An athlete running on a straight track is
an example for the whirling motion of a stone attached to a string is a.............. motion.

A. linear

B. circular

C. curvilinear

D. rotational

Answer: A

D Watch Video Solution

155. The whirling motion of a stone attached to a string is a motion.
A. linear

B. circular

C. curvilinear

D. rotational

Answer: A::C

D Watch Video Solution

156. Spinning of the Earth about its own axis is

known as motion.
A. linear
B. circular

C. curvilinear

D. rotational

Answer: A

- Watch Video Solution

157. If an object executes a to and fro motion about a fixed point, is an example for
A. rotational motion
B. vibratory motion

C. circular motion

D. curvilinear motion

Answer: A::B

- Watch Video Solution

158. Vibratory motion is also known as
A. circular motion
B. rotational motion
C. oscillatory motion

D. spinning

Answer: A::C

D Watch Video Solution

159. The motion of satellite around the Earth is
an example for
A. circular motion
B. rotational motion
C. elliptical motion

D. spinning

Answer: A::C

D Watch Video Solution

160. An object falling freely under gravity close to Earth is
A. one dimensional
B. circular motion
C. rotational motion

D. spinning motion

Answer: A::D

D Watch Video Solution

161. Motion of a coin on a carrom board is an example of
A. one dimensional motion
B. one dimensional motion
C. three dimensional motion

D. none

Answer: A::D

D Watch Video Solution

162. Spreading smoke of incense stick is an example of
A. one dimensional motion
B. two dimensional motion
C. three dimensional motion

D. none

Answer: A::D

D Watch Video Solution

163. A bird flying in the sky is an example of
A. one dimensional motion
B. two dimensional motion
C. three dimensional motion
D. none

D Watch Video Solution

164. Example for scalar is
A. distance
B. displacement
C. velocity

D. angular momentum

165. Which of the following is not a scalar ?
A. Volume
B. Angular momentum
C. Relative density
D. Time

Answer: A
166. Vector is having
A. only magnitude
B. only direction
C. both magnitude and direction
D. either magnitude or direction

Answer: A::B::C::D

167. "norm" of the vector represents

A. only magnitude
B. only direction
C. both magnitude and direction
D. either magnitude or direction

Answer: A::D
168. If two vectors are having equal magnitude and same direction is known as
A. equal vectors
B. collinear vectors
C. parallel vectors
D. on it vector

Answer: A::C
(Watch Video Solution
169. The angle between two collinear vectors
is/are,
A. 0°
B. 90°
C. 180°
D. 0° or 180°

Answer: A

D Watch Video Solution

170. The angle between parallel vectors is

A. 0°
B. 90°
C. 180°
D. 0° or 180°

D Watch Video Solution
171. The angle between anti-parallel vectors is
A. 0°
B. 90°
C. 180°
D. 0° or 180°

Answer: A

D Watch Video Solution
172. Unit vector is
A. having magnitude one but no direction
B. $A \widehat{A}$
C. $\frac{\widehat{A}}{A}$
D. $|A|$

Answer: A

- Watch Video Solution

173. A unit vector is used to specify
A. only magnitude
B. only direction

C. either magnitude (or) direction

D. absolute value

Answer: C::D

D Watch Video Solution

174. The angle between any two orthogonal unit vectors
A. 0
B. 90°
C. 180°
D. 360°

D Watch Video Solution

175. If \widehat{n} is a unit vector along the direction of \vec{A} then \widehat{n} is
A. $\vec{A} A$
B. $n \times A$
C. \vec{A} / A
D. $\vec{A}|A|$

Answer: A::C

D Watch Video Solution

176. The magnitude of a vector cannot be
A. positive
B. negative
C. zero
D. 90°

Answer: A

- Watch Video Solution

177. Which of the following is true?
A. $P>Q$
B. $Q>P$
C. $P=Q$
D. $R>P, Q$
178. A force of $3 N$ and $4 N$ are acting perpendicular to an object, the resultant force is
A. 9 N
B. 16 N
C. 5 N
D. 7 N
179. Torque is a

A. scalar

B. vector
C. either scalar (or) vector
D. none

Answer: C

- Watch Video Solution

180. The resultant of $\vec{A}+\vec{B}$ acts along x -axis.

If $A=2 \hat{i}-3 \hat{j}+2 \hat{k}$ then B is
A. $-2 \hat{i}+\hat{j}+\hat{k}$
B. $3 \hat{j}-2 \hat{k}$
C. $-2 \hat{i}-3 \hat{j}$
D. $-2 \hat{i}-2 \hat{k}$

Answer: A::B::C

181.
 The
 angle
 between

$(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ can be
A. only 0°
B. only 90°
C. between 0° and 90°
D. between 0° and 180°

Answer: A::B::D

D Watch Video Solution
182. If a vector $\vec{A}=3 \hat{i}+2 \hat{j}$ then what is 4 A ?
A. $12 \hat{i}+8 \hat{j}$
B. $0.75 \hat{i}+0.5 \hat{j}$
C. $3 \hat{i}+2 \hat{j}$
D. $7 \hat{i}+6 \hat{j}$

Answer: A::B
(Watch Video Solution
183. If $\vec{P}=m \vec{V}$ then the direction of \vec{P} along
A. m
B. v
C. both (a) and (b)
D. neither m nor v

- Watch Video Solution

184. The scalar product $\vec{A} \cdot \vec{B}$ is equal to

A. $\vec{B}+\vec{A}$
B. $A B \sin \theta$
C. $A B \cos \theta$
D. $\vec{B}+\vec{A}$

Answer: A::B::C

D Watch Video Solution

185. The scalar product $\vec{A} \cdot \vec{B}$ is equal to

A. $\vec{B}+\vec{A}$
B. $\vec{B} \cdot \vec{A}$
C. $A B \sin \theta$
D. $(\vec{A} \times \vec{B})$

Answer: A::B::C

186. The scalar product of two vectors will be

 maximum when θ is equal toA. 0°
B. 90°
C. 180°
D. 270°

187. The scalar product of two vectors will be

 maximum. When θ is equal toA. 0°
B. 45°
C. 180°
D. 60°

Answer: A

D Watch Video Solution
188. The vectors \vec{A} and \vec{B} to be mutually orthogonal when
A. $\vec{A}+\vec{B}=0$
B. $\vec{A}-\vec{B}=0$
C. $\vec{A} \cdot \vec{B}=0$
D. $\vec{A} \times \vec{B}=0$

Answer: A::B::C

D Watch Video Solution

189. The magnitude of the vector is

A. A^{2}
B. \sqrt{A}^{2}
C. \sqrt{A}
D. $\sqrt[3]{A}$

Answer: A::B

D Watch Video Solution
190. $\hat{i} . \hat{j}$ is
A. 0
B. 1
C. ∞
D. none

- Watch Video Solution

191. If \vec{A} and \vec{B} are two vectors which are acting along x,y respectively, then $\vec{A} \times \vec{B}$ lies
along
A. x
B. y
C. z
D. none
192. The direction of $\vec{A} \times \vec{B}$ is given by
A. right hand screw rule
B. right hand thumb rule
C. both (a) and (b)

D. neither (a) and (b)

Answer: A::B::D

D Watch Video Solution

193. $\vec{A} \times \vec{B}$ is equal to
A. $A B \cos \theta$

B. $A B \sin \theta$

C. $A B \tan \theta$
D. $A B \sec \theta$

Answer: A::B

D Watch Video Solution

194. $\vec{A} \times \vec{B}$ is equal to
A. $\vec{B} \times \vec{A}$
B. $\vec{A}+\vec{B}$
C. $-(\vec{B} \times \vec{A})$
D. $\vec{A}-\vec{B}$

Answer: A::B::C

- Watch Video Solution

195. The vector product of any two vectors
gives a
A. vector
B. scalar
C. tensor
D. collinear

Answer: C

D Watch Video Solution

196. $|\bar{A} \times \bar{B}|$ is equal to
A. $-|\bar{A} \times \bar{B}|$
B. $|\bar{B} \times \bar{A}|$
C. $-|\bar{B} \times \bar{A}|$
D. $\frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|}$

Answer: A::B

- Watch Video Solution

197. The vector product of two vectors will
have maximum magnitude when θ is equal to
A. 0°
B. 90°
C. 180°
D. 360°

- Watch Video Solution

198. The vector product of two non-zero vectors will be minimum when θ is equal to
A. 0°
B. 180°
C. both (a) and (b)

D. neither (a) nor

Answer: A::B::D

- Watch Video Solution

199. The product of a vector with itself is equal to
A. 0
B. 1
C. ∞
D. A^{2}

- Watch Video Solution

200. $\hat{i} \times \hat{i}$ is
A. 0
B. 1
C. 00
D. \hat{j}
201. $\hat{i} \times \hat{j}$ is
A. \hat{i}
B. \hat{j}
C. \hat{k}
D. \vec{z}

Answer: A
202. $\hat{j} \times \hat{i}$ is
A. $-\hat{i}$
B. $-\hat{j}$
C. $-\hat{k}$
D. \vec{z}

Answer: A

- Watch Video Solution

203. If two vectors \vec{A} and \vec{B} form adjacent sides of parallelogram, then the $|\vec{A} \times \vec{B}|$ will give- of parallelogram
A. length
B. area
C. volume
D. diagonal

Answer: A
204. If $\vec{P}-\vec{Q}$ then which of the following is
incorrect?

$$
\begin{aligned}
& \text { A. } \vec{P}=\vec{Q} \\
& \text { B. }|\vec{P}|=|\vec{Q}| \\
& \text { C. } P \widehat{Q}=Q \widehat{A} \\
& \text { D. } \widehat{P} \widehat{Q}=P Q
\end{aligned}
$$

Answer: A

- Watch Video Solution

205. The momentum of a particle is
$\vec{P}=\cos \theta \hat{i}+\sin \theta \hat{j}$. The angle between momentum and the force acting on a body is
A. 0°
B. 45°
C. 90°
D. 180°
206. vce A and \vec{B} are two vectors, if \vec{A} and \vec{B} are perpendicular to each other
A. $\bar{A} \times \bar{B}=0$
B. $\bar{A} \times \bar{B}=1$
C. $\bar{A} \cdot \bar{B}=0$
D. $\bar{A} \cdot \bar{B}=A B$

Answer: A::B

D Watch Video Solution
207. The angle between two vectors $-3 \hat{i}+6 \hat{k}$ and $2 \hat{i}+3 \hat{j}+\hat{k}$ is
A. 0°
B. 45°
C. 60°
D. 90°
208. The radius vector is $2 \hat{i}+\hat{j}+\hat{k}$ while linear momentum is $2 \hat{i}+3 \hat{j}+\hat{k}$. Then the angular momentum is
A. $-2 \hat{i}+4 \hat{k}$
B. $4 \hat{i}-8 \hat{k}$
C. $2 \hat{i}-4 \hat{j}+2 \hat{k}$
D. $4 \hat{i}-8 \hat{j}$

Answer: A::B::D

D Watch Video Solution
209. Which of the following cannot be a resultant of two vectors of magnitude 3 and $6 ?$
A. 3
B. 6
C. 10
D. 7

Answer: A

- Watch Video Solution

210. Twelve forces each of magnitude 10 N acting on a body at an angle of 30° with other forces then their resultant is
A. 10 N
B. 120 N
C. $\frac{10}{\sqrt{3}}$
D. zero
211. Two forces are in the ratio of $3: 4$. The maximum and minimum of their resultants are in the ratio is
A. $4: 3$
B. 3: 4
C. $7: 1$
D. 1:7

Answer: A
212. If $|\vec{P}+\vec{Q}|=|\vec{P}|+|\vec{Q}|$. The angle between the vectors \vec{P} and \vec{Q} is
A. 0°
B. 180°
C. 60°
D. 90°
213. If $|\vec{P}+\vec{Q}|=|\vec{P}|-|\vec{Q}|$, the the angle between the vectors \vec{P} and \vec{Q}
A. 0°
B. 90°
C. 180°
D. 360°

Answer: A
(Watch Video Solution
214. If $|\vec{P} \times \vec{Q}|=|\vec{P} \cdot \vec{Q}|$ then angle between Pand will be
A. 0°
B. 30°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

215. If $|\vec{P}+\vec{Q}|=|\vec{P}|-|\vec{Q}|$, the the angle between the vectors \vec{P} and \vec{Q}
A. 0°
B. 45°
C. 90°
D. 180°
216. If \vec{A} and \vec{B} are the sides of triangle,
then area of triangle

> A. $\frac{1}{2}|\vec{A} \cdot \vec{B}|$
> B. $\frac{1}{2}|\vec{A} \times \vec{B}|$
C. $A B \sin \theta$
D. $A B \cos \theta$

Answer: A::B::C

- Watch Video Solution

217. A particle moves in a circular path of
radius 2 cm . If a particle completes 3 rounds, then the distance and displacement of the particle are
A. 0 and 37.7
B. 37.7 and 0
C. 0 and 0
D. 37.7 and 37.7

Answer: A::C::D

218. If \vec{r}_{1} and \vec{r}_{2} are position vectors, then

 the displacement vector isA. $\vec{r}_{1} \times \vec{r}_{2}$
B. $\vec{r}_{1} \cdot \vec{r}_{2}$
C. $\vec{r}_{1}+\vec{r}_{2}$
D. $\vec{r}_{2}+\vec{r}_{1}$

Answer: A::B::C

D Watch Video Solution
219. The ratio of the displacement vector to
the corresponding time interval is
A. average speed
B. average velocity
C. instantaneous speed

D. instantaneous velocity

Answer: A::C
(D) Watch Video Solution
220. The ratio of total path length travelled by the particle in a time interval
A. average speed
B. average velocity
C. instantaneous speed
D. instantaneous velocity

Answer: A::D

D Watch Video Solution
221. The product of mass and velocity of a particle is
A. acceleration
B. force
C. torque
D. momentum
222. The area under the force, displacement curve is
A. potential energy
B. work done
C. impulse
D. work done

Answer: D

D Watch Video Solution
223. The area under the force, time graph is
A. momentum
B. force
C. workdone
D. impulse

D Watch Video Solution

224. The unit of momentum in Sl system is
A. $k g m s^{-1}$
B. $k g m s^{-2}$
C. $k g m^{2} s^{-1}$
D. $k g^{-1} m^{2} s^{-1}$

Answer: A

D Watch Video Solution

225. The slope of the position-time graph will give
A. displacement
B. velocity
C. acceleration
D. force

Answer: C

D Watch Video Solution
226. The area under velocity-time graph gives
A. positive
B. negative
C. either positive (or) negative
D. zero

Answer: A

D Watch Video Solution
227. The magnitude of distance is always
A. positive
B. negative

C. either positive

D. negative

D Watch Video Solution

228. If two objects A and B are moving along a
straight line in the same direction with the velocities V_{A} and V_{B} respectively, then the relative velocity is
A. $V_{A}+V_{B}$
B. $V_{A}-V_{B}$
C. $V_{A} V_{B}$
D. V_{A} / V_{B}

Answer: A::B

- Watch Video Solution

229. If two objects A and B are moving along a straight line in the opposite direction with the
velocities $\quad V_{A}$ and V_{B} respectively, then relative velocity is
A. $V_{A}+V_{B}$
B. $V_{A}-V_{B}$
C. $V_{A} V_{B}$
D. V_{A} / V_{B}

Answer: A::B

D Watch Video Solution

230. If two objects moving with a velocities of
V_{A} and V_{B} at an angle of θ between them,
the relative velocity is
A. $V_{A B}=\sqrt{V_{A}^{2}+V_{B}^{2}-2 V_{A} V_{B} \cos \theta}$
B. $V_{A B}=\sqrt{V_{A}^{2}+V_{B}^{2}+2 V_{A} V_{B} \cos \theta}$
C. $V_{A B}=V_{A}^{2}+V_{B}^{2}$
D. $V_{A B}=V_{A} V_{B} \cos \theta$

Answer: A::B::C

D Watch Video Solution

231. A person moving horizontally with velocity
\bar{V}_{m}. The relative velocity of rain with respect to the person is
A. $V_{R}+V_{m}$
B. $\sqrt{V_{R}+V_{m}}$
C. $V_{R}-V_{m}$
D. $\sqrt{V_{R}^{2}+V_{m}^{2}}$

Answer: B

D Watch Video Solution

232. A person moving horizontally with
velocity \bar{V}_{m}. Rain falls vertically with velocity
\bar{V}_{R}. To save himself from the rain, he should hold an umbrella with vertical at an angle of

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{V_{R}}{V_{m}}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{V_{m}}{V_{R}}\right) \\
& \text { C. } \tan \theta=V_{m}+V_{R} \\
& \text { D. } \tan ^{-1}\left(V_{R}+V_{m} / V_{R}-V_{m}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

233. A car starting from rest, accelerates at a constant rate x for sometime after which it decelerates at a constant rate y to come to rest. If the total time elapsed is t, the maximum velocity attained by the car is given by

$$
\begin{aligned}
& \text { A. } \frac{x y}{x+y} t \\
& \text { B. } \frac{x y}{x-y} t \\
& \text { C. } \frac{x^{2} y^{2}}{x^{2}+y^{2}} t \\
& \text { D. } \frac{x^{2} y^{2}}{x^{2}-y^{2}} t
\end{aligned}
$$

- Watch Video Solution

234. A car covers half of its journey with a speed of $10 \mathrm{~ms}^{-1}$ and the other half by $20 m s^{-1}$. The average speed of car during the total journey is
A. $70 m s^{-1}$
B. $15 m s^{-1}$
C. $13.33 m s^{-1}$

D. $7.5 m s^{-1}$

Answer: A::C

D Watch Video Solution

235. A swimmer can swim in still water at of
$10 \mathrm{~ms}^{-1}$. While crossing a river his average
speed is $6 m s^{-1}$. If he crosses the river in the shortest possible time, what is the speed of flow of water?

$$
\text { A. } 16 m s^{-1}
$$

B. $4 m s^{-1}$
C. $60 m s^{-1}$
D. $8 m s^{-1}$

Answer: A

D Watch Video Solution

236. A 100 m long train is travelling from

North to South at a speed of $30 m s^{-1}$. A bird is flying from South to North at a speed of
$10 \mathrm{~ms}^{-1}$. How long will the bird take to cross
the train?
A. 3s
B. 2.5 s
C. 10s
D. 5 s

Answer: B
(Watch Video Solution
237. The first derivative of position vector with
respect to time is
A. velocity
B. acceleration
C. force
D. displacement

Answer: C
(D) Watch Video Solution
238. The second derivative of position vector with respect to time is
A. velocity
B. acceleration
C. force
D. displacement

Answer: A::C

D Watch Video Solution
239. The slope of the speed-time graph gives
A. velocity
B. acceleration
C. force
D. displacement

Answer: C
(Watch Video Solution
240. The slope of velocity-time graph gives
A. velocity
B. acceleration
C. force
D. displacement

Answer: A::C

D Watch Video Solution
241. The position vector of a particle is
$\vec{r}=4 t^{2} \hat{i}+2 t \hat{j}+3 t \hat{k}$. The acceleration of a
particle is having only
A. X-component
B. Y-component
C. Z-component
D. $X-Y$ component

Answer: C

D Watch Video Solution
242. The position vector of a particle is $\vec{r}=4 t^{2} \hat{i}+2 t \hat{j}+3 \hat{k}$. The speed of the particle $t=5 s$ is
A. $42 m s^{-1}$
B. 3 s
C. $3 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: A::B::D

D Watch Video Solution
243. An object is moving in a straight line with uniform acceleration a, the velocity-time relation is
A. $u=v+a t$
B. $v=u+a t$
C. $v^{2}=u^{2}+a^{2} t^{2}$
D. $v^{2}-u^{2}=a t$

Answer: A

D Watch Video Solution
244. An object is moving in a straight line with
uniform acceleration, the displacement-time relation is
A. $S=u t^{2}+\frac{1}{2} a t^{2}$
B. $S=u t-\frac{1}{2} a t^{2}$
C. $S=u t+\frac{1}{2} a t^{2}$
D. $S=u t=a t^{2}$

Answer: A: B

- Watch Video Solution

245. An object is moving in a straight line with uniform acceleration, the velocitydisplacement relation is
A. $V=u+2 a s$
B. $S=u t+\frac{1}{2} a t^{2}$
C. $V^{2}=u^{2}-2 a s$
D. $V^{2}=u^{2}+2 a s$

Answer: A::B

D Watch Video Solution

246. For free falling body, its initial velocity is

A. 0
B. 1
C. ∞
D. none

- Watch Video Solution

247. An object falls from a height h ($h \ll R$).the speed of the object when it reaches the ground is

$$
\text { A. } \frac{1}{2} \mathrm{gt}^{2}
$$

B. $\sqrt{\mathrm{gt}}$
C. gh
D. $\sqrt{2 g h}$

Answer: B

D Watch Video Solution
248. An object falls from a height h ($h \ll R$).the speed of the object when it reaches the ground is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \mathrm{gt}^{2} \\
& \text { B. } \sqrt{2 g h} \\
& \text { C. } \sqrt{\frac{2 h}{g}} \\
& \text { D. } \sqrt{\frac{2 g}{h}}
\end{aligned}
$$

Answer: B
249. In the absence of air resistance, horizontal velocity of the projectile is
A. always negative
B. equal to'g'
C. directly proportional to g
D. a constant

Answer: A::C
(D) Watch Video Solution
250. In the horizontal projection, the range of the projectile is

Answer: B

- Watch Video Solution

251. In oblique projection, maximum height attained by the projectile is

$$
\begin{aligned}
& \text { A. } \frac{t}{u \cos \theta} \\
& \text { B. } \frac{u \sin \theta}{2 g} \\
& \text { C. } \frac{2 g}{u \sin \theta} \\
& \text { D. } \frac{u^{2} \sin ^{2} \theta}{2 g}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

252. In oblique projection time of flight of a projectile is
A. $\frac{u^{2} \sin ^{2} \theta}{2 g}$
B. $\frac{u \sin \theta}{g}$
C. $\frac{u^{2} \sin 2 \theta}{g}$
D. $\frac{u^{2}}{g}$

Answer: A

D Watch Video Solution
253. In the horizontal projection, the range of
the projectile is
A. $\frac{u^{2} \sin ^{2} \theta}{2 g}$
B. $\frac{u \sin \theta}{g}$
C. $\frac{u^{2} \sin 2 \theta}{g}$
D. $\frac{u^{2}}{g}$

Answer: A::B
(Watch Video Solution
254. In oblique projection, maximum height attained by the projectile is

$$
\begin{aligned}
& \text { A. } \frac{u^{2} \sin ^{2} \theta}{2 g} \\
& \text { B. } \frac{u \sin \theta}{g} \\
& \text { C. } \frac{u^{2} \sin 2 \theta}{2 g} \\
& \text { D. } \frac{u^{2}}{g}
\end{aligned}
$$

Answer: B

- Watch Video Solution

255. One radian is equal to
A. $\frac{\pi}{180}$ degree
B. 60°
C. 57.295°
D. 53.925°

Answer: B

256. The relation between linear and angular

velocity is

A. $\omega=v r$
B. $\omega=\frac{v}{r}$
C. $\omega=\frac{r}{v}$
D. $v=\frac{r}{\omega}$

Answer: A
(D) View Text Solution
257. Centripetal acceleration is given by

> A. $\frac{v^{2}}{r}$
> B. $-\frac{v^{2}}{r}$
> C. $\frac{r}{v^{2}}$
> D. $-\frac{r}{v^{2}}$

Answer: B
(D) Watch Video Solution
258. In uniform circular motion
A. Speed changes but velocity constant
B. Velocity changes but speed constant
C. both speed and velocity are constant
D. both speed and velocity are variable

Answer: A::B::C::D

D Watch Video Solution

259. In non-uniform circular motion, the resultant acceleration is given by
A. $a_{R}=\sqrt{a_{t}^{2}-\left(\frac{V^{2}}{r}\right)^{2}}$
B. $a_{R}=\sqrt{a_{t}^{2}+\left(\frac{V^{2}}{r}\right)^{2}}$
C. $a_{R}=\sqrt{a_{t}^{2}-\left(\frac{r}{V^{2}}\right)^{2}}$
D. $a_{R}=\sqrt{a_{t}^{2}+\left(\frac{r}{V^{2}}\right)^{2}}$

Answer: A::B

D Watch Video Solution

260. In non-uniform circular motion, the resultant acceleration makes an angle with the
radius vector is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{r a_{t}}{v^{2}}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{a_{t}}{\left(\frac{r}{v^{2}}\right)}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{r v^{2}}{a t}\right)
\end{aligned}
$$

D. $a_{R}=\sqrt{a_{t}^{2}+\left(\frac{r}{V^{2}}\right)^{2}}$

Answer: A::B

- Watch Video Solution

261. A compartment of an uniformly moving train is suddenly detached from the train and stops after covering some distance. The distance covered by the compartment and distance covered by the train in the given time
A. both will be equal
B. second will be half of first
C. first will be half of second
D. none
262. object is dropped from rest. Its v-t graph is
A.
B.
C.
D.

Answer: B
263. When a ball hits the ground as free fall and rebounces but less than its original height? Which is represented by
A.
B.
C.
D.

264. Which of the following graph represents

the equation $y=m x-C$?
A.
B.
C.
D.

Answer: B
265. Which of the following graph represents
the equation $v-m x+C$?
A.
B.
C.
D.

Answer: D

- View Text Solution

266. Which of the following graph represents the equation $\mathrm{y}=\mathrm{mx}$?
A.
B.
C.
D.

Answer: A

- View Text Solution

267. Which of the following graph represents
the equation $\mathrm{y}-\mathrm{mx}+\mathrm{C}$?
A.
B.
c.
D.

Answer: C
268. Which of the following graph represents
the equation $y-k x^{2}$?
A.
B.
C.
D.

Answer: A

D View Text Solution
269. $X=-k y^{2}$ is represented by
A.
B.
C.
D.

Answer: C

D View Text Solution

270. $X=k y^{2}$ is represented by

A.

B.
C.
D.

Answer: A

271. $y=-k x^{2}$ is represented by

A.
B.
C.
D.

Answer: D

D View Text Solution

272. $X \propto \frac{1}{y}$ (or) $X Y=$ constant is represented by
A.
B.
C.
D.

Answer: B

D View Text Solution
273. $y=-e^{-k x}$ is represented by
A.
B.
C.
D.

Answer: B

D View Text Solution

274. $Y=1-e^{-k x}$ is represented by
A.
B.
C.
D.

Answer: C

D View Text Solution

275. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is represented by
A.
B.

R
c.
D.

Answer: D

D View Text Solution

276. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is a function. Its maximal (or)
minimal can be obtained by
A. $y=0$
B. $f(x)=0$
C. $\frac{d y}{d x}=0$
D. $\frac{d^{2} y}{d x^{2}}=0$

Answer: D

D Watch Video Solution

277. A particle at rest starts moving in a horizontal straight line with uniform acceleration The ratio of the distance covered during the fourth and the third second is
A. $\frac{4}{3}$
B. $\frac{26}{9}$
C. $\frac{7}{5}$
D. 2

- Watch Video Solution

278. The distance travelled by a body, falling
freely from rest in $t=1 s, t=2 s$ and $t=3 s$ are in the ratio of
A. $1: 2: 3$
B. 1:3:5
C. 1:4:9
D. $9: 4: 1$

Answer: A::D

D Watch Video Solution
279. The displacement of the particle along a straight line at time t is given by
$X=a+b t+c t^{2}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.
The acceleration of the particle is
A. a
B. b
C. c
D. 2c

Answer: B::C
(Watch Video Solution

280. Two bullets are fired at an angle of θ and (

$90-\theta$) to the horizontal with same speed. The ratio of their times of flight is
A. $1: 1$
B. $1: \tan \theta$
C. $\tan \theta: 1$
D. $\tan ^{2} \theta: 1$

Answer: A

D Watch Video Solution
281. A particle moves along a circular path under the action of a force. The work done by the force is
A. positive and non-zero
B. zero
C. egative and non-zero
D. none
282. For a particle, revolving in a circle with
speed, the acceleration of the particle is (a) along the tangent
A. along the tangent
B. along the radius
C. along its circumference
D. zero

Answer: A::C

283. A gun fires two bullets with same velocity
at 60° and 30° with horizontal. The bullets
strike at the same horizontal distance. The ratio of maximum height for the two bullets is in the ratio of
A. $1: 2$
B. $3: 1$
C. 2:1
D. 1:3
284. A ball is thrown vertically upward at a speed of $10 \mathrm{~m} / \mathrm{s}$. When it has reached one half of its maximum height. How high does the ball rise? ($\left.\mathrm{g}=10 \mathrm{~ms}^{\wedge}(-2)^{\wedge}\right)$
A. 5 m
B. 7 m
C. 10 m
D. 12 m

Answer: A

D Watch Video Solution

285. A car moves from X to Y with a uniform
speed V_{u} and returns to Y with a uniform
speed V_{d} The average speed for this round trip is
A. $\sqrt{v_{u} v_{d}}$
B. $\frac{v_{u} v_{d}}{v_{u}+v_{d}}$
C. $\frac{v_{u}+v_{d}}{2}$
D. $\frac{2 v_{u} v_{d}}{v_{d}+v_{u}}$

Answer: B::D

D Watch Video Solution

286. Two projectiles of same mass and with
same velocity are thrown at angle of 60°
and 30° with the horizontal then which of the
following will remain same?
A. time of flight
B. range of projectile
C. maximum height reached
D. all the above

Answer: A::C

D Watch Video Solution

287. An object of mass 3 kg is at rest. Now a force of $\vec{F}=6 t^{2} \hat{i}+4 t \hat{j}$ is applied on the object, then the velocity of object at $t=3$ second is
A. $18 \hat{i}+3 \hat{j}$
B. $18 \hat{i}+6 \hat{j}$
C. $3 \hat{i}+18 \hat{j}$
D. $18 \hat{i}+4 \hat{j}$

Answer: A

D Watch Video Solution
288. During a projectile motion if the maximum height equals the horizontal
range,then the angle of projection with the horizontal is:
A. 32°
B. 48°
C. 76°
D. 84°
289. A bullet is dropped from some height, when another bullet is fired horizontally from
the same height. They will hit the ground
A. depends upon mass of bullet
B. depends upon the observer
C. one after another
D. simultaneously

Answer: A

- Watch Video Solution

290. From this velocity-time graph, which of the following is correct?
A. Constant acceleration
B. Variable acceleration

C. Constant velocity

D. Variable velocity

Answer: A::B::C

D View Text Solution

291. When a projectile is at its maximum
height, the direction of its velocity and acceleration are
A. parallel to each other
B. perpendicular to each other
C. anti-parallel to each other
D. depends on its speed

Answer: A::C::D

D Watch Video Solution

292. At the highest point of oblique projection, which of the following is correct?
A. velocity of the projectile is zero
B. acceleration of the projectile is zero
C. acceleration of the projectile is vertically
downwards
D. velocity of the projectile is vertically downwards

Answer: A::B::C::D

D Watch Video Solution

293. The range of the projectile depends
A. The angle of projection depends
B. Velocity of projection
C. g
D. all the above

Answer: A::B::C::D

D Watch Video Solution

294. A constant force is acting on a particle and also acting perpendicular to the velocity
of the particle. The particle describes the motion in a plane. Then
A. angular displacement is zero
B. its velocity is zero
C. its velocity is constant
D. it moves in a circular path

Answer: A::C

D Watch Video Solution

295. If a body moving in a circular path with
uniform speed, then
A. the acceleration is directed towards its
centre
B. velocity and acceleration are
perpendicular to each other
C. speed of the body is constant but its
velocity is varying
D. all the above

Answer: A::B::C::D

- Watch Video Solution

296. A body is projected vertically upward with
the velocity $v=3 \hat{i}+4 \hat{j} m s^{-1}$. The maximum
height attained by the body is ($g=10 m s^{-2}$).
A. 7 m
B. 1.25 m
C. 8 m
D. 0.08 m

Answer: A::B

D Watch Video Solution

ADDITIONAL QUESTIONS SOLVED (SHORT ANSWER QUESTIONS - 1 (2 MARKS))

1. What are positive and negative acceleration in straight line motion?
2. Can a body have zero velocity and still be accelerating ?

D Watch Video Solution

3. The displacement of a body is proportional
to $t 3$, where t is What is tinc nature of acceleration -time graph of the body?

D Watch Video Solution

4. Suggest a suitable physical situation for each of the following graphs (Fig.)

D Watch Video Solution

5. An object is in uniform motion along a straight line, what will be position time graph
for the motion of object, if
(i) $x_{0}=$ positive, $\mathrm{v}=$ negative is constant.
(i) x_{0} positive, $\mathrm{v}=$ negative $|\vec{v}|$ is constant.
(ii) both x_{0} and vare negatively is constant.
(iii) $x_{0}=$ negative, $\mathrm{v}=$ positive $|\vec{v}|$ is constant.
(iv) both x_{0} and v are positive $|\vec{v}|$ is constant, where x_{0} is position at $\mathrm{t}=0$.

D View Text Solution
6. Calculate the acceleration of the bicycle of mass 25 kg as

- Watch Video Solution

7. What will be the effect on horizontal range of a projectile when its initial velocity is doubled keeping angle of projection same?

D Watch Video Solution

8. The greatest height to which a man can throw a stone is h . What will be the greatest distance upto which he can throw the stone?

Watch Video Solution

9. A person sitting in a train moving at constant velocity throws a ball vertically upwards. How will the ball appear to move to an observer?
(i) Sitting inside the train
(ii) Standing outside the train

D Watch Video Solution

10. A gunman always keep his gun slightly
tilted above the line of sight while shooting.

Why?

D Watch Video Solution
11. What are positive and negative acceleration
in straight line motion?

D Watch Video Solution
12. Can a body have zero velocity and still be accelerating ?

D Watch Video Solution
13. The displacement of a body is proportional to t 3 , where t is What is tinc nature of acceleration -time graph of the body?

- Watch Video Solution

14. Suggest a suitable physical situation for each of the following graphs (Fig.)

(a)

(b)

(c)
15. An object is in uniform motion along a straight line, what will be position time graph for the motion of object, if
(i) $x_{0}=$ positive, $\mathrm{v}=$ negative is constant.
(i) x_{0} positive, $\mathrm{v}=$ negative $|\vec{v}|$ is constant.
(ii) both x_{0} and vare negatively is constant.
(iii) $x_{0}=$ negative, $\mathrm{v}=$ positive $|\vec{v}|$ is constant.
(iv) both x_{0} and v are positive $|\vec{v}|$ is constant, where x_{0} is position at $\mathrm{t}=0$.
16. Acyclist starts from centre of a circular park of radius 1 km and moves along the path

OPRQO as shown. If he maintains constant speed of $10 \mathrm{~ms}^{-1}$. What is his acceleration at point R in magnitude \& direction?

- View Text Solution

17. What will be the effect on horizontal range of a projectile when its initial velocity is doubled keeping angle of projection same?

D Watch Video Solution

18. The greatest height to which a man can
throw a stone is h . What will be the greatest distance upto which he can throw the stone?
19. A person sitting in a train moving at constant velocity throws a ball vertically upwards. How will the ball appear to move to an observer?
(i) Sitting inside the train
(ii) Standing outside the train

D Watch Video Solution

20. A gunman always keep his gun slightly
tilted above the line of sight while shooting.
Why?

(D) Watch Video Solution

ADDITIONAL QUESTIONS SOLVED (NUMERICAL QUESTIONS)

1. The V-t graphs of two objects make angle 30° and 60° with the time axis. Find the ratio of their accelerations.

- Watch Video Solution

2. When the angle between two vectors of equal magnitudes is $2 / 3$, prove that the magnitude of the resultant is equal to either.

- Watch Video Solution

3. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel to \vec{A}.
4. What is the vector sum of n coplanar forces, each of magnitude F, if each force makes an angle $\frac{2 \pi}{n}$ with the preceding force?

- Watch Video Solution

5. A van is moving along x-axis. As shown in
the figure, it moves from O to P in 18 s and returns from P to Q in 6 s. What are the average velocity and average speed of the van in going from.

From O to P and back to Q ?

- Watch Video Solution

6. On a 60 km straight road, a bus travels the first 30 km with a uniform speed of $30 \mathrm{kmh}^{-1}$. How fast must the bus travel the next 30 km so as to have average speed of $40 \mathrm{kmh}^{-1}$ for the entire tirp?
7. The displacement r of a particle varies with
time as $x=4 t^{2}-15 t+25$ Find the position, velocity and acceleration of the particle at $\mathrm{t}=$ 0

- Watch Video Solution

8. A driver takes 0.20 second to apply the brakes (reaction time). If he is driving car at a speed of $54 \mathrm{kmh}^{-1}$ and the brakes cause a deceleration of $6.0 \mathrm{~ms}^{-1}$? Find the distance
travelled by car after he sees the need to put the brakes.

D Watch Video Solution

9. From the top of a tower 100 m in height a ball is dropped and at the same time another ball is projected vertically upwards from the ground with a velocity of $25 \mathrm{~m} / \mathrm{s}$. Find when and where the two balls will meet? $(g=9.8 \mathrm{~m} / \mathrm{s})$

- Watch Video Solution

10. A ball is thrown vertically upwards with the speed of $19.6 \mathrm{~ms}^{-1}$ from the top of building and reaches the earth in 6 s . Find the height of the building .

- Watch Video Solution

11. Two town A and B are connected by a regular bus service with a bus leaving in either direction every T min. A man cycling with a speed of $20 \mathrm{kmh}^{-1}$ in the direction A to B notices that a bus goes past him every 18 min
in the direction of his motion, and every 6 min
in the opposite direction.

What is the period T of the bus service and with what speed do the buses ply of the road?

D Watch Video Solution

12. A motorheal is racing towards north at $25 \mathrm{kmh}^{-1}$ and the water current in that region is $10 \mathrm{kmh}^{-1}$ in the direction of 60 cast of south. Find the resultant velocity of the boat.
13. An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at a ground observation point by the aircraft position 10 second apart is 30°, what is the speed of the aircraft?

- Watch Video Solution

14. A boat is moving with a velocity $(3 \hat{i}-4 \hat{j})$ with respect to ground. The water in river is
flowing with a velocity $(-3 \hat{i}-4 \hat{j})$ with respect to ground. What is the relative velocity of boat with respect to river?

- Watch Video Solution

15. A hiker stands on the edge of a cliff 490 m
above the ground and throws a stone horizontally with an initial speed of $15 \mathrm{~ms}^{-1}$

Neglecting air resistance, find the time taken
by the stone to reach the ground and the
speed with which it hits the ground?
$\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

16. A bullet fired at an angle of 30° with the horizontal hits the ground 3 km away. By adjusting the angle of projection, can one hope to hit the target 5 km away? Assume that the muzzle speed to be fixed and neglect air resistance.
17. A stone tied to the end of a string 80 cm
long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 seconds, what is the magnitude and direction of acceleration of the stone?

- Watch Video Solution

18. A cyclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road
of radius 80 m , he applies brakes and reduces
his speed at the constant rate $0.5 m s^{-2}$.

What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?

D Watch Video Solution

19. If the magnitude of two vectors are 3 and 4 and their scalar product is 6, find angle between them and also find $|\vec{A} \times \vec{B}|$.
20. Find the value of λ so that the vector $\vec{A}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{B}=4 \hat{i}-2 \hat{j}+2 \hat{k}$ perpendicular to each other.

D Watch Video Solution

21. The velocity time graph of a particle is given by
(i) Calculate distance and displacement of particle from given v-graph.
(ii) Specify the time for which particle $v(\mathrm{~m} / \mathrm{s})$
undergone acceleration, retardation and moves with constant velocity.
(iii) Calculate acceleration, retardation from given v-t graph.
(iv) Draw acceleration-time graph of given v-t graph.

D View Text Solution
22. Molar volqme is the volume occupied by 1 mol of any (ideal) gas at standard temperature
and pressure (STP : 1 atmospheric pressure, $0^{\circ} \mathrm{C}$). Show that it is 22.4 litres.

D Watch Video Solution

23. if C and R denotes capacitance and resistance what is the dimension of CxR
A. [MOLOTOAO]
B. MLOTA-2
C. MLOTA2
D. MLTA-2

D Watch Video Solution

24. Three vessels of equal capacity have gases
at the same temperature and pressure. The
first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride
(polyatomic). Do the vessels contain equal number of respective molecules? Is the root mean square speed of molecules the same in
the three cases? If not, in which case is vms the largest?

D Watch Video Solution

25. An oxygen cylinder of volume 30 liters has
an initial gauge pressure of 15 atm and a temperature of $27^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to $17^{\circ} \mathrm{C}$. Estimate the mass of oxygen
taken out of the cylinder $(\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}-1 \mathrm{~K}-1$, molecular mass of $02=32 \mathrm{u}$).

D Watch Video Solution

26. A car is moving along X-axis. As shown in
figure it moves from 0 to P in 18 seconds and
return from P to Q in 6 seconds. What are the
average velocity and average speed of the car in going from
(I) O to P
(II) From O to P and back to Q

D View Text Solution
27. To keep a piece of paper horizontal, you should blow over, not under, it.

D Watch Video Solution

28. When we try to close a water tap with our
fingers, fast jets of water gush through the
openings between our fingers.

D Watch Video Solution

29. The size of a needle of a syringe controls
flow rate better than the thumb pressure exerted by a doctor while administering an injection.

- Watch Video Solution

30. A fluid flowing out of a small hole in a vessel results in a backward thurst on the vessel.

D Watch Video Solution

31. A ball thrown vertically upwards with a speed of $19.6 \mathrm{~ms}^{-1}$ from the top of a tower returns to the Earth in 6 s . Find the height of the tower. $\left(g=9.8 m / s^{2}\right)$
32. A vertical off-shore structure is built to withstand maximum stress of 109 Pa . Is the structure suitable for putting up on top of an oil well in the ocean? Take the depth of the ocean to be roughly 3 km , and ignore ocean currents.

D Watch Video Solution

33. A hydraulic automobile lift is designed to
lift cars with a maximum mass of 3000 kg . The
area of cross-section of the piston carrying the
load is 425 cm 2 . What maximum pressure would the smaller piston have to bear?

- Watch Video Solution

34. Can Bernoulli's equation be used to describe the flow of water through a rapid motion in a river? Explain
35. Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli's equation? Explain.

- Watch Video Solution

36. lycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0 cm . If the amount of glycerine collected per second at one end is $4.0 \times 10-3 \mathrm{~kg} \mathrm{~s}-1$, what is the pressure difference between the two ends of
the tube? Density of glycerine $=1.3 \times 103 \mathrm{~kg} \mathrm{~m}-$ 3 and viscosity of glycerine $=0.83 \mathrm{~N} \mathrm{~s} \mathrm{~m}-2$ to

D Watch Video Solution

37. a charge Q is divided into two parts of q and Q - q. If the coulomb repulsion between
them when they are separated is to be maximum, the ratio of Q / q should be
A. 2:1
B. $1 / 2$
C. 4:1
D. 1/4

Answer: A

D View Text Solution

38. Two similar spheres having $+Q$ and $-Q$
charges are kept at a certain distance. F force
acts between the two. If at the middle of two
spheres, another similar sphere having $+Q$
charge is kept, then it experiences a force in magnitude and direction as
A. zero having no direction.
B. 8 F towards +Q charge.
C. 8 F towards -Q charge.
D. 4 F towards +Q charge

Answer: C

D View Text Solution
39. n a test experiment on a model airplane in
a wind tunnel, the flow speeds on the upper
and lower surfaces of the wing are 70 m s -1
and $63 \mathrm{~m} \mathrm{~s}-1$ respectively. What is the lift on
the wing if its area is 2.5 m 2 ? Take the density of air to be $1.3 \mathrm{~kg} \mathrm{~m}-3$.

- Watch Video Solution

40. What is the pressure inside the drop of mercury of radius 3.00 mm at room
temperature ? Surface tension of mercury at that temperature $\left(20^{\circ} \mathrm{C}\right)$ is $4.65 \times 10-1 \mathrm{~N} \mathrm{~m} 1$.

The atmospheric pressure is $1.01 \times 105 \mathrm{~Pa}$. Also give the excess pressure inside the drop.

D Watch Video Solution

41. A U-shaped wire is dipped in a soap solution and removed. The thin soap film
formed between the wire and the light slider supports a weight of $1.5 \times 10-2 \mathrm{~N}$ (which includes the small weight of the silder). The
length of the silder is 30 cm . What is the surface tension of the film?

D Watch Video Solution

42. The velocity time graph of a particle is given by
(i) Calculate distance and displacement of particle from given v-graph.
(ii) Specify the time for which particle $v(\mathrm{~m} / \mathrm{s})$
undergone acceleration, retardation and moves with constant velocity.
(iii) Calculate acceleration, retardation from given v-t graph.
(iv) Draw acceleration-time graph of given v-t graph.

- View Text Solution

TEXTUAL QUESTIONS SOLVED (NUMERICAL

 QUESTIONS)1. The position vectors particle has length 1 m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?

- Watch Video Solution

2. A particle has its position moved from $\overrightarrow{r_{1}}=3 \hat{i}+4 \hat{j}$ to $\overrightarrow{r_{2}}=\hat{i}+2 \hat{j}$. Calculate the displacment vector $(\Delta \vec{r})$ and draw the
$\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\Delta \vec{r}$ vector in a two dimensional
Cartesian coordinate system.

- Watch Video Solution

3. Calculate the average velocity of the particle whose position vector changes from
$\overrightarrow{r_{1}}=5 \hat{i}+6 \hat{j}$ to $\overrightarrow{r_{2}}=2 \hat{i}+3 \hat{j}$ in a tine 5
second.
4. Convert the vector $\vec{r}=3 \hat{i}+2 \hat{j}$ into a unit vector.

D Watch Video Solution

5. What are the resultants of the vector product of two given vectors. Given by $\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{B}=5 \hat{i}+3 \hat{j}-4 \hat{k}$

D Watch Video Solution

6. An object at an angle such that the horizontal range is 4 time of the maximum height. What is the angle of projection of the object?

D Watch Video Solution

7. The following graphs represent velocity-
time graph. Identify what kind of motion a
particle undergoes in each graph

D Watch Video Solution

8. The following velocity-time graph represents
a particle moving in the positive x-direction .

Analyse its motion from 0 to 7 s . Calculate the

by the particle from 0 to 2 s

D Watch Video Solution

9. A particle is projected at an angle of θ with
respect to the horizontal direction. Match the
following for the above motion.
(a) $V_{x} \quad-\quad$ decrease and increases
(b) $V_{y} \quad-\quad$ remains constant
(c) Acceleration - varies
(d) Position vector - remains downward
A. v_{x} - decreases and increases
B. v_{y} - remains constant
C. Acceleration - varies
D. Position vector - remains downward
10. A water fountain on the ground sprinkles
water all around it. If the speed of the water coming out of the fountain is v . Calculate the total area around the fountain that gets wet.

D Watch Video Solution

11. Complete the table.

No.	Type of fruits	Common Name	Edible Part
1.	Nut	Anacardium
2.	Sunflower
3.	Aggregate

12. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is :
(a) 30° (b) 45°
(c) 150° (d) 120°
A. 30°
B. 45°
C. 150°
D. 120°

Answer: Given: Resultant of $\vec{A} \& \vec{B}$ is perpendicular to Ä and magnitude of resultant (C) $=\frac{1}{2} \vec{B}$ and $\alpha=90^{\circ}$

- Watch Video Solution

13. Compare the components for the following
vector equations
(a) $T \hat{j}-m g \hat{j}=m a \hat{j}$ (b) $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
$\odot \vec{T}-\vec{F}=\vec{A}-\vec{B}$ (d) $T \hat{j}+m g \hat{j}=m a \hat{j}$

- Watch Video Solution

14. Calculate the area of the triangle for which two of its sides are given by the vectors $\vec{A}=5 \hat{i}-3 \hat{j}, \vec{B}=4 \hat{i}+6 \hat{j}$.

- Watch Video Solution

15. If Earth completes one revolution in 24
hours, what is the angular displacement made
by Earth in one hour? Express your answer in both radian and degree.
16. An object is thrown with initial speed
$5 m s^{-1}$ with an angle of projection 30°. What
is the maximum height and range reached by the particle?

- Watch Video Solution

17. A foot - ball player hits tha ball with speed
$20 \mathrm{~ms}^{-1}$ with angle 30° with respect to horizontal direction as shown in the figure.

The goal post is at distance of 40 m from him.

Find out whether ball reaches the goal post

- Watch Video Solution

18. If an object is thrown horizontally with an initial speed $10 \mathrm{~ms}^{-1}$ from the top of a
building of height 100 m . What is the horizontal distance covered by the particle.

D Watch Video Solution

19. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$, the object starts at an angle $\theta=0$. What is the angular displacement of the particle after $4 s$?

- Watch Video Solution

20. Consider the x-axis as representing east, the y-axis as north and z-axis as vertically upwards. Give the vector representing each of the following points .

5 m north east and 2 m up,
A. 5 m north east and 2 m up
B. 4 m south east and 3 m up
C. 2 m north west and 4 m up
D.
21. The moon is orbiting the Earth approximately in 27 days, what is the angle transversed by the Moon per day?

D Watch Video Solution

22. An object of mass m has angular acceleration $\alpha=0.2 \mathrm{rads}^{-2}$. What is the angular displacement covered by the object
after 3 second ? (Assume that the object started with angle zero with angular velocity).

D Watch Video Solution

23. The position vector of the particle has length 1 m and makes 30° with the x -axis.

What are the lengths of the x and y components of the position vector?

- View Text Solution

24. A particle has its position moved from $\vec{r}_{1}=3 \hat{i}+4 \hat{j}$ to $\vec{r}_{2}=\hat{i}+2 \hat{j}$. Calculate the displacement vector $(\Delta \vec{r})$ and draw the $\vec{r}_{1} \cdot \vec{r}_{2}$ and $\Delta \vec{r} \quad$ vector in a two dimensional Cartesian coordinate system.

D View Text Solution

25. Calculate the average velocity of the particle whose position vector changes from
$\overrightarrow{r_{1}}=5 \hat{i}+6 \hat{j}$ to $\overrightarrow{r_{2}}=2 \hat{i}+3 \hat{j}$ in a tine 5
second.

- Watch Video Solution

26. Convert the vector $\vec{r}=3 \hat{i}+2 \hat{j}$ into a unit vector.

- Watch Video Solution

27. What are the resultants of the vector product of two given vectors. Given by
$\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{B}=5 \hat{i}+3 \hat{j}-4 \hat{k}$

- Watch Video Solution

28. An object at an angle such that the horizontal range is 4 time of the maximum height. What is the angle of projection of the object?

- Watch Video Solution

29. The following graphs represent velocity time graph. Identify what kind of motion a particle undergoes in each graph

D View Text Solution

30. The following velocity-time graph
represents a particle moving in the positive x direction. Analyse its motion from 0 to 7 s .

Calculate the displacement covered and
distance travelled by the particle from 0 to 2 s .

D View Text Solution

31. A particle is projected at an angle of θ with respect to the horizontal direction. Match the following for the above motion.
(a) $V_{x} \quad-\quad$ decrease and increases
(b) $V_{y} \quad-\quad$ remains constant
(c) Acceleration - varies
(d) Position vector - remains downward
A. v_{x}-decreases and increases
B. v_{y}-remains constant
C. Acceleration - varies
D. Position vector - remains downward

D Watch Video Solution

32. A water fountain on the ground sprinkles
water all around it. If the speed of the water
coming out of the fountain is v . Calculate the total area around the fountain that gets wet.

D Watch Video Solution

33. The following table gives the range of a particle when thrown on different planets. All
the particles are thrown at the same angle with the horizontal and with the same initial speed. Arrange the planets in ascending order according to their acceleration due to gravity,
(g value).

D View Text Solution

34. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is :
(a) 30° (b) 45°
(c) 150° (d) 120°
A. 30°
B. 45°
C. 150°
D. 120°

Answer: Given: Resultant of $\vec{A} \& \vec{B}$ is perpendicular to Ä and magnitude of resultant
$(C)=\frac{1}{2} \vec{B}$ and $\alpha=90^{\circ}$

D Watch Video Solution
35. Compare the components for the following
vector equations

(a) $T \hat{j}-m g \hat{j}=m a \hat{j}$ (b) $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
 © $\vec{T}-\vec{F}=\vec{A}-\vec{B}$ (d) $T \hat{j}+m g \hat{j}=m a \hat{j}$

D Watch Video Solution

36. Calculate the area of the triangle for which two of its sides are given by the vectors $\vec{A}=5 \hat{i}-3 \hat{j}, \vec{B}=4 \hat{i}+6 \hat{j}$.

D Watch Video Solution

37. If Earth completes one revolution in 24
hours, what is the angular displacement made
by Earth in one hour? Express your answer in both radian and degree.

D Watch Video Solution

38. An object is thrown with initial speed
$5 m s^{-1}$ with an angle of projection 30°. What is the maximum height and range reached by the particle?
39. A foot-ball player hits the ball with speed $20 \mathrm{~ms}^{-1}$ with angle 30° with respect to horizontal direction as shown in the figure.

The goal post is at a distance of 40 m from him. Find out whether ball reaches the goal post?

D View Text Solution
40. If an object is thrown horizontally with an initial speed $10 \mathrm{~ms}^{-1}$ from the top of a building of height 100 m . What is the horizontal distance covered by the particle.

- Watch Video Solution

41. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$, the object starts at an
angle $\theta=0$. What is the angular displacement of the particle after 4 s ?

D Watch Video Solution

42. Consider the x-axis as representing east,
the y - axis as north and z - axis as vertically
upwards. Give the vector representing each of
the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up
A. 5 m north east and 2 m up
B. 4 m south east and 3 m up
C. 2 m north west and 4 m up
D.
43. The moon is orbiting the Earth approximately in 27 days, what is the angle transversed by the Moon per day?

D Watch Video Solution

44. An object of mass m has angular acceleration $\alpha=0.2 \mathrm{rads}^{-2}$. What is the angular displacement covered by the object after 3 second ? (Assume that the object started with angle zero with angular velocity).

ADDITIONAL QUESTIONS SOLVED (SHORT ANSWER QUESTIONS (1 MARK))

1. What is meant by Frame of reference?
(Watch Video Solution
2. What are the types of motion?

- Watch Video Solution

3. Define linear motion. Give example.

D Watch Video Solution

4. What is circular motion? Give example.

D Watch Video Solution
5. Define rotational motion. Give example.
6. Define vibratory motion. Give example

D Watch Video Solution

7. Define one dimensional motion . Give

 examples.(Watch Video Solution
8. Define two dimensional motion . Give examples.

- Watch Video Solution

9. Define three dimensional motion . Give examples.

D Watch Video Solution

10. Write about the properties of components of vectors.
11. Give an example for scalar product of two vectors.

D Watch Video Solution

12. Write a short note on vector product between two vectors.

- Watch Video Solution

13. What is position vector?
14. Write a note on momentum.
(Watch Video Solution
15. "Displacement vector is basically a position vector". Comment on it.
(Watch Video Solution
16. Will two dimensional motion with an acceleration will be in only one dimension?

D Watch Video Solution

17. A foot ball is kicked by a player with certain angle to the horizontal. Is there any point at which velocity is perpendicular to its acceleration?
18. Give any two examples for parallelogram law of vectors.

- Watch Video Solution

19. Why does rubber ball bounce greater heights on hills than
20. Is it possible for body to have variable velocity but constant speed? Give example.

D Watch Video Solution
21. What is relative velocity?

D Watch Video Solution

22. What is average acceleration?

23. Define Instantaneous acceleration.

D Watch Video Solution

24. Write on acceleration in terms of its component. (Or) Show that the acceleration is
the second derivative of position vector with respect to time.
25. What are the examples of projectile

motion?

D Watch Video Solution

26. Define projectile motion .
(Watch Video Solution
27. What is time of flight?
28. Under what condition is the average velocity equal the instantaneous velocity?

D Watch Video Solution

29. Draw position time graph of two objects, A
\& B moving along a straight line, when their relative velocity is zero.
30. suggest a situation in which an obiect is accelerated and have constant speed.

- Watch Video Solution

31. Two balls of different masses are thrown
vertically upward with same initial velocity

Maximum heights attained by them are h_{1} and
h_{2} respectively, what is h_{1} / h_{2} ?

D Watch Video Solution
32. A car moving with velocity of $50 \mathrm{kmh}^{-1}$ on a straight road is ahead of a jeep moving with Velocity $75 \mathrm{kmh}^{-1}$. How would the relative velocity be altered if jeep is ahead of car?

- Watch Video Solution

33. Which of the two-linear velocity or the linear acceleration gives the direction of motion of a body?
34. Will the displacement of a particle change on changing the position of origin of the coordinate system?

- Watch Video Solution

35. If the instantaneous velocity of a particle is
zero, will its instantaneous acceleration be necessarily zero?
36. A projectile is fired with kinetic energy 1 kJ . If
the range is maximum, what is its kinetic energy, at the highest point ?

D Watch Video Solution

37. Write an example of zero vector.
(Watch Video Solution
38. State the essential condition for the addition of vectors.

- Watch Video Solution

39. When is the magnitude of $(A+B)$ equal to
the magnitude of $(A-B)$?

D Watch Video Solution
40. What is the maximum number of components into which a vector can be resolved ?

D Watch Video Solution

41. A body projected horizontally moves with
the same horizontal velocity although it moves under gravity. Why?
42. What is the angle between velocity and acceleration at the highest point of a projectile motion?

D Watch Video Solution

43. When does (i) height attained by a Projectile is maximum? and (ii) horizontal range is maximum?
44. What is the angle between velocity vector and acceleration vector in uniform circular motion?

D Watch Video Solution

45. A particle is in clockwise uniform circular motion the direction of its acceleration is radially inward. If sense of rotation or particle is anti-clockwise then what is the direction of its acceleration?
46. A train is moving on a straight track with acceleration a. A passenger drops a stone.

What is the acceleration of stone with respect to passenger?

- Watch Video Solution

47. What is the average value of acceleration vector in uniform circular motion over one cycle?
48. Does a vector quantity depends upon
frame of reference chosen?

D Watch Video Solution

49. What is the angular velocity of the hour
hand of a clock?

- Watch Video Solution

50. What furnishes the centripetal acceleration for the earth to go round the sun ?

- Watch Video Solution

51.

The angle between
$(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ can be

- Watch Video Solution

52. What is meant by Frame of reference?

(Watch Video Solution

53. What are the types of motion?

D Watch Video Solution
54. Define linear motion. Give example.

55. What is circular motion? Give example.

D Watch Video Solution

56. Define rotational motion. Give example.

D Watch Video Solution
57. Define vibratory motion. Give example
58. Define one dimensional motion . Give examples.

D Watch Video Solution
59. Define two dimensional motion . Give examples.

- Watch Video Solution

60. Define three dimensional motion . Give examples.

- Watch Video Solution

61. Write about the properties of components of vectors.
62. Give an example for scalar product of two vectors.

D Watch Video Solution
63. Write any five properties of vector product of two vectors.

D Watch Video Solution

64. What is position vector?

- Watch Video Solution

65. Write a note on momentum.

D Watch Video Solution
66. "Displacement vector is basically a position
vector". Comment on it.

D Watch Video Solution
67. Will two dimensional motion with an acceleration will be in only one dimension?

D Watch Video Solution

68. A foot ball is kicked by a player with certain angle to the horizontal. Is there any point at which velocity is perpendicular to its acceleration?
69. Give any two examples for parallelogram law of vectors.

- Watch Video Solution

70. Why does rubber ball bounce greater

heights on hills than

D Watch Video Solution

71. Is it possible for body to have variable velocity but constant speed? Give example.

- Watch Video Solution

72. What is relative velocity?

- Watch Video Solution

73. What is average acceleration?
74. Define Instantaneous acceleration.

D Watch Video Solution

75. Write on acceleration in terms of its component. (Or) Show that the acceleration is
the second derivative of position vector with respect to time.
76. What are the examples of projectile

motion?

D Watch Video Solution

77. Define projectile motion .

- Watch Video Solution

78. What is time of flight?
79. Under what condition is the average velocity equal the instantaneous velocity?

- Watch Video Solution

80. Draw position time graph of two objects, A
\& B moving along a straight line, when their relative velocity is zero.
81. suggest a situation in which an obiect is accelerated and have constant speed.

D Watch Video Solution

82. Two balls of different masses are thrown
vertically upward with same initial velocity

Maximum heights attained by them are h_{1} and
h_{2} respectively, what is h_{1} / h_{2} ?

D Watch Video Solution
83. A car moving with velocity of $50 \mathrm{kmh}^{-1}$ on
a straight road is ahead of a jeep moving with
Velocity $75 \mathrm{kmh}^{-1}$. How would the relative velocity be altered if jeep is ahead of car?

- Watch Video Solution

84. Which of the two-linear velocity or the
linear acceleration gives the direction of motion of a body?
85. Will the displacement of a particle change on changing the position of origin of the coordinate system?

D Watch Video Solution

86. If the instantaneous velocity of a particle is
zero, will its instantaneous acceleration be necessarily zero?
87. What is the cause of quantisation of electric charge?

D View Text Solution
88. What does $q 1+q 2=0$ signify?

D View Text Solution

89. Two insulated charged copper spheres A and B of identical size have charges $q A$ and $q B$
respectively. A third sphere C of the same size
but uncharged is brought in contact with the
first and then in contact with the second and finally removed from both. What are the new charges on A and B 1

D View Text Solution

90. When does a charged ring behave as a point charge?

D View Text Solution
91. What does the additive nature of electric charge mean?

- View Text Solution

92. What causes the charging of an object?

- View Text Solution

93. What is the angle between velocity and
acceleration at the highest point of a
projectile motion?

- Watch Video Solution

94. When does (i) height attained by a Projectile is maximum? and (ii) horizontal range is maximum?

D Watch Video Solution

95. What is the angle between velocity vector

motion?

D Watch Video Solution

96. A particle is in clockwise uniform circular motion the direction of its acceleration is radially inward. If sense of rotation or particle
is anti-clockwise then what is the direction of
its acceleration?

D Watch Video Solution
97. A train is moving on a straight track with acceleration a. A passenger drops a stone.

What is the acceleration of stone with respect to passenger?

D Watch Video Solution

98. What is the average value of acceleration
vector in uniform circular motion over one cycle?
99. Does a vector quantity depends upon
frame of reference chosen?

- Watch Video Solution

100. What is the angular velocity of the hour hand of a clock?

- Watch Video Solution

101. What furnishes the centripetal acceleration for the earth to go round the sun ?

D Watch Video Solution

102. The angle between
$(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ can be

- Watch Video Solution

ADDITIONAL
 QUESTIONS

 ANSWER QUESTIONS - 1 (3 MARKS))1. Is the acceleration of a particle in circular motion not always towards the centre?

Explain.

- Watch Video Solution

2. Draw (a) acceleration - time (b) velocity -
time (c) position - time graphs representing
motion of an object under free fall. Neglect air resistance.

- Watch Video Solution

3. Match the columns

1.	H. Thomson	(a)	Atomic model for Indrogen atom
2.	Rutherford	(b)	Theortical atom model
3.	Gelger and Minden	(c)	Nudew
4.	Neils Bohr	(d)	Scartering of alpha partides

(D) Watch Video Solution
4. For an object projected upward with a velocity v_{0} which comes back to the same point after some time, draw
(i) Acceleration-time graph
(ii) Position-time graph
(iii) Velocity-time graph

D Watch Video Solution

5. The acceleration of a particle in $m s^{-1}$ is given by $a=3 t^{2}+2 t+2$ where timer is in
second If the particle starts with a velocity $v=2 m s^{-1}$ at $\mathrm{t}=0$ then find the velocity at the end of 2 s .

D Watch Video Solution

6. At what angle do the two forces ($\mathrm{P}+\mathrm{Q}$) and
$(\mathrm{P}-\mathrm{Q})$ act so that the resultant is $\sqrt{3 P^{2}+Q^{2}}$?

D Watch Video Solution
7. A car moving along a straight highway with
a speed of 126 kilometre per hour is brought to a stop within a distance of 200 m . What is the retardation of the car (assumed uniform) and how long does it taken for the car to stop?

- Watch Video Solution

8. Is the acceleration of a particle in circular motion not always towards the centre?

Explain.

- Watch Video Solution

9. Estimate the mean free path and collision
frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature $17^{\circ} \mathrm{C}$. Take the radius of a nitrogen molecule to be roughly 1.0 A . Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of $\mathrm{N} 2=28.0 \mathrm{u}$).

Watch Video Solution

10. The velocity time graph for a particle is shown in figure. Draw acceleration time graph from it

D View Text Solution
11. For an object projected upward with a velocity v_{0} which comes back to the same point after some time, draw
(i) Acceleration-time graph
(ii) Position-time graph
(iii) Velocity-time graph

D View Text Solution

12. Three vessels of equal capacity have gases
at the same temperature and pressure. The first-vessel contains neon (monoatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride
(polyatomic). Do the vessels contain an equal number of respective molecules? Is the root mean square speed of molecules the same in the three cases? If not, in which case is urms the largest?

D Watch Video Solution

13. Two metallic spheres having same shape and size, but one of Cu and other of Al , are both placed in an identical electric field. In
which metallic sphere will more charge be induced?

D View Text Solution
14. Why does a nylon or plastic comb get electrified on combing or rubbing but a metal spoon does not?

D View Text Solution

ADDITIONAL QUESTIONS SOLVED (LONG ANSWER
QUESTIONS)

1. Explain the types of motion with example

D Watch Video Solution

2. What are the different types of vectors?

D Watch Video Solution

3. Explain the concept of relative velocity in one and two dimensional motion.

Watch Video Solution

4. Shows that the path of horizontal projectile
is a parabola and derive an expression for (i)

Time of flight (ii) Horizontal range
resultant relative and any instant (iv) speed of the projectile when it hits the ground?

D Watch Video Solution

5. Derve the relation between tangential acceleration and angular acceleration.
6. Distinguish between an insulator (dielectric) and a conductor.

D View Text Solution

7. one end of a copper wire is connected to a neutral pith ball and other end to a negatively charged plastic rod. What will be the charge acquired by a pith ball?
8. A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by

- View Text Solution

9. Estimate the total number of air molecules
(inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity
25.0 m 3 at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure.

D Watch Video Solution

10. An oxygen cylinder of volume 30 liters has an initial gauge pressure of 15 atm and a temperature of $27^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drop to $17^{\circ} \mathrm{C}$. Estimate the mass of oxygen
taken out of the cylinder. $\left(\mathrm{R}=8.31 \mathrm{~J}\right.$ mol- $1 \mathrm{~K} \mathrm{~K}_{-}$, molecular mass of $\mathrm{O} 2=32 \mathrm{u}$).

- Watch Video Solution

