©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

MOTION OF SYSTEM OF PARTICLES

AND RIGID BODIES

In Text Solved Examples

1. Two point masses 3 kg and 5 kg are at 4 m and 8 m from the origin on X -axis. Locate the position of center of mass of the two point masses (from the origin and (1) from 3 kg mass.

D Watch Video Solution

2. From a uniform disc of radius R, a small disc
of radius $\frac{R}{2}$ is cut and removed as shown in
the diagram. Find the center of mass of the remaining portion of the disc.

D Watch Video Solution

3. The positiion vectors of two point masses 10
kg and 5 are
$(3 \hat{i}+2 \hat{j}+4 \hat{k}) m$ and $(3 \hat{i}+6 \hat{j}+5 \hat{k}) m$
respectively. Locate the position of center of mass.

- Watch Video Solution

4. The center of mass is located at position i

EX.5.4. Locate the center of mass of a uniform rod of mass M and length

- Watch Video Solution

5. A man of mass 50 kg is standing at one end of a boat of mass 300 kg floating on still water.

He walks towards the other end of the boat with a constant velocity of $2 m s^{-1}$ with respect to a stationary observer on land. What will be the velocity of the boat, (a) with respect
to the stationary observer on land? (b) with respect to the man walking in the boat?
[Given: There is friction between the man and the boat and no friction between the boat and water.]

D Watch Video Solution
6. A projectile of mass 5 kg , in its course of motion explodes on its own into two
fragments. One fragment of mass 3 kg falls at
three fourth of the range R of the projectile.

Where will the other fragment fall? .

D Watch Video Solution

7. If the force applied is perpendicular to the handle of the spanner as shown in the diagram, find the (i) torque exerted by the force about the center of the nut, (ii) direction of torque and (iii) type of rotation caused by the torque about the nut.

Watch Video Solution

8. A force of $(2 \hat{i}+3 \hat{j}+5 \hat{k}) N$ is is applied at a point whose position vector is $(7 \hat{i}+4 \hat{j}-2 \hat{k}) m$. Find the torque of force about the origin.

- Watch Video Solution

9. A crane has an arm length of 20 m inclined at 30° with the vertical. It carries a container of mass of 2 ton suspended from the top end
of the arm. Find the torque produced by the gravitational force on the container about the point where the arm is fixed to the crane.
[Given: 1 ton $=1000 \mathrm{~kg}$, neglect the weight of the arm. $\left.g-10 \mathrm{~ms}^{-2}\right]$

D Watch Video Solution

10. Three mutually perpendicular beams $A B$,

OC, GH are fixed to form a structure which is
fixed to the ground firmly as shown in the

Figure. One string is tied to the point and its
free end D is pulled with a force F. Find the magnitude and direction of the torque produced by the force
(i) about the points D, C, O and B
(ii) about the axis $C D, O C, A B$ and $G H$.

D View Text Solution
11. A particle of mass (m) is moving with constant velocity (v). Show that its angular
momentum about any point renains constant throughout the motion.

D Watch Video Solution

12. Arun and Babu carry a wooden log of mass

28 kg and length 10 m which has almost uniform thickness. They hold it at 1 m and 2 m
from the ends respectively. Who will bear more weight of the $\log ?\left[g=10 \mathrm{~ms}^{-2}\right]$

D Watch Video Solution

13. A cyclist while negotiating a circular path with speed $20 \mathrm{~ms}^{-1}$ is found to bend an angle by 30° with vertical. What is the radius of the circular path? (given $g=10 \mathrm{~ms}^{-2}$).

D Watch Video Solution

14. Find the moment of inertia of a uniform rod about an axis which is perpendicular to the rod and touches any one end of the rod.

Watch Video Solution

15. Find the radius of gyration of a disc of mass M and radius R rotating about an axis passing through the center of mass and perpendicular to the plane of the disc.

D Watch Video Solution

16. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its centre and perependicualr to its plane.
17. Find the moment of incrtia about the metric center of the given structure made up of one thin rod connecting two similar solid spheres as shown in Figure.

- View Text Solution

18. A disc of mass 500 g and radius 10 cm can
freely rotate about a fixed axis as shown in
figure. Light and inextensible string is wound several turns around it and 100 g body is suspended at its free end. Find the acceleration of this mass. [Given: The string makes the disc to rotate and does not slip over it. $\left.g-10 m s^{-2}\right]$

D View Text Solution
19. A jester in a circus is standing with his arms extended on a turntable rotating with angular velocity c. He brings his arms closer to his body so that his moment of inertia is reduced to one third of the original value. Find his new angular velocity [Given: There is no external torque on the turn table in the given situation.]

- Watch Video Solution

20. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its centre and perependicualr to its plane.

- Watch Video Solution

21. A rolling wheel has velocity of its center of mass as 5 ms . If its radius is 1.5 m and angular velocity is $3 \mathrm{rad} \mathrm{s}^{-1}$, then check whether it is in pure rolling or not.
22. If a sphere is rolling, the ratio of translational energy to total kinetic energy is given by:

D Watch Video Solution

23. Four round objects namely a ring, a disc, a hollow sphere and a solid sphere with same radius R and made of same material start to
roll down an inclined plane at the same time.

The object that will reach the bottom third is

D Watch Video Solution

24. Three particles each of mass m are placed at the three corners of an equilateral triangle of side a. The work done on the system to increase the sides of the triangle to 2 a is:
25. An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ revolves
around a nucleus in a circular orbit of radius
$0.53 \AA$. What is the angular momentum of the electron? (Velocity of electron is, $\left.v=2.2 \times 10^{6} m s^{-1}\right)$.

D Watch Video Solution

26. A solid sphere of mass 20 kg and radius
0.25 m rotates about an axis passing through
the center. What is the angular momentum if the angular velocity is $5 \mathrm{rad} / \mathrm{s}$.

D Watch Video Solution

27. A solid cylinder when dropped from a height of 2 m acquires a velocity while reaching the ground. If the same cylinder is rolled down from the top of an inclined plane to reach the ground with same velocity, what must be the height of the inclined plane? Also compute the velocity

Watch Video Solution

28. A small particle of mass on is projected with an initial velocity v at an angle 8 with x axis in $X-Y$ plane as shown in Figure. Find the angular momentum of the particle.

- Watch Video Solution

29. From a complete ring of mass M and radius

R , a sector angle is removed. What is the moment of inertia of the incomplete ring
about axis passing through the center of the ring and perpendicular to the plane of the ring?

D Watch Video Solution

30. A mussless right angled triangle is spended with its right angle comer. A mass of

100 kg is suspended from another comer II which subtiends an angle 53°. Find the mass
that should be suspended from other comer so that (hypolemic) remains horizontal.

Watch Video Solution

31. Energy of 1000 J is spent in increasing the speed of a flywheel from 30 rpm to 720ppm, find the moment of inertia of the wheel

- Watch Video Solution

32. Consider two cylinders with same radius and same mass. Let one of the cylinders be solid and another one be hollow. When subjected to some torque, which one among
them gets more angular acceleration than the other?

D Watch Video Solution

33. A thin horizontal circular dise is rotating about a vertical axis passing through its center. An insect goes from A to point B along its diameter as shown in Figure. Discuss how the angular speed of the circular disc changes?
34. (I) Relation between rotational kinetic
energy and Angular momentum is $\frac{L^{2}}{2 I}$
(II) Rotational work done is $F \theta$

Which one is correct ?

- Watch Video Solution

35. Consider a thin uniform circular ring rolling down in an inclined plane without slipping. Compute the linear acceleration
along the inclined plane if the angle of inclination is 45^{\prime}
(D) Watch Video Solution

Textual Questions Solved Multiple Choice

Questions

1. The centre of mass of a system of particles
does not depend upon
A. position of particles
B. relative distance between particles
C. masses of particles
D. force acting on particle

Answer: D

- Watch Video Solution

2. A couple produces motion.

A. pure rotation
B. pure translatio
C. rotation and translation
D.

Answer: A

D Watch Video Solution

3. A particle is moving with a contant velocity
along a line parallel to positive X -axis. The magnitude of its angular momentum with respect of the origin is
A. zero
B. increasing with
C. decreasing with x
D. remaining constant

Answer: D

D Watch Video Solution

4. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N .
A. $0.25 \mathrm{rad} s^{-1}$
B. $25 \mathrm{rad} s^{-1}$
C. $5 m s^{-2}$
D. $25 m s^{-1}$

Answer: B

D Watch Video Solution
5. A closed cylindrical container is partially
filled with water. As the container rotates in a
horizontal plane about a perpendicular bisector, its moment of inertia.
A. increases
B. decreases
C. remains constant

D. depends on direction of rotation

Answer: A

D Watch Video Solution

6. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,
A. L
B. $L / 2$
C. 2 L
D. $L \sqrt{2}$

Answer: D

D Watch Video Solution
7. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. the center point of the circle
B. the point on the circumference of the circle
C. any point inside the circle
D. any point outside the circle
8. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along
A. a line perpendicular to the plane of rotation
B. the line making an angle of 45° to the
plane of rotation
C. the radius

D. angent to the path

Answer: A

D Watch Video Solution

9. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}.

They are brought in to contanct face to face
coinciding the axis of rotation. The expression
for loss of energy during this process is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} I\left(\omega_{1}-\omega_{2}\right)^{2} \\
& \text { B. } I\left(\omega_{1}-\omega_{2}\right)^{2} \\
& \text { C. } \frac{1}{8} I\left(\omega_{1}-\omega_{2}\right)^{2} \\
& \text { D. } \frac{1}{2} I\left(\omega_{1}-\omega_{2}\right)^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

10. A disc of moment of inertia la is rotating in
a horizontal plane about its symmetry axis
with constant angular speed co. Another discinitially at rest of moment of inertia I , is dropped coaxially on to the rotating disc.

Then, both the discs rotate with same constant angular speed The loss of kinetic energy due to friction in this process is,

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{I_{b}^{2}}{\left(I_{a}+I_{b}\right)} \omega^{2} \\
& \text { B. } \frac{I_{b}^{2}}{\left(I_{a}+I_{b}\right)} \omega^{2} \\
& \text { C. } \frac{\left(I_{b}-I_{a}\right)^{2}}{\left(I_{a}+I_{b}\right)} \omega^{2}
\end{aligned}
$$

D. $\frac{1}{2} \frac{I_{b} I_{b}}{2\left(I_{a}+I_{b}\right)} \omega^{2}$

Answer: A

D Watch Video Solution

11. The ratio of the acceleration for a solid sphere (mass m and radius R) rolling down an
incline of angle θ without slipping and slipping down the incline without rolling is,
A. $5: 7$
B. $2: 3$
C. 2:5
D. $7: 5$

Answer: A

D Watch Video Solution
12. From a disc of radius R a mass M, a circular
hole of diameter R, whose rim passes through
the centre is cut. What is the moment of
inertia of the remaining part of the disc about
a perpendicular axis passing through it
A. $15 M R^{2} / 32$
B. $13 M R^{2} / 32$
C. $11 M R^{2} / 32$
D. $9 M R^{2} / 32$

Answer: B

D Watch Video Solution

13. The speed of a solid sphere after rolling down from rest without sliding on an inclined plane of vertical height h is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{4}{3} g h} \\
& \text { B. } \sqrt{\frac{10}{7} g h} \\
& \text { C. } \sqrt{2 g h} \\
& \text { D. } \sqrt{\frac{1}{2} g h}
\end{aligned}
$$

Answer: A
14. The speed of the centre of a wheel rolling on a horizontal horizontal surface is v_{0}. A point on the rim in level with the centre will be moving at a speed of speed of:
A. zero
B. v_{a}
C. $\sqrt{v_{o}}$
D. $2 v_{0}$

Answer: C

15. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle θ. The frictional force:
A. dissipates kinetic energy as heat
B. decreases the rotational motion
C. decreases the rotational and
translational motion
D. converts translational energy into
rotational energy

Answer: D

D Watch Video Solution

Textual Questions Solved Short Answer Questios

1. Define the center of mass of a body.

D Watch Video Solution
2. Find out the center of mass for the given geometrical structures.
(a) Equilateral triangle
(b) Cylinder
(c) Square

D Watch Video Solution
3. Define torque and mention its unit.
4. What are the conditions in which force can not produce torque ?

- Watch Video Solution

5. Give any two examples of torque in day-today life.

- Watch Video Solution

6. What is the relation between torque and angular momentum?

- Watch Video Solution

7. What is equilibrium ? (or) Define mechanical equilibrium of a rigid body.

- Watch Video Solution

8. How do you distinguish between stable and unstable equilibrium?

D Watch Video Solution
9. Define couple.

D Watch Video Solution

10. State the principle of moments .
11. Define centre of gravity.

D Watch Video Solution
12. Mention any two physical significance of moment of inertia.

D Watch Video Solution
13. What is the radius of gyration?

- Watch Video Solution

14. State conservation of angular momentum.

- Watch Video Solution

15. What are the rotational equivalents for the physical quantities (i) mass and (ii) force?

- Watch Video Solution

16. What is the condition for pure rolling ?

D Watch Video Solution

17. What is the difference between sliding and
slipping ?

D Watch Video Solution

Textual Questions Solved Long Answer Questios

1. Explain the types of equilibrium with suitable examples

D Watch Video Solution
2. Explain the method to find the centre of gravity of irregularly shaped lamina.
3. Explain why a cyclist bends while negotiating a curve road?

D Watch Video Solution
4. Derive the expresssion for moment of inertia of a rod about its centre and perpendicular to the rod.

D Watch Video Solution
5. Derive the expression for moment of inertia of a uniform ring about an axis passing thorugh the centre and perpendicular to the plane.

D Watch Video Solution

6. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.

7. Discuss conservation of angular momentum

 with example.
- Watch Video Solution

8. State and prove parallel axis theorem

D Watch Video Solution

9. State and prove perpendicular axis theorem.

D Watch Video Solution

10. Discuss the effect of rolling on inclined
plane and derive the expression for the acceleration.

D Watch Video Solution

Textual Questions Solved Conceptual Questions

1. When a tree is cut, the cut is made on the side facing the direction in which the tree is required to fall. Why?

D Watch Video Solution

2. Why does a porter bend forward while carrying a sack of rice on his back ?
3. Why is it much easier to balance a meter scale on your finger tip than balancing on a match stick?

- Watch Video Solution

4. Two identical water bottles one empty and
the other filled with water are allowed to roll down an inclined plane. Which one of them reaches the bottom first? Explain your answer.
5. Write the relation between angular momentum and rotational kinetic energy. For two objects of same angular momentum, compare the moment of inertia using the graph.

D Watch Video Solution

6. Three identical solid spheres move doen
through three inclined planes A, B and C all
same dimensions. A is without friction B is
undergoing pure rolling and C is rolling with
slipping. Compare the kinetic energies E_{A}, E_{B}
and E_{C} at the bottom.

D Watch Video Solution
7. Which of the following statement is false?
(Watch Video Solution

Textual Questions Solved Numerical Problems

1. A uniform disc of mass 100 g has a diameter of 10 cm . Calculate the total energy of the disc when rolling along a horizontal table with a velocity of $20 \mathrm{~cm} \mathrm{~s}{ }^{-1}$. (take the surface of table as reference).

- Watch Video Solution

2. A particle of mass 5 units is moving with a uniform speed of $v=3 \sqrt{2}$ units in the XOY
plane along the line $y=x+4$. Find the magnitude of angular momentum.

D Watch Video Solution

3. A fly wheel rotates with a uniform angular acceleration. If its angular velocity increases form $20 \pi \mathrm{rad} / \mathrm{s}$ to $40 \pi \mathrm{rad} / \mathrm{s}$ in 10 seconds.

Find the number of rotations in that period.
4. A uniform rod of mass m and lengh I makes
a constant angle θ with an axis of rotation
which passes through one end of therod. Find the moment of inertia about this axis.

D Watch Video Solution

5. Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other form rest under mutual attraction. What is the velocity of their center of mass?
6. Find the moment of inertia of a hydrogen molecule about an axis passing through its center of mass and perpendicular to the interatomic axis. Given : mass of hydrogen atom $1.7 \times 10^{-27} \mathrm{~kg}$ and inter atomic distance is equal to $4 \times 10^{-10} \mathrm{~m}$.
7. The 747 being plane is landing at a speed of
$70 \mathrm{~ms}^{-1}$. Before touching the ground, the wheels are not rotating. How long a skid mark do the wing wheels leave (assume their mass
is 100 kg which is distributed uniformly, radius
is 0.7 m , and the coefficient of friction with the ground is 0.5$)$?

Watch Video Solution

Additional Questions Solved I Multiple Choice

1. The changes produced by the deforming forces in a rigid body are
A. very large
B. infinity
C. negligibly small
D. small

Answer: C

D Watch Video Solution
2. When a rigid body moves all particles that constitute the body follows
A. same path
B. different path
C. either same or different path
D. circular path

Answer: B

D Watch Video Solution
3. For bodies of regular shape and uniform mass distribution, the center of mass is at
A. the corners
B. inside the objects
C. the point where the diagonals meet
D. the geometric center

Answer: D

- Watch Video Solution

4. For square and rectangular objects center of mass lies at
A. the point where the diagonals meet
B. at the corners
C. on the center surface
D. any point

Answer: A

D Watch Video Solution

5. Center of mass may lie

A. within the body
B. outside the body
C. both (a) and (b)
D. only at the centre

Answer: C

6. The dimension of point mass is

A. positive

B. negative
C. zero

D. infinity

Answer: C

7. The motion of centre of mass of a system of two particles is unaffected by their internal forces
A. irrespective of the actual directions of the internal forces
B. only if they are along the line joining the particles
C. only if acts perpendicular to each othe
D. only if acting opposite

Answer: A

D Watch Video Solution

8. A circular plate of diameter 10 cm is kept in
contact with a square plate of side 10 cm . The density of the material and the thickness are same everywhere. The center of mass of the system will be
A. inside the circular plate
B. inside the square plate

C. At the point of contact

D. outside the system

Answer: B

D Watch Video Solution

9. The centre of mass of a system of particles
does not depend upon
A. masses of particles
B. position of the particles

C. distribution of masses

D. forces acting on the particles

Answer: D

D Watch Video Solution

10. The Centre of mass of a solid cone along
the line from the centre of the base to the
vertex is at
A. $\frac{1}{2}$ th of its height
B. $\frac{1}{3} \mathrm{rd}$ of its height
C. $\frac{1}{4}$ th of its height
D. $\frac{1}{5}$ th of its height

Answer: D

D Watch Video Solution

11. All the particles of a body are situated at a distance of X from origin. The distance of the center of mass from the origin is
A. $\geq r$
B. $\leq r$
C. $=r$
D. $>r$

Answer: B

D Watch Video Solution

12. A free falling body breaks into three parts of unequal masses. The center of mass of the
three parts taken together shifts horizontally towards
A. heavier piece
B. lighter piece
C. does not shift horizontally
D. depends on vertical velocity

Answer: C

D Watch Video Solution

13. The distance between the centres of carbon and oxygen atoms in the gas molecule is $1.13 \AA$. The centre of mass of the molecule relative to oxygen atom is
A. $0.602 \AA$
B. $0.527 \AA$
C. $1.13 \AA \AA$
D. $0.565 \AA$

Answer: B
14. The unit of position vector of center of mass is
A. kg
B. kgm^{2}
C. m
D. m^{2}

Answer: C
15. The sum of moments of masses of all the particles in a system about the center of mass
A. minimum
B. maximum
C. zero
D. infinity

Answer: C

16. The motion of center of mass depends on
A. external forces acting on it
B. internal forces acting within it
C. both (a) and (b)
D. neither

Answer: A

- Watch Video Solution

17. Two particles P and Q move towards with each other from rest with the velocities of 1 and $20 \mathrm{~ms}^{-1}$ under the mutual force of attraction. The velocity of centre of mass is
A. $20 m s^{-1}$
B. $20 \mathrm{~ms}^{-1}$
C. $30 m s^{-1}$
D. zero

Answer: D

18. The reduced mass of the system of two particles of masses 2 m and 4 m will be
A. 2
B. $\frac{2}{3} m$
C. $\frac{3}{2} m$
D. $\frac{4}{3} m$

Answer: D

19. The motion of the center of mass of a system consists of many particles describes its
A. rotational motion
B. vibratory motion
C. oscillatory motion
D. translator motion

Answer: C
(Watch Video Solution
20. The positon of center of mass can be written in the vector form as
A. $\sum m_{i} \vec{r}_{i}$
B. $\sum m_{i} \vec{r}_{i}^{2}$
C. $\frac{\sum m_{i} \vec{r}_{i}}{M}$
D. $\frac{\sum m_{i} \vec{r}_{i}^{2}}{M}$

Answer: C
21. The positions of two masses, $x 1$ and $x 2$. The position of center of mass is

$$
\begin{aligned}
& \text { A. } \frac{m_{1} m_{2}}{m_{1} x_{1}+m_{2} x_{2}} \\
& \text { B. } m_{1} x_{1}+m_{2} x_{2} \\
& \text { C. } \frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
& \text { D. } \frac{m\left(x_{1}+x_{2}\right)}{m_{1}+m_{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

22. In a two particle system, one particle lies at origin another one lies at a distance of X. Then
the position of center of mass of these particles is

$$
\begin{aligned}
& \text { A. } \frac{m_{2} X_{2}}{m_{1}+m_{2}} \\
& \text { B. } \frac{X}{2} \\
& \text { C. } \frac{m X}{m_{1}+m_{2}} \\
& \text { D. } \frac{m_{1}+m_{2}}{m X}
\end{aligned}
$$

Answer: B

23. State the principle of moments .
A. $m_{1} X_{2}=m_{2} X_{1}$
B. $\frac{m_{1}}{m_{2}}=\frac{X_{2}}{X_{1}}$
C. $\frac{m_{1}}{m_{2}}=\frac{X_{1}}{X_{2}}$
D. $\frac{m_{1} X_{1}}{m_{2} X_{2}}=0$

Answer: B

- Watch Video Solution

24. Infinitesimal quantity means

A. collective particles
B. extremely small
C. nothing

D. Extremely larger

Answer: B
25. In the absence of external forces the center of mass will be in a state of
A. rest
B. uniform motion
C. may be at rest or in uniform motion
D. vibration

Answer: C

- Watch Video Solution

26. The activity of the force to produce rotational motion in a body is called as
A. angular momentum
B. torque
C. spinning
D. drive force

Answer: B

D Watch Video Solution
27. The moment of the external applied force about a point or axis of rotation is known as
A. angular momentum
B. torque
C. spinning
D. drive force

Answer: B
(D) Watch Video Solution
28. Torque is given as
A. $\vec{r} \cdot \vec{F}$
B. $\vec{r} \times \vec{F}$
C. $\vec{F} \times \vec{r}$
D. $r F \cos \theta$

Answer: B

- Watch Video Solution

29. The magnitude of torque is
A. $r F \sin \theta$
B. $r F \cos \theta$
C. $r F \tan \theta$
D. $r F$

Answer: A

D Watch Video Solution
30. The direction of torque acts
A. along \vec{F}
B. along $\vec{r} \& \vec{F}$
C. Perpendicular to \vec{r}
D. Perpendicular to both \vec{r} and \vec{F}

Answer: D

- Watch Video Solution

31. The unit of torque is
A. Js
B. $N m^{-2}$
C. $N m$
D. $J s^{-1}$

Answer: C

- Watch Video Solution

32. The direction of torque is found using
A. left hand rule
B. right hand rule
C. palm rule

D. serew rule

Answer: B

D Watch Video Solution

33. If the direction of torque is out of the paper then the rotation produced by the torque is

A. clockwise

B. anti-clockwise

C. Straight line

D. random direction

Answer: A

- Watch Video Solution

34. If the direction of the torque is inward the paper then the rotation is
A. clockwise
B. anti-clockwise

C. Straight line

D. random direction

Answer: A

- Watch Video Solution

35. If \vec{r} and \vec{F} are parallel or anti-parallel, then the torque is
A. zero
B. minimum

C. maximum

D. infinity

Answer: A

D Watch Video Solution

36. the maximum possible value of torque is
A. zero
B. infinity
C. $\vec{r}+\vec{F}$

D. $r F$

Answer: D

D Watch Video Solution

37. The relation between torque and angular acceleration is
A. $\vec{\tau}=\frac{I}{\vec{\propto}}$
B. $\vec{\propto}=\frac{\vec{\tau}}{I}$
C. $\vec{\propto}=I \vec{\tau}$
D. $\vec{\tau}=\frac{\vec{\propto}}{I}$

Answer: B

- Watch Video Solution

38. Angular momentum is Vector.
A. $\vec{p} \times \vec{r}$
B. $\vec{r} \times \vec{p}$
C. $\frac{\vec{r}}{\vec{p}}$
D. $\vec{r} \cdot \vec{p}$

Answer: B

D Watch Video Solution

39. The magnitude of angular momentum is given by
A. $r p$
B. $r p \sin \theta$
C. $r p \cos \theta$
D. $r p \tan \theta$

D Watch Video Solution

40. Angular momentum is associated with
A. rotational motion
B. linear motion
C. both (a) and (b)
D. circular motion only
41. Angular momentum acts perpendicular to
A. \vec{r}
B. \vec{p}
C. both \vec{r} and \vec{p}
D. plane of the paper

Answer: C

42. Angular momentum is given by
A. $\frac{I}{\omega}$
B. $\tau \omega$
C. $I \omega$
D. $\frac{\omega I}{2}$

Answer: C

- Watch Video Solution

43. The rate of change of angular momentum
is
A. Torque
B. angular velocity
C. centripetal force
D. centrifugal force

Answer: A
(D) Watch Video Solution
44. The force acting on a body it is a rest
A. is gravitational force
B. Normal force
C. Both gravitational as well as normal
force
D. No force is acting'

Answer: C

- Watch Video Solution

45. The net force acting on a body when it is at rest is
A. gravtitational force
B. Normal force
C. Sum of gravitational and normal force
D. zero

Answer: D

D Watch Video Solution
46. If the net torque acting on the body is
zero, then the body is in
A. translational equilibrium
B. rotational equilibrium
C. both (a) and (b)
D. none

Answer: A

D Watch Video Solution
47. If the net torque acting on the body is
zero, then the body is in
A. translational equilibrium
B. rotational equilibrium
C. mechanical equilibrium
D. none

Answer: B
(D) Watch Video Solution
48. When the net force and net torque acts on the body is zero then the body is in
A. translational equilibrium

B. rotational equilibrium

C. mechanical equilibrium
D. none

Answer: D

- Watch Video Solution

49. When the net force and net torque acts on
the body is zero then the body is in
A. satic equilibrium
B. Dynamic equilibrium
C. both (a) and (b)
D. translational equilibrium

Answer: C
(Watch Video Solution
50. When two equal and opposite forces acting on the body at two different points, it may give
A. net force
B. torque
C. stable equilibrium
D. none

Answer: B
51. The torque in rotational motion is analogous to ____in translational motion.
A. linear momentum
B. mass
C. couple
D. force

Answer: D

- Watch Video Solution

52. Which of the following example does not constitute a couple?
A. steering a car
B. turning a pen cap
C. ball rolls on the floor
D. closing the door

Answer: C
(D) Watch Video Solution
53. If the linear momentum and angular momentum are zero, then the object is said to be in
A. stable equilibrium
B. unstable equilibrium
C. neutral equilibrium
D. all the above

Answer: D

54. When the body is disturbed, the potential energy remains same, then the body is in
A. stable equilibrium
B. unstable equilibrium
C. neutral equilibrium
D. all the above

Answer: C

- Watch Video Solution

55. The point where the entire weight of the body acts is called as
A. center of mass
B. center of gravity
C. both (a) and (b)
D. pivot

Answer: B
(Watch Video Solution
56. The forces acting on a cyclist negotiating a circular level road is/are
A. gravitational forc
B. centrifugal force
C. frictional force
D. all the above

Answer: B

- Watch Video Solution

57. While negotiating a circular level road a cyclist has to bend by an angle from vertical to stay in an equilibrium is
A. $\tan \theta=\frac{r g}{r^{2}}$
B. $\theta=\tan ^{-1}\left(\frac{v^{2}}{r g}\right)$
C. $\theta=\sin \left(\frac{r g}{r^{2}}\right)$
D. zero

Answer: B
58. Moment of inertia for point mass is
A. $m^{2} r$
B. $r w^{2}$
C. $m r^{2}$
D. zero

Answer: C
59. Moment of inertia for bulk object
A. $r m^{2}$
B. $r w^{2}$
C. $m_{i} r_{i}^{2}$
D. $\sum m_{i} r_{i}^{2}$

Answer: D

D Watch Video Solution
60. For rotational motion, moment of inertia is a measure of
A. translational inertia
B. mass
C. rotational inertia
D. invariable quantity

Answer: C

D Watch Video Solution

61. Unit of moment of inertia

A. kgm
B. $m k g^{-2}$
C. kgm^{2}
D. $k g m^{-1}$

Answer: C

D Watch Video Solution
62. The dimensional formula for moment of inertia.

> A. $\left[M L^{-2}\right]$
> B. $\left[M^{2} L^{-1}\right]$
> C. $\left[M^{-2}\right]$
> D. $\left[M L^{2}\right]$

Answer: D

D Watch Video Solution
63. Moment of inertia of a body is a
A. variable quantity
B. invariable quantity
C. constant quantity
D. measure of torque

Answer: A

D Watch Video Solution
64. Moment of inertia of a thin uniform rod about an axis passing through the center of mass and perpendicular to the length is
A. $\frac{1}{3} M l^{2}$
B. $\frac{1}{12} m l^{2}$
C. $\frac{1}{2} M\left(l^{2}+b^{2}\right)$
D. $M l^{2}$

Answer: B
65. The moment of inertia of a Thin rod about and axis passing through the centre and perpendicular to the length is
A. $\frac{1}{3} M l^{2}$
B. $\frac{1}{12} m l^{2}$
C. $\frac{1}{2} M\left(l^{2}+b^{2}\right)$
D. $M l^{2}$

Answer: A

- Watch Video Solution

66. Moment of inertia of a thin uniform rectangular sheet about an axis passing through the center of mass and perpendicular to the plane of the sheet is
A. $\frac{1}{3} M l^{2}$
B. $\frac{1}{12} m l^{2}$
C. $\frac{1}{2} M\left(l^{2}+b^{2}\right)$
D. $M l^{2}$

Answer: C

67. Moment of inertia of a thin uniform ring about an axis passing through the center of gravity and perpendicular to the plane is
A. $M R^{2}$
B. $2 M R^{2}$
C. $\frac{1}{2} M R^{2}$
D. $\frac{3}{2} M R^{2}$

Answer: A
68. Moment of inertia of a thin uniform disc about an axis passing through the center lying on the plane (along diameter is)
A. $M R^{2}$
B. $2 M R^{2}$
C. $\frac{1}{2} M R^{2}$
D. $\frac{3}{2} M R^{2}$

- Watch Video Solution

69. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.
A. $M R^{2}$
B. $2 M R^{2}$
C. $\frac{1}{2} M R^{2}$
D. $\frac{2}{3} M R^{2}$

Answer: C

- Watch Video Solution

70. Moment of inertia of a thin uniform disc about an axis passing through the center lying on the plane (along diameter is)
A. $M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $\frac{1}{4} M R^{2}$

Answer: D

D Watch Video Solution

71. Moment of inertia of a thin uniform hollow

cylinder about an axis of the cylinder is
A. $M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $\frac{1}{4} M R^{2}$

Answer: A

D Watch Video Solution

72. Moment of inertia of a uniform hollow cylinder about an axis passing perpendicular to the length and passing through the center is
A. $M R^{2}$
B. $M\left(\frac{R^{2}}{2}+\frac{l^{2}}{12}\right)$
C. $\frac{1}{2} M R^{2}$
D. $M\left(\frac{R^{2}}{4}+\frac{l^{2}}{12}\right)$

Answer: B

D Watch Video Solution

73. Moment of inertia of a uniform solid
cylinder about an axis passing through the center and along the axis of the cylinder is
A. $M R^{2}$
B. $M\left(\frac{R^{2}}{2}+\frac{l^{2}}{12}\right)$
C. $\frac{1}{2} M R^{2}$
D. $M\left(\frac{R^{2}}{4}+\frac{l^{2}}{12}\right)$

Answer: C

D Watch Video Solution

74. Moment of inertia of a uniform solid
cylinder about as axis passing perpendicular to the length and passing through the center is
A. $M R^{2}$
B. $M\left(\frac{R^{2}}{2}+\frac{l^{2}}{12}\right)$
C. $\frac{1}{2} M R^{2}$
D. $M\left(\frac{R^{2}}{4}+\frac{l^{2}}{12}\right)$

Answer: D

- Watch Video Solution

75. Moment of inertia of a thin hollow sphere about an axis passing through the center along its diameter is
A. $\frac{2}{3} M R^{2}$
B. $\frac{5}{3} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $\frac{2}{5} M R^{2}$

Answer: A

D Watch Video Solution

76. Moment of inertia of a thin hollow sphere about an axis passing through the edge along its tangent is
A. $\frac{2}{3} M R^{2}$
B. $\frac{5}{3} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $\frac{2}{3} M R^{2}$

Answer: B

D Watch Video Solution

77. Moment of inertia of a uniform solid sphere about an axis passing through the center along its diameter is
A. $\frac{2}{3} M R^{2}$
B. $\frac{5}{3} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $\frac{2}{5} M R^{2}$

Answer: D

D Watch Video Solution

78. Moment of inertia of a uniform solid sphere about an axis passing through the edge along its tangents is
A. $\frac{2}{3} M R^{2}$
B. $\frac{5}{3} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $\frac{2}{3} M R^{2}$

Answer: C

- Watch Video Solution

79. The ratio of K^{2} / R^{2} of a thin uniform ring about an axis passing through the center and perpendicular to the plane is
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

80. The ratio of K^{2} / R^{2} of a thin uniform ring about an axis passing through the center and perpendicular to the plane is
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: C

D Watch Video Solution
81. When no extemal torque acts on the body,
the net angular momentum of a rotating body
A. increases
B. decreases
C. increases or decreases
D. remains constant

Answer: D

D Watch Video Solution

82. Moment of inertia of a body is proportional to
A. ω
B. $\frac{1}{\omega}$
C. ω^{2}
D. $\frac{1}{\omega^{2}}$

Answer: B

D Watch Video Solution

83. When the hands are brought closer to the body, the angular velocity of the ice dancer
A. decreases
B. inreases
C. constant
D. may decreases or increases

Answer: B

D Watch Video Solution
84. When the hands are stretched out from
the body, the moment of inertia of the ice dancer
A. decreases
B. inreases
C. constant
D. may decreases or increases

Answer: B

D Watch Video Solution
85. The work done by the torque is
A. F.ds
B. $F . d \theta$
C. $\tau d \theta$
D. $r . d \theta$

Answer: C

D Watch Video Solution
86. Rotational Kinetic energy of a body is
A. $\frac{1}{2} m r^{2}$
B. $\frac{1}{2} I \omega^{2}$
C. $\frac{1}{2} I v^{2}$
D. $\frac{1}{2} m \omega^{2}$

Answer: B

D Watch Video Solution
87. Rotational kinetic energy is given by
A. $\frac{1}{2} m r^{2}$
B. $\frac{1}{2} I v^{2}$
C. $\frac{L^{2}}{2 I}$
D. $\frac{2 I}{L^{2}}$

Answer: C

D Watch Video Solution

88. If E is a rotational kinetic energy then
angular momentum is
A. $\sqrt{2 I E}$
B. $\frac{E^{2}}{2 I}$
C. $\frac{2 I}{E^{2}}$
D. $\frac{E}{I^{2} \omega^{2}}$

Answer: A

D Watch Video Solution

89. The product of torque acting on a body
and angular velocity is
A. Energy
B. power
C. workdone

D. kinetic energy

Answer: B

D Watch Video Solution

90. The work done per unit time in rotational
motion is given by
A. $\vec{F} \cdot v$
B. $\frac{d \theta}{d t}$
C. $\tau \omega$
D. $I \omega$

Answer: C

D Watch Video Solution

91. While rolling, the path of center of mass of an object is
A. straight line
B. parabola
C. hyperbola

D. circle

Answer: A

D Watch Video Solution

92. In pure rolling, the velocity of the point of
the rolling object which comes in contact with
the surface line
A. maximum
B. minimum
C. zero
D. $2 V_{C M}$

Answer: B

D Watch Video Solution

93. In pure rolling velocity of center of mass is
equal to
A. zero
B. $R \omega$

> C. $\frac{\omega}{R}$
> D. $\frac{R}{\omega}$

Answer: B

- Watch Video Solution

94. In pure rolling, rotational velocity of points

at its edges is equal to
A. $R \omega$
B. velocity of centre of mass

C. translational velocity

D. all the above

Answer: A

- Watch Video Solution

95. Sliding of the object occurs when

A. $V_{\text {trans }}<V_{\text {rot }}$
B. $V_{\text {trans }}=V_{\text {rot }}$
C. $V_{\text {trans }}>V_{\text {rot }}$
D. $V_{\text {trans }}=0$

Answer: C

D Watch Video Solution

96. Sliding of the object occurs while

A. $V_{\text {trans }}=V_{\text {rot }}$
B. $V_{C M}=V_{\omega}$
C. $V_{C M}<R \omega$
D. $V_{C M}>R \omega$

Answer: D

- Watch Video Solution

97. Sliding of the object occurs when

A. $V_{\text {trans }}<V_{\text {rot }}$
B. $V_{\text {trans }}=V_{\text {rot }}$
C. $V_{\text {trans }}>V_{\text {rot }}$
D. $V_{\text {trans }}=0$

98. Sliding of the object occurs when

A. $V_{\text {trans }}=V_{\text {rot }}$
B. $V_{C M}=V_{\omega}$
C. $V_{C M}<R \omega$
D. $V_{C M}>R \omega$

Answer: C
99. In sliding, the resultant velocity of a point of contact acts along
A. forward direction
B. backward direction
C. either (a) or (b)
D. tangential direction

Answer: A

- Watch Video Solution

100. In slipping, the resultant velocity of a point of contact acts along
A. forward direction
B. backward direction
C. either (a) or (b)
D. tangential direction

Answer: B

D Watch Video Solution
101. When a solid sphere is undergoing pure rolling, the ratio of translational kinetic energy to rotational kinetic energy is
A. $2: 5$
B. $5: 2$
C. $1: 5$
D. 5:1

Answer: B

- Watch Video Solution

102. Time taken by the rolling object in inclined plane to reach its bottom is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{1+\frac{k^{2}}{R^{2}}}{g \sin ^{2} \theta}} \\
& \text { B. } \sqrt{\frac{2 g h}{1+\frac{k^{2}}{R^{2}}}} \\
& \text { C. } \sqrt{\frac{2 h\left(1+\frac{k^{2}}{R^{2}}\right)}{g \sin ^{2} \theta}} \\
& \text { D. } \sqrt{\frac{2 h\left(1+\frac{R^{2}}{k^{2}}\right)}{g \sin ^{2} \theta}}
\end{aligned}
$$

Answer: C
103. The velocity of the rolling object on inclined plane at the bottom of inclined plane is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{1+\frac{k^{2}}{R^{2}}}{g \sin ^{2} \theta}} \\
& \text { B. } \sqrt{\frac{2 g h}{1+\frac{k^{2}}{R^{2}}}} \\
& \text { C. } \sqrt{\frac{2 h\left(1+\frac{k^{2}}{R^{2}}\right)}{g \sin ^{2} \theta}} \\
& \text { D. } \sqrt{\frac{2 h\left(1+\frac{R^{2}}{k^{2}}\right)}{g \sin ^{2} \theta}}
\end{aligned}
$$

104. Moment of inertia of an annular disc about an axis passing through the centre and perpendicula to the plane of disc is

$$
\begin{aligned}
& \text { A. } \frac{M}{2}\left(R_{1}^{2}+R_{2}^{2}\right) \\
& \text { B. } \frac{M}{2}\left(R_{1}^{2}-R_{2}^{2}\right) \\
& \text { C. } \frac{2}{M}\left(R_{1}^{2}+R_{2}^{2}\right) \\
& \text { D. } \frac{2}{M}\left(R_{1}^{2}-R_{2}^{2}\right)
\end{aligned}
$$

105. Moment of inertia of a thin uniform rod about an axis passing through the center of mass and perpendicular to the length is

$$
\begin{aligned}
& \text { A. } \frac{M a^{2}}{6} \\
& \text { B. } \frac{1}{3} M a^{2} \\
& \text { C. } \frac{M a}{6} \\
& \text { D. } \frac{M a^{2}}{12}
\end{aligned}
$$

106. Moment of inertia of a thin uniform
rectangular sheet about an axis passing
through the center of mass and perpendicular to the plane of the sheet is
A. $\frac{M l^{2}}{12}$
B. $\frac{M a^{2}}{12}$
C. $\frac{M b^{2}}{12}$
D. $\frac{M l^{2}}{6}$

D Watch Video Solution

107. Rotational kinetic energy can be calculated by using
A. $\frac{1}{2} I \omega^{2}$
B. $\frac{L^{2}}{2 I}$
C. $\frac{1}{2} L \omega$
D. all the above

D Watch Video Solution

108. The radius of gyration of a solid sphere of
radius about a certain axis is r. The distance of
that axis from the centre of the sphere is
A. $\frac{2}{5} r$
B. $\sqrt{\frac{2}{5}} r$
C. $\sqrt{0.6} r$
D. $\sqrt{\frac{5}{3}} r$

D Watch Video Solution

109. A wheel is rotating with angular velocity 2
$\mathrm{rad} / \mathrm{s}$. It is subjected to a uniform angular acceleration $2 \mathrm{rad} / \mathrm{s} 2$ then the angular velocity after 10 s is
A. $12 \mathrm{rad} / \mathrm{s}$
B. $20 \mathrm{rad} / \mathrm{s}$
C. $22 \mathrm{rad} / \mathrm{s}$

D. $120 \mathrm{rad} / \mathrm{s}$

Answer: C

D Watch Video Solution

110. Two rotating bodies A and B of masses
mand 2 m with moments of inertia
I_{A} and $I_{B}\left(I_{B}>I_{A}\right)$ have equal kinetic energy of rotation. If L_{A} and L_{B} be their angular momenta respectively, then

$$
\text { A. } L_{B}>L_{A}
$$

B. $L_{A}>L_{B}$
C. $L_{A}=\frac{L_{B}}{2}$
D. $L_{A}=2 L_{B}$

Answer: A

D Watch Video Solution

111. three identical particles lie in $x y$ plane. The
(x, y) coordinates of their positions are $(3,2)$,
(1.1) and (5.3), respectively. The (x, y)
coordinates of the centre of mass are
A. $(1,2)$
B. (a, b)
C. $(3,2)$
D. $(2,1)$

Answer: C

D Watch Video Solution

112. A solid cylinder of mass 3 kg and radius 10 cm is rotating about its axis with a frequency
$20 / \pi$. The rotational kinetic energy of the

cylinder

A. $10 \pi J$
B. 12 J
C. $\frac{6 \times 10^{2}}{\pi} J$
D. 3J

Answer: B
(Watch Video Solution
113. A circular dise in rolling down in an inclined plane without slipping. The percentage of rotational energy in its total energy is
A. 66.61%
B. 33.33%
C. 22.22%
D. 50%

Answer: B
114. A sphere rolls down in an inclined plane without slipping. The percentage of translational energy in its total energy is
A. 29.6%
B. 33.4%
C. 71.4%
D. 50%

Answer: C
115. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of 14 m 's to the heavier block in the direction of the lighter block. The velocity of the center of mass is
A. $30 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$

D. $5 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

116. A mass is whirled in a circular path with constant angular velocity and its angular momentum is L . If the string is now halved keeping the angular velocity the same, the angular momentum is

$$
\text { A. } \frac{L}{4}
$$

B. $\frac{L}{2}$
C. L
D. 2 L

Answer: A

D Watch Video Solution

117. The moment of inertia of a thin uniform
ring of mass 1 kg and radius 20 cm rotating
about the axis passing through the center and perpendicular to the plane of the ring is
A. $4 \times 10^{-2} \mathrm{kgm}^{2}$
B. $1 \times 10^{-2} \mathrm{kgm}^{2}$
C. $20 \times 10^{-2} \mathrm{kgm}^{2}$
D. $10 \times 10^{-2} \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution

118. A solid sphere is rolling down in the inclined plane, from rest without slipping. The angle of inclination with horizontal is 30°. The
linear acceleration of the sphere is

$$
\left.g=10 m s^{-2}\right)
$$

A. (a) $28 m s^{-2}$
B. (b) $3.9 m s^{-2}$
C. (c) $\frac{25}{7} m s^{-2}$
D. (d) $\frac{1}{20} m s^{-2}$

Answer: C

D Watch Video Solution
119. An electron is revolving in an orbit of radius $2 \AA$ with a speed of $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$. The angular momentum of the electron is

$$
\left[M_{e} 9=\times 10^{-31} \mathrm{~kg}\right]
$$

A. $2 \times 10^{-35} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$
B. $72 \times 10^{-36} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$
C. $7.2 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$
D. $0.72 \times 10^{-37} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

Answer: B
120. A raw egg and hard boiled egg are made to spin on a table with the same angular speed about the same axis. The ratio of the time taken by the eggs to stop is
A. $=1$
B. <1
C. >1
D. none of these

Answer: D

(D) Watch Video Solution

Additional Questions Solved I Short Answer Questions 1 Mark

1. What is rigid body ?

- Watch Video Solution

2. When an object will have procession? Give one example

D Watch Video Solution
3. Define angular momentum. Give an expression for it.

D Watch Video Solution
4. When an angular momentum of the object will be zero?

D Watch Video Solution
5. When an object be in mechanical equilibrium?
(Watch Video Solution
6. Obtain an expression for the power delivered by torque.

D Watch Video Solution

7. A boy sits near the edge of revolving circular dise
(i) What will be the change in the motion of a disc?
(ii) If the boy starts moving from edge to the center of the disc, what will happen?
8. Are moment of inertia and radius of gyration of a body constant quantities?

D Watch Video Solution

9. A cat is able to land on its feet after a fall.

Which principle of physics is being used?

Explain

10. About which axis a uniform cube will have

minimum moment of inertia?

D Watch Video Solution
11. Explain the principle of moments of rotational equilibrium? Hence define mechanical advantage?

D Watch Video Solution
12. Write down the moment of inertia of a disc of radius R and mass m about an axis in its plane at a distance $\mathrm{R} / 2$ from its centre.

D Watch Video Solution

13. Can the couple acting on a rigid body produce translatory motion?

D Watch Video Solution

14. Which component of linear momentum does not contribute to angular momentum ?

D Watch Video Solution

15. A system is in stable equilibrium. What can we say about its potential energy?

- Watch Video Solution

16. Is radius of gyration a constant quantity?

- Watch Video Solution

17. Two solid spheres of the same mass are made of metals of different densities. Which of them has a large moment of inertia about the diameter?

- Watch Video Solution

18. The moment of inertia of two rotating
bodies A and B are 1_{A} and $I_{B}\left(I_{A}>I_{B}\right.$ and
their angular moments are equal. Which one has a greater kinetic energy?

D Watch Video Solution

19. A particle moves in a circular path with decreasing speed. What happens to its angular momentum?

D Watch Video Solution
20. What is the value of instantaneous speed of the point of contact during pure rolling?

- Watch Video Solution

21. Which physical quantity is conserved when
a planet revolves around the sun?

- Watch Video Solution

22. What is the value of torque on the planet due to the gravitational force of sun?

D Watch Video Solution

23. If no external torque acts on a body, will its angular velocity be constant?
24. Why there are two propellers in a helicopter?

D Watch Video Solution

25. when a child sits stationary at one end of a
long trolley moving uniformly with some speed on a smooth horizontal plane. The speed of the centre of mass of system (child and trolley),

Additional Questions Solved lii Short Answer

 Questions 2 Marks1. State the factors on which the moment of inertia of a body depends.

- Watch Video Solution

2. On what factors does radius of gyration of body depend?
3. Why the speed of whirl wind in a Tornado is alarmingly high?

D Watch Video Solution

4. Can a body be in equilibrium while in motion? If yes, give an example.

D Watch Video Solution
5. If the object is at rest and no external force
is applied on the object, the static friction acting on the object is

- Watch Video Solution

6. If Earth contracts to half of its present radius what would be the length of the day at equator?

7. An internal force cannot change the state of

 motion of centre of mass of a body. How does the internal force of the brakes bring a vehicle to rest?
- Watch Video Solution

8. When does a rigid body said to be in equilibrium? State the necessary condition for a body to be in equilibrium.
9. How will you distinguish between a hard boiled egg and a raw egg by spinning it on a table top?

D Watch Video Solution

10. Equal torques are applied on a cylinder and
a sphere. Both have same mass and radius
rotates about its axis and sphere rotates
about one of its diameter. Which will rotates
acquire greater speed and why?
11. In which condition a body lying in gravitational field is in stable equilibrium?

D Watch Video Solution

12. Mention any two physical significance of moment of inertia.

Additional Questions Solved if Short Answer

 Questions 3 Marks1. Three mass points $m_{1} m_{2}$ amd m_{3} are
located at the vertices of an equilateral triangle of length a. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?
2. A disc rotating about its axis with angular speed ω_{o} is placed lightly (without any translational push) on a perfectly frictionless table. The radius of the disc is R. What are the linear velocities of the points A, B and C on the disc shown in Fig. 7.41? Will the disc roll in the direction indicated?

3. Find the torque of a corce $7 \hat{i}-3 \hat{j}-5 \hat{k}$ about the origin which acts on a particle whose position vector is $\hat{i}+\hat{j}-\hat{k}$

Given: $\vec{F}=7 \hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

Additional Questions Solved Ii Numericals

1. Three masses 3 kg 4 kg and 5 kg are located at the comers of an equilateral triangle of side

1 m . Locate the centre of mass of the system.

D Watch Video Solution

2. Two particles mass 100 g and 300 g at a given time have velocities
$10 \hat{i}-7 \hat{j}-3 \hat{k}$ and $7 \hat{i}-9 \hat{j}+6 \hat{k} m s^{-1}$
respectively. Detegnine yelocity of center of mass.
3. From a uniform disc of radius R, a circular disc of radius $R / 2$ is cut out. The centre of the hole is at $R / 2$ from the centre of original disc. Locate the centre of gravity of the resultant flat body.

- Watch Video Solution

4. The angular speed of a motor wheel is increased from 1200 rpm to 3120 rpm in 16
seconds, (i) What is its angular acceleration
(assume the acceleration to be uniform)

How many revolutions does the wheel make during this time?

D Watch Video Solution

5. A metre stick is balanced on a knife edge at
its centre. When two coins, each of mass 5 gare put one on top of the other at the 12.0 cm mark, the stick is found to be balanced at 45.0 cm , what is the mass of the meter stick?

Watch Video Solution

6. A solid sphere is rolling on a frictionless
plane surface about its axis of symmetry. Find ratio of its rotational energy to its total energy.

- Watch Video Solution

7. Calculate the ratio of radii of gyration of a circular ring and dise of the same radius with
respect to the axis passing through their centres and perpendicular to their planes.

D Watch Video Solution

8. Two discs of moments of inertia l_{1} and I_{2}
about their respective axes (normal to the disc
and passing through the centre), and rotating
with angular speed ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident, (i) What is the angular speed the two-disc system? (i) Show that the
kinetic energy of the combined system is less
than the sum of the initial kinetic energies of the two discs. How do you account for this loss in energy? Take $\omega_{1} \neq \omega_{2}$.

- Watch Video Solution

9. In the HCl molecule, the separation between
the nuclei of the two atoms is about $1.27 \AA\left(1 \AA=10^{10} \mathrm{~m}\right)$. Find the approximate
location of the CM of the molecule, given that
the chlorine atom is about 35.5 times as
massive as a hydrogen atom and nearly all the mass of an atom is concentrated in all its nucleus.

- Watch Video Solution

10. A child stands at the centre of turn table
with his two arms out stretched. The turn
table is set rotating with an angular speed of
40 rpm . How much is the angular speed of the
child if he folds his hands back and thereby
reduces his moment of inertia to $2 / 5$ times the
initial value? Assume that the turn table rotates without friction (ii) Show that the child's new kinetic energy of rotation is more than the initial kinetic energy of rotation. How do you account for this increase in kinetic energy?

D Watch Video Solution

11. To maintain a rotor at a uniform angular speed of 200 rad san engine needs to transmit
a torque of 180 Nm . What is the power
required by the engine? Assume that the engine is 100% cfficient

D Watch Video Solution

12. A car weighs 1800 kg . The distance between its front and back axles is 1.8 m . Its centre of gravity is 1.05 m behind the front axle.

Determine the force exerted by the level ground on each front and back wheel.

D Watch Video Solution

1. Derive an expression for center of mass for distributed point masses.

D Watch Video Solution

2. Discuss the center of mass of two point masses with pictorial representation.
3. Derive an expression for kinetic energy in
rotation and establish the relation between
rotational kinetic energy and angular momentum.

- Watch Video Solution

4. Discuss how the rolling is the combination
of translational and rotational and also
possibilities of velocity of different points in pure rolling,
5. Derive an expression for kinetic energy in pure rolling.

D Watch Video Solution

6. (i) Can a body in translatory motion have angular momentum? Explain
(ii) Why is it more difficult to revolve a stone by tying it to a longer string than by tying it to a shorter string?

Watch Video Solution

