# ©゙"doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - FULL MARKS PHYSICS (TAMIL

## ENGLISH)

## KINETIC THEORY OF GASES

## In Text Solved Examples

1. A foolball at $25^{\circ} C$ has 0.5 mole air molecules. calculate the internal energy of air

## in the ball.

## D Watch Video Solution

2. A room contains oxygen and hydrogen molecule in the ratio 3:1. The temperature of the room is $27^{\circ} \mathrm{C}$. The molar mass of $O_{2}$ is 32 $\mathrm{g} \mathrm{mol}^{-1}$ and for $H_{2} 3 \mathrm{~g} \mathrm{~mol}^{-1}$. The value of gas constant R is $8.32 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
calculate:
(a) rms speed of oxygen and hydrogen molecule.
(b) Average kinetic energy per oxygen molecule and per hydrogen molecule.
(c) Ratio of average kinetic energy of oxygen molecules and hydrogen molecules.

## - Watch Video Solution

3. Ten particles are moving at the speed of of 2,3,4,5,5,5,6,6,7 and 9 and $m s^{-1}$. Calculate rms speed , average speed and most probable speed.

## D Watch Video Solution

4. Calculate the rms speed, average speed and
the most probable speed of 1 mole of hydrogen molecules at 300 K . Neglect the mass of electron.

## - Watch Video Solution

5. (i) Find the adiabatic exponent $\gamma$ for mixture of $\mu_{1}$ moles of monoatomic gas and $\mu_{2}$ moles of a diatomic gas at normal temperature.
(ii) An oxygen molecule is travelling in air at

300 K and 1 atm, and the diameter of oxygen molecule is $1.2 \times 10^{-10} \mathrm{~m}$. Calculate the mean free path of oxygen molecule.

## D Watch Video Solution

6. (i) Find the adiabatic exponent $\gamma$ for mixture of $\mu_{1}$ moles of monoatomic gas and $\mu_{2}$ moles of a diatomic gas at normal temperature.
(ii) An oxygen molecule is travelling in air at 300 K and 1 atm , and the diameter of oxygen
molecule is $1.2 \times 10^{-10} \mathrm{~m}$. Calculate the mean free path of oxygen molecule.

## - Watch Video Solution

## Textual Evaluation Solved I Mcq

1. A particle or mass $m$ is moving with speed $u$ in a direction in a which makes $60^{\circ}$ with respect to x axis to x axis. It undergoes elastic collision with the well. What is the change in momentum in x and y direction?
A. $\Delta p_{x}=-\mathrm{mu}, \Delta p_{y}=0$
B. $\Delta p_{x}=-2 \mathrm{mu}, \Delta p_{y}=0$
C. $\Delta p_{x}=0, \Delta p_{y}==\mathrm{mu}, \Delta p_{y}=0$
D. $\Delta p_{x}=\mathrm{mu}, \Delta p_{y}=0$

Answer: b

D Watch Video Solution
2. A sample of ideal gas is at equilibrium.

Which of the following quantity is zero?
A. rms speed
B. average speed
C. average velocity
D. most probabale

## Answer: C

## - Watch Video Solution

3. An ideal gas is maintained at constant pressure. If the temperature of an ideal gas
increases from 100 K to 1000 K then the rms speed of the gas molecules
A. increases by 5 times
B. increases ny $\sqrt{10}$
C. remains same
D. increases by 7 times

Answer: b

D Watch Video Solution
4. Two identically sized rooms $A$ and $B$ are connected by an open door. If the room $A$ is air conditioned such that its temperature is $4^{\circ}$ lesser than room $B$, which room has more air in it?
A. Room A
B. Room B
C. Both room has same air
D. cannot be determined

Answer: A
5. The average translational kinetic energy of gas molecules depends on
A. number of moles and $T$
B. only on T
C. $P$ and $T$
D. Ponly

Answer: A
6. If the internal energy of an ideal gas $U$ and
volume V are doubled, then the pressure of the gas:
A. doubles
B. remains same
C. 0
D. quadriples
7. The ratio $\gamma=\frac{C_{P}}{C_{V}}$ for a gas mixture consisting of 8 g of helium and 16 g of oxygen
is
A. $\frac{23}{15}$
B. $\frac{15}{23}$
C. $\frac{27}{17}$
D. $\frac{17}{27}$
8. A container has one mole of monoatomic ideal gas. Each molecule has $f$ degrees of freedom. What is the ratio of $\gamma=\frac{C_{P}}{C_{V}}$
A. $f$
B. $\frac{f}{2}$
C. $\frac{f}{f+2}$
D. $\frac{f+2}{f}$

# 9. If the temperature and pressure of a gas is 

doubled the mean free path of the gas molecules
A. remains same
B. doubled
C. tripled
D. quadruples
10. Which of the following shows the correct
relationship between the perssure and density of an ideal gas constant temperature ?
A.
B.
C.
D.

## - Watch Video Solution

11. A sample of gas consists of $\mu_{1}$ moles of monoatomic molecules, $\mu_{2}$ moles of diatomic molecules and $\mu_{3}$ moles of linear triatomic molecules. The gas is kept at high temperature. What is the total number of degrees of freedom?
A. $\left[3 \mu_{1}+7\left(\mu_{2}+\mu_{3}\right)\right] N_{A}$
B. $\left[3 \mu_{1}+7 \mu_{2}+\mu_{3}\right] N_{A}$
C. $\left[7 \mu_{1}+3\left(\mu_{2}+\mu_{3}\right)\right] N_{A}$

$$
\text { D. }\left[3 \mu_{1}+6\left(\mu_{2}+\mu_{3}\right)\right] N_{A}
$$

## Answer: A

## D Watch Video Solution

12. If $S_{P}$ and $S_{V}$ denote the specific heats of nitrogen gas per unit mass at constant pressure and constant volume respectively, then

$$
\text { A. } S_{P}-S_{V}=28 R
$$

B. $S_{P}-S_{V}=R / 28$
C. $S_{P}-S_{V}=R / 14$
D. $S_{P}-S_{V}=R$

Answer: B

- Watch Video Solution

13. Which of the following gases will have least rms speed at a given temperature?
A. Hydrogrn

## B. Nitrogen

## C. Oxygen

D. Carbon dioxide

## Answer: D

## D Watch Video Solution

14. For a given gas molecule at a fixed temperature , the area under the Maxwell Boltzmann distribution curve is equal to :
A. $\frac{P V}{k} T$
B. $\frac{k T}{P} V$
C. $\frac{P}{N k T}$
D. PV

Answer: A

## D Watch Video Solution

15. The following graph respresent the pressure versus number density for ideal gas
at two different temperature $T_{1}$ and $T_{2}$. The

## graph implies

A. $T_{1}=T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}<T_{2}$
D. connot be determined

Answer: B

- Watch Video Solution


# Textual Evaluation Solved li Short Answer 

## Question

1. What is the microscopic origin of pressure?

## - Watch Video Solution

2. What is the K.E per mircroscopic origin of temperature?

## 3. Why moon has no atmosphere?

## - Watch Video Solution

4. Write the expression for rms speed, average speed and most probable speed of a gas molecule.

- Watch Video Solution

5. What is the relation between the average kinetic energy and pressure?

D Watch Video Solution
6. Define the term degrees of freedom.

## D Watch Video Solution

7. State the law of equipartition of energy.

# 8. Define mean free path and write down its 

 expression.D Watch Video Solution
9. Deduce Charles's law based on kinetic
theory.

D Watch Video Solution
10. Deduce Boyle's law based on kinetic theory.

## D Watch Video Solution

11. Deduce Avogadro's law based on kinetic theory.

## - Watch Video Solution

12. List the factors affecting the mean free path.

## - Watch Video Solution

13. What is the reason for Brownian motion?

D Watch Video Solution

Textual Evaluation Solved lif Long Answer
Question

1. Write down the postulates of kinetic theory of gases.
2. Gas exerts pressure on the walls of the container

D Watch Video Solution
3. Explain in detail the kinetic interpretation of temperature .

D Watch Video Solution
4. Define the term degrees of freedom.

## D Watch Video Solution

5. Derive the ratio of two specific heat capacities of monoatomic, diatomic and triatomic molecules.

- Watch Video Solution

6. Explain in detail the Maxwell Boltzmann distribution function.

D Watch Video Solution
7. Derive the expression for mean free path of the gas.
(D) Watch Video Solution
8. Describe the Brownian motion.

## - Watch Video Solution

## Textual Evaluation Solved Iv Numerical Problems

1. A fresh air is composed of ntirogen
$N_{2}(78 \%)$ and oxygen $O_{2}(21 \%)$. Find the rms speed of $N_{2}$ and $O_{2}$ at $20^{\circ} \mathrm{C}$.

- Watch Video Solution

2. If the rms speed of methane gas in the Jupiter's atmosphere is $471.8 \mathrm{~ms}^{-1}$, show that the surface temperature of Jupiter is sub-zero.

## - Watch Video Solution

3. Calculate the temperature at which the rms
velocity of a gas triples its value at S.T.P.
$\left[T_{1}=273 K\right]$

D Watch Video Solution
4. A gas is at temperature $80^{\circ} \mathrm{C}$ and pressure $5 \times 10^{-10} \mathrm{Nm}^{-2}$. What is the number of molecules per $m^{3}$ if Boltzmann's constant is $1.38 \times 10^{-23} J K^{-1}$

## D Watch Video Solution

5. From kinetic theory of gases, show that

Moon cannot have atmosphere (Assume

$$
\left.k=1.38 \times 10^{-23} J K^{-1}, T 0^{\circ} C=273 K\right)
$$

6. If $10^{20}$ oxygen molecules per second strike
$4 \mathrm{~cm}^{2}$ of wall at an angle of $30^{\circ}$ with the normal when moving at a speed of $2 \times 10^{3} \mathrm{~ms}^{-1}$, find the pressure exerted on the wall. (mass of $1 O_{2}$ atom $=2.67 \times 10^{-26} \mathrm{~kg}$ )

## - Watch Video Solution

7. During an adiabatic process, the the pressure of a mixture of monatomic and diatomic gases is found to be proportional to
the cube of the temperature. Find the value of
$\gamma=\left(C_{P} / C_{V}\right)$

D Watch Video Solution
8. Calculate the mean free path of air molecules at STP. The diameter of $N_{2}$ and $O_{2}$
is about $3 \times 10^{-10} m$

## D Watch Video Solution

9. A gas made of a mixture of 2 moles of
oxygen and 4 moles of argon at temperature
T. Calculate the energy of the gas in terms of RT. Neglect the vibrational modes.

## D Watch Video Solution

10. Estimate the total number of air molecules
in a room of capacity $25 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} C$.

## Additional Multiple Choise Questions

1. Oxygen and hydrogen gases are at the same temperature the ratio of the average K.E of an oxygen molecule and that of a hydrogen molecule is
A. 16
B. 4
C. 1
D. $\frac{1}{4}$

## Answer: A::B::C

## - Watch Video Solution

2. According to kinetic theory of gases, molecules of a gas behave like .
A. the pressure of a gas is proprotional to
the rms speed of the molecules .
B. the rms speed of the molecules of a gas
is proprotional to the absolute
temperature.
C. the rms speed of the molecules of a gas
is proprotional to the square root of the
absolute temperature.
D. the pressure of a gas is proprotional to
the square root of the rms speed of the molecules.

## Answer: A::C::D

## D Watch Video Solution

3. Pressure exerted by a perfect gas is equal to
A. mean K.E . per unit volume.
B. half of mean K.E per unit volume.
C. one-third of mean K.E. per unit volume.
D. two-third of mean K.E. per unit volume.

Answer: A::B::C::D

D Watch Video Solution
4. The temperature of an ideal gas is increased
from $27 \circ C$ to $927 \circ C$. The root mean square speed of its molecules becomes.
A. 3 times
B. double
C. 4 times
D. 6 times

Answer: B

- Watch Video Solution

5. Two gases are enclosed in a container at constant temperature. One of the gases , which is monoatomic. The ratio of the rms speed of the molecules of the monoatomic gas to that of the molecules of the diatomic gas is
A. 8
B. 4
C. $2 \sqrt{2}$
D. 2

## Answer: C

## D Watch Video Solution

6. If the absolute temperature of a gas is
increased 3 times the rms velocity of the molecules will be
A. 3 times
B. 9 times
C. $\sqrt{3}$ times
D. $\sqrt{6}$ times

## Answer: C

## D Watch Video Solution

7. Which of the following animals possesses
ink gland?
A. $H_{2}$
B. $O_{2}$
C. $N_{2}$
D. $\mathrm{CO}_{2}$

Answer: A::B::C

## D Watch Video Solution

8. If the absolute temperature of a gas is increased 3 times the rms velocity of the molecules will be
A. equal to that of the helium molecules
B. twice that of the helium molecules
C. half that of the helium molecules
D. $\sqrt{2}$ times that of the helium molecules

## Answer: B::D

## - Watch Video Solution

9. A gas is enclosed in a container which is
then placed on a fast moving train. The temperature of the gas

A. rises

B. remains unchanged
C. falls
D. become unsteady

## - Watch Video Solution

10. The mean translational kinetic energy of a perfect gas molecule at the temperature $T k$ is :
A. $\frac{1}{2} k T$
B. kT
C. $\frac{3}{2} k T$
D. $\frac{5}{2} k T$

## Answer: C

## - Watch Video Solution

11. A jar has mixture of hydrogen and oxygen gases in the ratio 1:5. The ratio of mean kinetic energies of hydrogen and Oxygen molecules is
A. $1: 5$
B. $5: 1$
C. 1:1

## D. $1: 25$

## Answer: A::C::D

## D Watch Video Solution

12. The perssure exerted on the walls of the container by a gas is due to the fact that the gas molecules
A. lose there K.E
B. Stick to the walls

## C. are acceleration towards the wallls

D. change their momenta due to collision

with the walls.

## Answer: D

## D Watch Video Solution

13. Pressure exerted by a gas is
A. independent of the density of the gas
B. inversely proprotinal to the density of
the gas
C. directly proproation to the density of
the gas
D. directly proprotional to the square of
the density of the gas.

Answer: C

D Watch Video Solution
14. Four molecules have speed $2 \mathrm{~km} / \mathrm{s}, 3 \mathrm{~km} / \mathrm{s}$.
$4 \mathrm{~km} / \mathrm{s}$, $5 \mathrm{~km} / \mathrm{s}$ The rms speed of these molecules in $\mathrm{km} / \mathrm{s}$ is
A. $\sqrt{\frac{27}{2}}$
B. $\sqrt{27}$
C. $2 \sqrt{27}$
D. $\sqrt{54}$

Answer: A

- Watch Video Solution

15. A gas behaves as an ideal gas at :
A. low pressure and high temperature
B. high perssure and low temperature
C. low perssure and high temperature
D. high perssure and high temperature

Answer: A
16. The kinetic theory of gases breaks down most at ............... .
A. low pressure and high temperature
B. high perssure and low temperature
C. low perssure and high temperature
D. high perssure and high temperature

## Answer: B

## D Watch Video Solution

17. Two different ideal gases are enclosed in two defferent vessels at the same pressure. If
$\rho_{1}$ and $\rho_{2}$ are their and $\nu_{1}$ and $\nu_{2}$ their rms
their speed, respectively then - is equal to
A. $\frac{\rho_{1}^{2}}{\rho_{2}^{2}}$
B. $\frac{\rho_{2}^{2}}{\rho_{2}^{1}}$
C. $\sqrt{\frac{\rho_{1}}{\rho^{2}}}$
D. $\sqrt{\frac{\rho_{2}}{\rho^{1}}}$

Answer: A::B::C::D
18. A cylinder of capacity 20 liters is filled with
hydrogen gas . The total average K.E. of translatory motion of its molecules is
$1.5 \times 10_{5} \mathrm{~J}$. The perssure of hydrogen in the cylinder is
A. $2 \times 10^{6} \mathrm{Nm}^{-2}$
B. $3 \times 10^{6} \mathrm{Nm}^{-2}$
C. $4 \times 10^{6} \mathrm{Nm}^{-2}$
D. $5 \times 10^{6} \mathrm{Nm}^{-2}$

Answer: A::B::C::D

## D Watch Video Solution

19. The molecular weight of oxygen and
hydrogen are 32 and 2, respectively .The rms
velocities of their molecules at a given temperature, will be in the ratio
A. $4: 1$
B. 1: 4
C. $1: 16$
D. 16: 1

## Answer: A::B::C::D

## - Watch Video Solution

20. The average energy of a molecules of a monoatomic gas at temperature T is
(K=Boltzmann constant )
A. $\frac{1}{2} k T$
B. kT
C. $\frac{3}{2} k T$
D. $\frac{5}{2} k T$

## Answer: C

## - Watch Video Solution

21. The temperature of an idea gas is increased from 120 K to 480 K . If at 120 K the root mean
square velocity of the gas molecules is $\nu$, at 480 K it becomes
A. $77^{\circ} C$
B. $350^{\circ}$
C. $273^{\circ} C$
D. $457^{\circ} \mathrm{C}$

Answer: A

## D Watch Video Solution

22. The temperature of a gas is raise from
$27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The root mean squre speed
A. become $\frac{\sqrt{927}}{27}$ times the earlier value
B. gets halved
C. remains the same
D. gets doubled

## Answer: A::B::C::D

## D Watch Video Solution

23. The temperature at which the K.E. of a gas molecules is double its value at $27^{\circ} C$ is
A. $54^{\circ} C$

## B. 300 K

C. $327^{\circ} \mathrm{C}$
D. $108^{\circ} \mathrm{C}$

Answer: A::B::C

## D Watch Video Solution

24. The temperature of an idea gas is increased from 120 K to 480 K . If at 120 K the
root mean square velocity of the gas

## molecules is $\nu$, at 480 K it becomes

A. $4 \nu$
B. $2 \nu$
C. $\frac{\nu}{2}$
D. $\frac{\nu}{4}$

Answer: B
( Watch Video Solution
25. The average translational K.E. of $O_{2}$ (molar mass 32 ) molecules at a particular temperature is 0.048 eV . The translational K.E. of the $N_{2}$ (molar mass 28 ) molecules in eV at the same temperature is
A. 0.0015
B. 0.003 .
C. 0.048
D. 0.768

Answer: C
26. The K.E. of one mole of a gas at normal temperature and perssure is
$\left(R=8.31 \mathrm{Jmol}^{-1} K^{-1}\right)$
A. $0.56 \times 10^{4} J$
B. $1.3 \times 10^{2} J$
C. $2.7 \times 10^{2} J$
D. $3.4 \times 10^{3} \mathrm{~J}$
27. The average K.E. of a hydrogen gas molecule at STP will be (Boltmann canstant

$$
k_{B}=1.38 \times 10^{-23} J K^{-1} \ldots \ldots .
$$

A. $0.186 \times 10^{-28} J$
B. $0.372 \times 10^{20} J$
C. $0.56 \times 10^{-20} J$
D. $5.6 \times 10^{-20} \mathrm{~J}$
28. Calculate the root mean square speed of smoking practices of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at S.T.P
A. $1.5 m s^{-1}$
B. $3.0 m s^{-1}$
C. $1.5 \mathrm{cms}^{-1}$
D. $3.0 \mathrm{cms}^{-1}$

## - Watch Video Solution

29. To what temperature should the hydrogen at room temperature $\left(27^{\circ} C\right)$ be heahted at constant perssure so that the RMS velocity of iths molecules becomes double its previous value?
A. $1200^{\circ} \mathrm{C}$
B. $927^{\circ} \mathrm{C}$
C. $600^{\circ} \mathrm{C}$
D. $108^{\circ} \mathrm{C}$

## Answer: B

## D Watch Video Solution

30. A vessel constant oxygen at 400K. Another similar vessel constains an equal mass of hydrogen at 300K. The ration of the rms speed of molecules of hydrogen and oxygen is
A. $\frac{4}{3}$
B. $\frac{3}{4}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

## Answer: D

## D Watch Video Solution

31. A chamber contains a mixture of helium gas (He) and hydrogen gas $\left(H_{2}\right)$. The ration of the root-mean-square speed of the molecules of He and $\mathrm{H}_{2}$ is
A. 2
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$

Answer: C

## D Watch Video Solution

32. On colliding with the walls in a closed container, the ideal gas molecules.
A. transfer momentum to the walls
B. lose momentum completely
C. move with smaller speeds
D. perform Brownian motion.

## Answer: A

D Watch Video Solution
33. The speed of 5 molecules of a gas (in arbitrary units) are as follows: $2,3,4,5,6$ the root mean square speed for these molecule is
A. 2.91
B. 3.52
C. 4
D. 4.24

## Answer: D

## D Watch Video Solution

34. At absolute zero temperature ,the K.E. of
the molecules becomes
A. zero
B. maximum
C. minimum
D. none of these

Answer: A

## D Watch Video Solution

35. If the rms speed of the molecules of a gas
at $27^{\circ} \mathrm{C}$ is $141.4 \mathrm{~m} / \mathrm{s}$, the rms speed at $327^{\circ} \mathrm{C}$
will be nearly
A. $1000 m s^{-1}$
B. $922 m s^{-1}$
C. $520 m s^{-1}$
D. $849 m s^{-1}$

Answer: B

D Watch Video Solution
36. The gas having average speed four times
as that of $\mathrm{SO}_{2}$ (molecular mass 64) is
A. He (molecular mass 4)
B. $O_{2}$ (molecular 32)
C. $H_{2}$ (molecular mass 2)
D. $\mathrm{CH}_{4}$ (molecular mass 16)

Answer: A::C::D

D Watch Video Solution

## Additional 2 Mark Questions

## 1. State Avogadro's law.

## D Watch Video Solution

2. Define root mean square speed $\left(v_{r m s}\right)$.

Write down its equations.

## D Watch Video Solution

3. Define the avogadro's number :
4. Define Average speed. Write it equations.

D Watch Video Solution
5. Define most probable speed of the gas. Write its expression.

D Watch Video Solution
6. Write down the comparision of
$v_{r m s}, \bar{v}$ and $v_{m p}$.

D Watch Video Solution
7. Why there is no hydrogen in earth's atmosphere?
( Watch Video Solution
8. What is Brownian motion?

## - Watch Video Solution

9. What does the universal gas constant R signify? Give its value.

## - Watch Video Solution

10. What is the Boltzmann's constant? Give its
value.
11. When do the real gases obey more correctly the gas equation : $P V=n R T$ ?

## ( Watch Video Solution

## Addtional Numerical Problems

1. If the rms speed of hydrogen molecules at

300 K is $1930 \mathrm{~ms}^{-1}$. Then what is the rms speed of oxygen molecules at 1200 K .
2. The rms velocity of the molecules in a sample of helium is $5 / / 7$ times that of molecules in a sample of hydrogen. If the tempertaure of hydrogen is $0^{\circ} C$. Then, what is the temperature of helium?

## D Watch Video Solution

3. A cylinder of fixed capacity 44.8 litres
contains helium gas at standard pressure at temperature . What is the amount of heat
need to rest that temperature of the gas by
$15.00^{\circ} C ?\left[R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}\right]$

## D Watch Video Solution

4. An insulated container monoatomic gas of molar mass m is moving with a velocity $\nu_{0}$. If
the container is suddenly stopped. Find the change in temperature.

## D Watch Video Solution

## 5. Estimate the total number of molecules

 inclusive of oxygen, nitrogen, water vapour and other constituents in a room of capacity $30 \mathrm{~m}^{3}$ at a temperature of $30^{\circ} \mathrm{C}$ and 1 atmosphere pressure.
## - Watch Video Solution

6. Estimate the average energy of a helium atom at (i) room temperature $\left(27^{\circ} \mathrm{C}\right)$ (ii) the temperature on the surface of the sun (6000K)

## D Watch Video Solution

7. The molecules of a given mass of a gas have rms velocity of $200 \mathrm{~ms}^{-1}$ at $27^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{Nm}^{-2} \quad$ perssure. What the temperature and perssure of the gas are respectively.
$127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$

Find the rms velocity of its molecules in $m s^{-1}$

## Watch Video Solution

8. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Mass of oxygen molecules $(m)=2.76 \times 10^{-26} \mathrm{~kg}$ Boltzmann's constant
$\left.\left(k_{B}\right)=1.38 \times 10^{-23} J K^{-1}\right)$

- Watch Video Solution

9. The temperature of a gas is raise from $27^{\circ} C$ to $927^{\circ} C$. The root mean squre speed of its molecules

## D Watch Video Solution

10. A gaseous mixture consists of 16 g of
helium and 16 g of oxygen the ratio of two
specific heats of the mixture is
