© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

NATURE OF PHYSICAL WORLD AND MEASUREMENT

In Text Solved Examples

1. From a point on the ground, the top of a tree is seen to have an angle of elevation 60°.

The distance between the tree and a point is 50 m. Calculate the height of the tree?

D Watch Video Solution

2. The Moon subtends an angle of $1^{\circ} 55^{\prime}$ at
the base line equal to the diameter of the

Earth. What is the distance of the Moon from
the Earth? (Radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$)
3. A RADAR signal is beamed towards a planet and its echo is received 7 minutes later. If the distance between the planet and the Earth is $6.3 \times 10^{10} \mathrm{~m}$. Calculate the speed of the signal.

- Watch Video Solution

4. In a series of successive measurements in an
experiment, the readings of the period of
oscillation of a simple pendulum were found to be 2.63s, 2.56s, 2.42, 2.71s and 2.80 s .

Calculate
(i) the mean value of the period of oscillation
(ii) the absolute error in eah measurement
(iii) The men absolute error (iv) the relative error (v) the percentage error. Expresss the results in proper form.

Watch Video Solution

$R_{1}=(100 \pm 3) \Omega, R_{2}=(150 \pm 2) \Omega, \quad$ are
connected in series. What is their equivalent resistance?

D Watch Video Solution

6. The temperatures of two bodies measured

$$
\begin{aligned}
& \text { by } \begin{array}{c}
\text { a } \\
\text { thermometer }
\end{array} \text { are } \\
& t_{1}=(20 \pm 0.5)^{\circ} C, t_{2}=(50 \pm 0.5)^{\circ} C .
\end{aligned}
$$

Calculate the temperature difference and the error therein.

D Watch Video Solution

7. The length and breadth of a rectangle are $(5.7 \pm 0.1) \quad \mathrm{cm} \quad$ and $\quad(3.4 \pm 0.2) \quad \mathrm{cm}$ respectively. Calculate the area of the rectangle with error limits.
8. The voltage across a wire is $(100 \pm 5) V$ and the current passing through it is $(10 \pm 0.2) \mathrm{A}$.

Find the resistance of the wire.

- Watch Video Solution

9. A physical quantity x is given by $\mathrm{x}=\frac{a^{2} b^{3}}{c \sqrt{d}}$. If the percentage errors of measurement in a, b,
c and d are $4 \%, 2 \%, 3 \%$ and 1% respectively, then calulate the percentage error in the calculation of x.
10. State the number of significant figures in the following
(i) 600800 (ii) 400 (iii) 0.007 (iv) 5213.0
(v) $2.65 \times 10^{24} \mathrm{~m}$ (vi) 0.0006032

D Watch Video Solution

11. Round off the following numbers as indicated
(i) 18.35 upto 3 digits (ii) 19.45 upto 3 digits (iii)
101.55×10^{6} upto 4 digits (iv) 248337 upto digits 3 digits (v) 12.653 upto 3 digits.

D Watch Video Solution

12. Convert 76 cm of mercury pressure into
Nm^{-2} using the method of dimensions.

- Watch Video Solution

13. Suppose unknowingly you wrote the universal gravitational constant value as
$G=6.67 \times 10^{11}$ Instead of the correct value $G=6.67 \times 10^{-11}$, what is the acceleration due to this new acceleration due to gravity, what will be your weight W'?

- Watch Video Solution

14. Check the correctness of the equation $\frac{1}{2} m v^{2}=m g h$ using dimensional analysis method.

- Watch Video Solution

15. Obtain in expression for the time period T of a simple pendulun. The time period depend upon (i) mass 'm' of the bob (ii) length 'I' of the pendulum and (iii) acceieration due to gravity g at the place where the pendulum is suspended. (Constant $k=2 \pi)$ i.e.

- Watch Video Solution

16. Find the dimensions of a and b in the
formula $\left[P+\frac{a}{V^{2}}[V-b]\right]=R T$ where P is pressure and V is the volume of the gas.

- Watch Video Solution

17. Show that $\left(P^{-5 / 6} \rho^{1 / 2} E^{1 / 3}\right)$ is of the dimension of time. Here P is the pressure, ρ is the density and E is the energy of a bubble).

- Watch Video Solution

18. Find the dimensions of mass in terms of

Energy, length and time.

D Watch Video Solution
19. A physical quantity Q is found to depend on quantities $\mathrm{x}, \mathrm{y}, \mathrm{z}$ obeying relation $\mathrm{Q}=\frac{x^{2} y^{3}}{z^{1}}$.

The percentage errors in x, y, and z are $2 \%, 3 \%$ and 1% respectively. Find the percentage error in Q.

D Watch Video Solution

20. The mass and volume of a body and found to be $4 \pm 0.03 \mathrm{~kg}$ and $5 \pm 0.01 \mathrm{~m}^{3}$
respectively. Then find the maximum possible percentage error in density.

D Watch Video Solution

21. Using a Vernier Caliper, the length of a cylinder in different measurements is found to be $2.36 \mathrm{~cm}, 2.27 \mathrm{~cm}, 2.26 \mathrm{~cm}, 2.28 \mathrm{~cm}, 2.31 \mathrm{~cm}$,
2.28 cm and 2.29 cm . Find the mean value, absolute error the relative error and the percentage error of the cylinder.
22. The shadow of a pole standing on a level around is found to be 45 m longer when the Sun's altitude is 30° than when it was 60°.

Determine the height of the pole. [Given $\sqrt{3}=1.73]$

23. Calculate the number of times a human heari beats in the life of 100 years old man. Time of one heart beat $=0.8 \mathrm{~s}$

- Watch Video Solution

24. The parallax of a heavenly body measured
from two points diametrically opposite on equator of Earth is 2^{1}. Calculate the distance
of the heavenly body. [Given radius of the Earth $=6400 \mathrm{~km}]\left[1 "=4.85 \times 10^{-6} \mathrm{rad}\right]$

D Watch Video Solution

25. Convert a velocity of $72 \mathrm{~km}^{1-}$ into $m s^{-1}$ with the help of dimensional analysis.

D Watch Video Solution

26. Check The correctness of the following equation using dimensional analysis. Make a
comment on it.
$S=u t+1 / 2 \mathrm{at}^{2}$ where s is the displacement,
u is the initial velocily, t is the time and a is the acceleration produced,

- Watch Video Solution

27. Round - off the following numbers as indicated.
(a) 17.234 to 3 digits (b) 3.996×10^{5} to 3 digits
(c) 3.6925×10^{3} to 2 digits (d) 124783 to 5 digits.

Watch Video Solution

28. Solve the following with regard to significant figures.

$$
\begin{aligned}
& \text { (a) } \sqrt{4.5-3.31} \text { (b) } 5.9 \times 10^{5}-2.3 \times 10^{4} \\
& \text { (c) } 7.18+4.3(d) 6.5+0.0136
\end{aligned}
$$

- Watch Video Solution

29. Arrive at Einstein's mass-energy relation by dimensional method $\left(E=m c^{2}\right)$.
30. The velocity of a body is given by the equation $\quad v=b / t+c t^{2}+d t^{3}$. Find the dimensional formula for b.

D Watch Video Solution

31. The initial and final temperatures of a liquid in a container are observed to be
$75.4 \pm 0.5^{\circ} C$ and $56.8 \pm 0.2^{\circ} C$. Find the fall in the temperature of the liquid.

- Watch Video Solution

32. Two resistors of resistances $R_{1}=150 \pm 2$

Ohm and $R_{2}=220 \pm 6$ Ohm are connected in parallel combination. Calculate the equivalent resistance.

Hint: $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

D Watch Video Solution

33. A capacitor of capacitance $\mathrm{C}=3.0 \pm 0.1 \mu F$
is charged to a voltage of $\mathrm{V}=18 \pm 0.4$ Volt.

Calculate the charge $\mathrm{Q}[$ Use $\mathrm{Q}=\mathrm{CV}]$.

- Watch Video Solution

Textbook Questions Solved Multiple Choice

 Questions1. One ofi the combinations from the
fundamental physical constants is $\frac{h c}{G}$. The unit of this expression is
A. $K g^{2}$
B. m^{3}
C. S^{-1}
D. m

Answer: A

D Watch Video Solution

2. If the error in the measurement of radius is
2%, then the error in the determination of
volume of the pshere will be
A. 8%
B. 2%
C. 4%
D. 6%

Answer: D

- Watch Video Solution

3. If the length and tiome period of an oscillating pendulum have errors of 1% and
3% respectgively then the error in
measurement of acceleratinon due to gravity
is
A. 4%
B. 5%
C. 6%
D. 7%

Answer: D
(Watch Video Solution
4. The length of a body is measured as 3.51 m , if
the acuracy is 0.01 m , then the percentage errof in the measurement is
A. 351%
B. 1%
C. 0.28%
D. 0.035%

Answer: C

- Watch Video Solution

5. Which of the following has the highest number of significant figures?

A. $0.007 m^{2}$
B. $2.64 \times 10^{24} \mathrm{~kg}$
C. $0.0006032 m^{2}$
D. 6.3200 J

Answer: D
(D) Watch Video Solution
6. If $\pi=3.14$, then the value of π^{2} is
A. 9.8596
B. 9.860
C. 9.86
D. 9.9

Answer: C

D Watch Video Solution

7. Which of the following pairs of physical

 quantities have same dimension?A. force and power
B. torque and energy
C. torque and power
D. force and torque

Answer: B
(D) Watch Video Solution
8. The dimensional formula of Planck's constand h is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{2} T^{-3}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{3} T^{3}\right]$

Answer: A

D Watch Video Solution
9. The velocity of a particle v at a instant t is given by $v=a t+b t^{2}$. The dimension of b is
A. [L]
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

- Watch Video Solution

10. The dimensional formual for gravitational constnat G is
A. $\left[M L^{3} T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{-3} T^{-2}\right]$
D. $\left[M L^{-3} T^{2}\right]$

Answer: C

D Watch Video Solution
11. The density of material in CGS system of units is $4 \mathrm{gcm}^{-3}$. In a system of units in which unit of length is 10 cm and unit of mass is 100 gm, then the value of density of material will be
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C
12. If the force is proportional to square of
velocity, the the dimensional of proportionality constant is
A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2 T}\right]$
D. $\left[M L^{-1} T^{0}\right]$
13. The dimension of $\frac{1}{\mu_{0} \varepsilon_{0}}$ is
A. length
B. time
C. velocity
D. force

Answer: C
14. Plank's constant (h), speed of light in vacuum (c) and Newton's gravitational
constant (G) are taken as three fundamental
constants.

Which of the following combinations of these
has the dimensions of length?
A. $\frac{\sqrt{h G}}{c^{\frac{3}{2}}}$
B. $\frac{\sqrt{h G}}{c^{\frac{5}{2}}}$
C. $\sqrt{\frac{h c}{G}}$
D. $\sqrt{\frac{G c}{h^{\frac{3}{2}}}}$

Answer: B

- Watch Video Solution

15. A length -scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number pr unit volume
(n) of certain charged paticles, and the charge
(q) carried by each of the particles. Which of
the following expression for I is dimensionally correct?
A. $l=\sqrt{\frac{n q^{2}}{\varepsilon k_{B} T}}$
B. $l=\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}$
C. $l=\sqrt{\frac{q^{2}}{\varepsilon^{\frac{2}{3} k_{B} T}}}$
D. $l=\sqrt{\frac{q^{2}}{\varepsilon k_{B} T}}$

Answer: B

- Watch Video Solution

Textbook Questions Solved Short Answer Questions

1. Briefly explain the types of physical quantities.

D Watch Video Solution

2. How will you measure the diameter of the

Moon using parallax method?

D Watch Video Solution

3. Write the rules for determining significant figures.
4. What are the limitations of dimensional analysis?

D Watch Video Solution
5. Define precision and accuracy. Exp,ain with one example.

D Watch Video Solution

Textbook
 Questions
 Solved
 Long
 Answer

 Questions1. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.

(Watch Video Solution

2. Explain in detail the various types of errors.
3. What do you mean by propagation of errors? Explain the propagation of errors in addition and multiplication.

D Watch Video Solution

4. Write short notes on the following:
a. Unit
b. Rounding -off
c. Dimensionless quantities
5. Explain the principle of homogeneity of dimensions. What are its uses? Given example.

D Watch Video Solution

Textbook Questions Solved Numerical Problems

1. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an eneny
submarine is observed to be 80 sec . If the speed of sound in water is $1460 \mathrm{~ms}^{-1}$. What is the distance of enemy submarine?

D Watch Video Solution

2. The radius of the circle is 3.12 m . Calculate
the area of the circkle with regard to significant figures.

D Watch Video Solution

3. Assuming that the frequency γ of a vibrating string may depend upon (i) applied force (F) (ii) length (I) (iii) mass per unit lengt (m), prove that $\quad \gamma \propto \frac{1}{l} \sqrt{\frac{F}{m}} \quad$ using dimensional analysis.

D Watch Video Solution

4. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is
measured to be 35.72". Calculate the diameter of Jupiter.

D Watch Video Solution

5. The measurement value of length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was measured to be 40 s within 1 s resolution.

Calculate the percentage accuracy in the determination of acceleration due to gravity g
from the above measurement.

Watch Video Solution

Textbook Questions Solved Conceptual Questions

1. Why is it convenient to express the distance of stars in terms of light year (or) parsec rather than in km ?

- Watch Video Solution

2. Show that a screw gauge of pitch I mm and

100 divisions is more precise than a vernier caliper with 20 divisions on the sliding scale.

D Watch Video Solution

3. If humans were to settle on other planets,
which of the fundamental quantities will be in
trouble? Why?

D Watch Video Solution
4. Having all units in atomic standards in more useful. Expalin.

D Watch Video Solution

5. Why dimensional methods are applicable only up to three quantities?

D Watch Video Solution

Additional Questions Solved Multiple Choice Questions

1. The SI unit of surface tension is

\qquad
A. $M T^{-2}$
B. $N m^{-2}$
C. Nm

$$
\text { D. } N m^{-1}
$$

Answer: D

2. One atomus equal to

A. 100 ms
B. $\frac{1}{6.25} \mathrm{~ms}$
C. 160 ms
D. $160 \mu \mathrm{~s}$

Answer: C

3. One lighi year is........

A. $3.153 \times 10^{7} \mathrm{~m}$
B. $1.496 \times 10^{7} \mathrm{~m}$
C. $9.46 \times 10^{12} \mathrm{~km}$
D. $3.26 \times 10^{15} \mathrm{~m}$

Answer: C
4. One Astronomical unit is.........
A. $3.153 \times 10^{7} \mathrm{~m}$
B. $1.496 \times 10^{11} \mathrm{~m}$
C. $9.46 \times 10^{12} \mathrm{~km}$
D. $3.26 \times 10^{15} \mathrm{~m}$

Answer: B
5. One parsec is

A. $3.153 \times 10^{7} \mathrm{~m}$
B. $3.26 \times 10^{15} \mathrm{~m}$
C. $30.84 \times 10^{15} \mathrm{~m}$
D. $9.46 \times 10^{15} \mathrm{~m}$

Answer: C

6. One Fermi is........

A. $10^{-9} \mathrm{~m}$
B. $10^{-10} \mathrm{~m}$
C. $10^{-12} \mathrm{~m}$
D. $10^{-15} \mathrm{~m}$

Answer: D

7. One Angstrom is.......

A. $10^{-9} \mathrm{~m}$

B. $10^{-10} \mathrm{~m}$
C. $10^{-12} \mathrm{~m}$

D. 10^{-15}
m

Answer: B
8. One solar mass is
A. $2 \times 10^{30} \mathrm{~kg}$
B. $2 \times 10^{30} \mathrm{~g}$
C. $2 \times 10^{30} \mathrm{mg}$
D. 2×10^{30} tonne

Answer: D

D Watch Video Solution

9. $\frac{1}{12}$ of the mass of carbon 12 atom is......

A. 1 TMC
B. mass of neutron
C. 1 amu

D. mass of hydrogen

Answer: D

10. The word physics is derived from

Meaning nature.
A. scientist
B. fusis
C. fission
D. fusion

Answer: B

D Watch Video Solution
11. The study of forces acting on bodies whether at rest or in motion is
A. classical mechanics
B. quantum mechanics
C. thermodynamics
D. condensed matter physics

Answer: A

D Watch Video Solution
12. Mass of observable universe
A. $10^{31} \mathrm{~kg}$
B. $10^{41} \mathrm{~kg}$
C. $10^{55} \mathrm{~kg}$

D. $9.11 \times 10^{31} \mathrm{~kg}$

Answer: C

13. Mass of an electron

A. $10^{-31} \mathrm{~kg}$
B. $9.11 \times 10^{-31} \mathrm{~kg}$
C. $1.6 \times 10^{-31} \mathrm{~kg}$
D. $1.6 \times 10^{-27} \mathrm{~kg}$

Answer: B
14. The study of production and propagation of sound waves.
A. Astrophysics
B. Acoustics
C. Relativity

D. Atomic physics

Answer: B

15. The study of the discrete nature of phenomena at the atomic and subatomic levels.
A. Quantum mechanics
B. High energy physics
C. Acoustics
D. Classical mechanics

Answer: A

16. The techniques used to study the crystal structure of various rocks are......
A. x-ray diffraction
B. interference
C. total internal reflection
D. refraction

Answer: A

D Watch Video Solution
17. The astronomers used to observe distant points of the universe by
A. Electron telescope
B. Astronomical telescope
C. Radio telescope
D. Radar

Answer: C

- Watch Video Solution

18. The comparison of any physical quantity with its standard unit is known as
A. fundamental quantities
B. measurement
C. dualism
D. derived quantities

Answer: B

D Watch Video Solution

19. Fundamental quantities can also be known

 as quantities.A. original
B. physical
C. negative
D. base

Answer: D

D Watch Video Solution
20. Which one of the following is not a
fundamental quantity?
A. length
B. luminous intensity
C. temperature
D. magnetic field

Answer: D

D Watch Video Solution
21. The system of unit not only based on length, mass and time is
A. FPS
B. CGS
C. MKS
D. SI

Answer: D

D Watch Video Solution

22. The coherent system of units

A. CGS
B. SI
C. FPS
D. MKS

Answer: B

D Watch Video Solution
23. The triple point temperature of water is
A. $-273.16 K$
B. 0 K
C. 273.16 K
D. 100 K

Answer: D

D Watch Video Solution
24. Which of the following is a unit of distance?
A. Light year
B. Leap year
C. Dyne-sec
D. Parul

Answer: A

D Watch Video Solution

25. The unit of moment of force......

A. $N m^{2}$
B. Nm
C. N
D. NJ rad

Answer: B

26. I radian is...........

A. $2.91 \times 10^{-4} \mathrm{~m}$
B. 57.27°
C. 180°
D. $\frac{\pi}{180}$

Answer: B

27. One degree of arc is equal to..........

A. ${ }^{\prime \prime}$
B. 60"
C. 60'
D. 60°

Answer: C
28. One degree of arc is equal to..........
A. $1.457 \times 10^{2} \mathrm{rad}$
B. $1.457 \times 10^{-2} \mathrm{rad}$
C. $1.745 \times 10^{2} \mathrm{rad}$
D. $1.745 \times 10^{-2} \mathrm{rad}$

Answer: B
29.1 minute of arc is equal to...........
A. $1.745 \times 10^{-2} \mathrm{rad}$
B. $2.91 \times 10^{-4} \mathrm{rad}$
C. $2.91 \times 10^{4} \mathrm{rad}$
D. $4.85 \times 10^{-6} \mathrm{rad}$

Answer: B
30.1 second of arc is equal to............
A. $\frac{1^{\circ}}{3600}$
B. $4.85 \times 10^{6} \mathrm{rad}$
C. $\frac{1}{4.85} \times 10^{-6} \mathrm{rad}$
D. $2.91 \times 10^{-4} \mathrm{rad}$

Answer: A

31. 1 second of arc is equal to...........

A. 57.27°
B. $1.745 \times 10^{-2} \mathrm{rad}$
C. $2.91 \times 10^{-4} \mathrm{rad}$
D. $4.85 \times 10^{-6} \mathrm{rad}$

Answer: A

32. Unit of impulse...........

A. $N S^{2}$
B. NS
C. Nm
D. Kgms^{-2}

Answer: B
33. The ratio of energy and temperature is known as
A. Stefan's constant
B. Boltzmann constant
C. Planck's constant
D. Kinetic constant

Answer: B

D Watch Video Solution
34. The range of distance can be measured by the direct method is.
A. 102 to $10-5 \mathrm{~m}^{`}$
B. $10-2$ to $102 \mathrm{~m}^{`}$
C. 102 to $105 \mathrm{~m}^{`}$
D. 10-2 to $105 \mathrm{~m}^{`}$

Answer: C

D Watch Video Solution

35. Which of the following is in increase order?

A. exa, tera, hecto
B. tera, exa, hecto
C. giga, tera, exa
D. hecto,exa,giga

Answer: C

A. nano

B. pico

C. femto
D. atto

Answer: D

37. A radio signal sent towards the distant planet, returns after " t " s. If "c" is the speed of
radio waves then the distance of the planet from the Earth is.
A. $c \frac{t}{2}$
B. $c t^{2}$
C. 2ct
D. $c^{2} \frac{t^{2}}{2}$

Answer: A

38. Find odd one out..............

A. Newton

B. Metre
C. Candela
D. Kelvin

Answer: A
39. The shift in the position of an object when viewed with two eyes, keeping one eye closed at a time is known as
A. basis
B. fundamental
C. parallax
D. pendulum

Answer: C

D Watch Video Solution

40. Chandrasekar limit is........... times the mass

 of the Sun.A. 1.2
B. 1.4
C. 1.6
D. 1.8

Answer: B

- Watch Video Solution

41. The smallest physical unit of time is.
A. second

B. minute

C. hour
D. year

Answer: D
(Watch Video Solution
42. Size of atomic nucleus is
A. $10^{-10} \mathrm{~m}$
B. $10^{-12} \mathrm{~m}$
C. $10^{-15} \mathrm{~m}$
D. $10^{-18} \mathrm{~m}$

Answer: C

D Watch Video Solution

43. Time interval between two successive heart beat is in the order of
A. $10^{\circ} \mathrm{s}$
B. 10 s
C. $10^{2} \mathrm{~s}$
D. $10^{-3} \mathrm{~s}$

Answer: A

- Watch Video Solution

44. Half life time of a free neutron is in the order of.
A. $10^{\circ} \mathrm{s}$
B. $10^{1} \mathrm{~s}$
C. $10^{2} \mathrm{~s}$
D. $10^{3} \mathrm{~s}$

Answer: D

- Watch Video Solution

45. The uncertainty contained in any measurement is
A. rounding off
B. error
C. parallax
D. gross

Answer: B

D Watch Video Solution
46. Zero error of an instrument is a
A. Systematic error
B. Random error
C. Gross crror
D. Both (a) and (b)

Answer: A

- Watch Video Solution

47. Error in the measurement of radius of a sphere is 2%. Then error in the measurement of surface area is
A. 1%
B. 2%
C. 3%
D. 4%

Answer: D

- Watch Video Solution

48. Imperfections in experimental procedure gives error.
A. random
B. gross
C. Systematic
D. personal

Answer: C

D Watch Video Solution

49. Random error can also be called as
A. personal error
B. chance error
C. gross error
D. unsystematic error

Answer: B

D Watch Video Solution
50. To get the best possible true value of the quantity has to be taken.
A. rms value

B. net value

C. arithmetic mean

D. Mode

Answer: C

D Watch Video Solution

51. The error caused due to the shear carelessness of an observer is called as error.
A. Systematic
B. Gross
C. Random
D. Personal

Answer: B

- Watch Video Solution

52. The uncertainty in a measurement is called as
A. error
B. systematic
C. random error
D. gross error

Answer: A

- Watch Video Solution

53. The difference between the true value and
the measured value of a quantity is known as
A. Absolute error
B. Relative error
C. Percentage error
D. Systematic error

Answer: A

D Watch Video Solution
54. If $a_{1}, a_{2}, a_{3} \ldots \ldots a_{n}$ are the measured value of a physical quantity "a" and a_{m} is the true value then absolute error.
A. $a_{m}=\Delta a_{n}+a_{n}$
B. $\Delta a_{n}=a_{m}+a_{n}$
C. $\Delta a_{n}=a_{m}-a_{m}$
D. $\Delta a_{n}=a_{m}-a_{n}$

Answer: D

D Watch Video Solution

55. If ' a_{m} ' and' Δa_{m} are true value and mean absolute error respecively, then the magnitude of the quantity may lie between
A. $a_{m}+a_{n}$ to $a_{m}-a_{n}$
B. $a_{m}-\Delta a_{m}$ to $a_{m}+\Delta a_{n}$
C. $2 a_{m}$ to Δa_{m}
D. 0 to $2 a_{m}$

Answer: B

D Watch Video Solution
56. The ratio of the mean absolute error to the
A. absolute error
B. random error
C. relative error
D. percentage error

Answer: C

D Watch Video Solution

57. Random error can also be called as
A. fractional error

B. absolute error

C. percentage error
D. systematic error

Answer: A

D Watch Video Solution
58. A measured value to be close to targeted
value, percentage error must be close to
A. 0
B. 10
C. 100
D. ∞

Answer: A

- Watch Video Solution

59. The maximum possible error in the sum of two quantities is equal to

$$
A . Z=A+B
$$

B. $\Delta Z=\Delta A+\Delta B$

C. $\Delta Z=\Delta A / \Delta B$
D. $\Delta Z=\Delta A-\Delta B$

Answer: B

D Watch Video Solution

60. The maximum possible error in the difference of two quantities is.
A. DeltaZ = DeltaA +DeltaB

$$
\begin{aligned}
& \text { B. } \Delta Z=\Delta A-\Delta B \\
& \text { c. } \frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B} \\
& \text { D. } \frac{\Delta Z}{Z}=\frac{\Delta A \Delta B}{A B}
\end{aligned}
$$

Answer: C

- Watch Video Solution

61. The maximum fractional error in the difference of two quantities is.

$$
A . Z=A+B
$$

$$
\begin{aligned}
& \text { B. } \Delta Z=\Delta A-\Delta B \\
& \text { c. } \frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B} \\
& \text { D. } \frac{\Delta Z}{Z}=\frac{\Delta A \Delta B}{A B}
\end{aligned}
$$

Answer: C

- Watch Video Solution

62. The fractional error in the $n^{\text {th }}$ power of a quantity is

$$
\text { A. } \frac{\Delta Z}{Z}=n \frac{\Delta A}{A}
$$

B. $\frac{Z}{\Delta Z}=n \frac{A}{\Delta A}$
c. $\frac{\Delta Z}{Z}=\frac{1}{n} \frac{\Delta A}{A}$
D. $\frac{Z}{\Delta Z}=\frac{1}{n} \frac{A}{\Delta A}$

Answer: A

- Watch Video Solution

63. A physical quantity is given is
$y=\frac{a b^{3}}{c^{2}}$. If $\Delta a, \Delta b, \Delta c$ are absolute errors,
the possible fractional error in y is

$$
\begin{aligned}
& \text { A. } \frac{\Delta y}{y}=\frac{\Delta a \Delta b}{2 \Delta c} \\
& \text { B. } \frac{\Delta y}{y}=\frac{\Delta a}{a}+3 \frac{\Delta b}{b}+2 \frac{\Delta c}{c} \\
& \text { C. } \frac{\Delta y}{y}=\frac{\Delta a}{a}+\left(\frac{\Delta b}{a}\right)^{3}+\left(\frac{\Delta c}{c}\right)^{2} \\
& \text { D. } \frac{\Delta y}{y}=\frac{\Delta a}{a}+\frac{\Delta b}{a}+\frac{\Delta c}{c}
\end{aligned}
$$

Answer: B

- Watch Video Solution

64. Number of significant digits in 3256 .
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

65. Number of significant digits in 332005 .
A. 1
B. 6
C. 5
D. 2

Answer: C

- Watch Video Solution

66. Number of significant digits in 20.00..........
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

67. Number of significant digits in 2030...........
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution

68. Number of significant digits in 0.0342 .
A. 1
B. 2
C. 3
D. 4

69. Number of significant digits in 20.00.........

A. 1
B. 2
C. 3
D. 4

Answer: D

70. Number of significant digits in

0.030400.
A. 6
B. 5
C. 4
D. 3

Answer: B

- Watch Video Solution

71. The force acting on a body is mesured as
4.25 N. Round it off with two significant figure...........
A. 4.3
B. 4.2
C. both (a) or (b)
D. 4.25

Answer: B
72. The quantities a, b, c are measured as 3.21,
4.253, 7.2346. The sum $(a+b+c)$ with proper
significant digits is.
A. 14.6976
B. 14.697
C. 14.69
D. 14.6

Answer: C

D Watch Video Solution

73. The dimensionis of universal gravitational

constant is

$$
\begin{aligned}
& \text { A. } M L^{2} T^{-2} \\
& \text { B. } M^{-1} L^{3} T^{-1} \\
& \text { C. } M^{3} L^{-2} T^{-1} \\
& \text { D. } M L^{2} T^{-2}
\end{aligned}
$$

Answer: B

74. The ratio of one nanometer to one micron is.
A. 10^{-3}
B. 10^{3}
C. 10^{-9}
D. 10^{-6}

Answer: A

- Watch Video Solution

75. Which of the following physical quantities
have same dimensional formula?
A. Moment of inertia and moment of force
B. Work and torque
C. Impulse and momentum

D. Angular momentum and Planck's

constant

Answer: A

76. Two quantities A and B have different dimensions. Which of the following is physically meaningful?
A. $A+B$
B. $A-B$
C. A / B
D. None

Answer: C

77. The dimensional formula for moment of inertia.............
A. $M L^{0} T^{-2}$
B. $M L^{-1} T^{2}$
C. $M L^{-2} T^{0}$
D. $M L^{2} T^{0}$

Answer: D

78. Which of the following is having same dimensional formula?
A. tension and surface tension
B. strain and angle
C. year and light

D. none of this

Answer: B
(Watch Video Solution
79. Which of the following quantities is expressed as force per unit area?
A. Pressure
B. Stress
C. Both (a) and (b)
D. None

Answer: C

D Watch Video Solution
80. In equation of motion $S=u t+\frac{1}{2} k t^{2}$,
the dimensional formula for K is

> A. $\left[L T^{-1}\right]$
> B. $\left[L T^{-2}\right]$
> C. $[\mathrm{T}]$
> D. $\left[L^{-1} T\right]$

Answer: B

D Watch Video Solution
81. The dimensional formula for heat capacity.............
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{2} K^{-1}\right]$
C. $\left[M L^{2} T^{2} K^{-1}\right]$
D. $\left[M L^{2} T^{-2} K^{-1}\right]$

Answer: D

D Watch Video Solution
82. The product of Avogadro constant and elementary charge is known as constant.
A. Planck's
B. Avogadro
C. Boltzmann
D. Faraday

Answer: D

83. Force F is given by $F=a t+b t^{2}$. Where "t"
is time. What are the dimensions of "a" and "cb"?

$$
\begin{aligned}
& \text { A. }\left[M L T^{-3}\right] \text { and }\left[M L T^{-4}\right] \\
& \text { B. }\left[M L T^{-4}\right] \text { and }\left[M L T^{-3}\right] \\
& \text { C. }\left[M L T^{-1}\right] \text { and }\left[M L T^{-2}\right] \\
& \text { D. }\left[M L T^{-2}\right] \text { and }\left[M L T^{-0}\right]
\end{aligned}
$$

Answer: D

84. Dimensions of impulse are :

A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{2} T^{0}\right]$

Answer: C

- Watch Video Solution

85. If speed of light (c), acceleration due to
gravity (g) and pressure (P) are taken as
fundamental units, the possible relation to gravitational constant (G) is.
A. $c^{0} g p^{-3}$
B. $c^{2} g^{3} p^{-2}$
C. $c^{0} g^{2} p^{-1}$
D. $c^{2} g^{2} p^{-2}$

Answer: C

86. Equivalent of one joule is

A. $N m$
B. $\mathrm{kg} m^{2} s^{-2}$
C. $\mathrm{kg} \mathrm{m} s^{-1}$
D. $\mathrm{Nkg} m^{2}$

Answer: B

87. Pick out the dimensionless quantity...........

A. vapour density
B. specific gravity
C. molality
D. mass fraction

Answer: B

D Watch Video Solution

88. Odd one out
A. strain
B. refractive index
C. numbers
D. stress

Answer: D

D Watch Video Solution

89. A wire has a mass $0.3 \pm 0.003 g$ radius
$0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The
maximum percentage error in the measurement of its density is :
A. 1%
B. 2%
C. 3%
D. 4%

Answer: D
(Watch Video Solution
90. The dimensions of Planck's constant are same as
A. energy
B. momentum
C. angular momentum
D. power

Answer: C
(Watch Video Solution
91. Given that $\mathrm{y}=\mathrm{A} \sin \left(\frac{2 \pi}{\lambda}(c t-x)\right)$. Where
y and x are measured in metres. Which of the following statements is true?
A. The unit of λ is same as that of x and A
B. The unit of λ is same as that of x but not of A
C. The unit of c is same as that of $2 \pi / \lambda$

D. The unit of (ct -x) is same as that $2 \pi / \lambda$

Answer: A

92. The number of significant figures in

 0.06900 isA. 1
B. 2
C. 4
D. 5

Answer: C

- Watch Video Solution

93. The numbers 3.665 and 3.635 on rounding

 off to 3 significant figures will giveA. 3.66 and 3.63
B. 3.66 and 3.64
C. 3.67 and 3.63
D. 3.67 and 3.64

Answer: B

D Watch Video Solution
94. Which of the following measurements is most precise?
A. 4.00 mm
B. 4.00 cm
C. 4.00 m
D. 4.00 km

Answer: A

D Watch Video Solution
95. The mean radius of a wire is 2 mm . Which
of the following measurements is most accurate?
A. 1.9 mm
B. 2.25 mm
C. 2.3 mm
D. 1.83 mm

Answer: A

D Watch Video Solution

96. If error in measurement of radius of sphere

is 1%. What will be the error in measurement of volume?
A. 1%
B. $\frac{1}{3} \%$
C. 3%
D. 10%

Answer: C

D Watch Video Solution

97. Dimensions $\left[M L^{-1} T^{-1}\right]$ are related to

A. torque
B. work
C. energy
D. Coefficient of viscosity

Answer: D

D Watch Video Solution
98. Heat produced by a current is obtained a
relation $\mathrm{H}=I^{2} R T$. If the errors in measuring
these quantities current, resistance, time are
$1 \% 2 \%$ and 1% respectively then total error in
calculating the energy produced is.
A. 2%
B. 4%
C. 5%
D. 6%

Answer: C
99. Length cannot be measured by
A. fermi
B. angstrom
C. parsec
D. debye

Answer: D

- Watch Video Solution

100. The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate by using the formula $p=\frac{F}{l^{2}}$. If the maximum errors in the measurement of force and length are 4% and 2% respectively, then the maximum error in the measurement of pressure is
A. 1%
B. 2%
C. 8%
D. 10%

Answer: C

D Watch Video Solution

101. Which of the following cannot be verified
by using dimensional analysis?

$$
\begin{aligned}
& \text { A. } s=u t+\frac{1}{2} a t \\
& \text { B. } \mathrm{y}=\mathrm{a} \sin \omega \mathrm{t} \\
& \text { C. } F=\frac{m v^{2}}{r}
\end{aligned}
$$

D. $\mathrm{F}=\mathrm{ma}$

Answer: B

D Watch Video Solution

102. Percentage errors in the measurement of
mass and speed are 3% and 2% respectively.

The error in the calculation of kinetic energy is
A. 2%
B. 3%
C. 5%
D. 7%

Answer: D

- Watch Video Solution

103. More number of readings will reduce
A. random error
B. systematic error
C. both (a) and (b)
D. neither (a) nor (b)

Answer: A

D Watch Video Solution

104. If the percentage error in the measurement of mass and momentum of a body are 3% and 2% respectively, then
maximum possible error in kinetic energy is
A. 2%
B. 3%
C. 5%
D. 7%

Answer: D

- Watch Video Solution

105. In a vernier cliper, n divisions of vernier scale coincides with ($n-1$) divisions of main
scale. The least count of the instrument is

$$
\begin{aligned}
& \text { A. } \frac{1}{n} M S D \\
& \text { B. } \frac{n}{n+1} M S D \\
& \text { C. } \frac{n+1}{n} M S D \\
& \text { D. } \frac{n+1}{n-1} M S D
\end{aligned}
$$

Answer: A

106. The period of Oscillation of a simple pendulum is recorded as $2.63 \mathrm{~s}, 2.56 \mathrm{~s}$, 2.42s
,2.71s and 2.80 s respectively. The average absolute error is
A. 0.1 s
B. 0.2 s
C. 1.0s
D. 0.11s

Answer: D

D Watch Video Solution

107. In a system of units, if force (F),
acceleration (a) and time (T) are taken as
fundamental units then the dimensional
formula of energy is
A. $\left[F A^{2} T\right]$
B. $\left[F A T^{2}\right]$
C. $\left[F^{2} A T\right]$

D. [FAT]

Answer: B

D Watch Video Solution

108. The random error in the arithmetic mean
of 50 observations is 'a', then the random
error in the arithmetic mean of 200
observations would be
A. $4 a$
B. $16 a^{2}$
C. $\frac{a}{4}$
D. $\frac{a}{2}$

Answer: C

D Watch Video Solution

109. Which of the following is not dimensionless?
A. Relative permittivity

B. Relative index

C. Relative density
D. Relative velocity

Answer: D

D Watch Video Solution

110. If V-velocity. K - kinetic energy and T - time
are chosen as the fundamental units, then
what is the dimensional formula for surface tension?
A. $\left[K V^{-2} T^{-2}\right]$
B. $\left[K^{2} V T^{-2}\right]$
C. $\left[K V^{2} T^{2}\right]$
D. $\left[K V^{-2} T^{2}\right]$

Answer: A

D Watch Video Solution

Additional Questions Solved Short Answer Questions 1 Mark

1. A new unit of length is chosen such that the speed of light in vscuum is unity. What is the distance between the sun and the Earth in terms of the new unit if light takes 8 min and 20 s to cover this distance.

- Watch Video Solution

2. If $\mathrm{x}=\mathrm{a}+\mathrm{bt}+c t^{2}$, where x is in metre and t in seconds, what is the unit of c ?
3. What is the difference between mN, Nm and $n m ?$

- Watch Video Solution

4. The radius of atom is of the ordar of $1 \AA$ \& radius of nucleus is of the order of fermi. How many magnitudes higher is the volume of the atom as compared to the volume of uncleus?

5. How many kg make 1 unified atomic mass

unit?

D Watch Video Solution
6. Name some physical quantities that have same dimension.
7. Name the physical quantities that have dimensional formuls $\left[M L^{-1} T^{-2}\right]$

D Watch Video Solution

8. Give two examples of dimensionless variables.

D Watch Video Solution
9. State the number of significant figures in
(i) $0.007 \mathrm{~m}^{2}$ (ii) $2.64 \times 10^{24} \mathrm{~kg}$ (iii) 0.2370 g
cm^{-3}
(iv) 0.2300 m (v) 86400 (vi) 86400 m

- Watch Video Solution

10. Given relative error in the measurement of
length is 0.02 , what is the percentage error?

- Watch Video Solution

11. A physical quantity P is related to four observables a, b, c and d as follows:
$P=\frac{a^{3} b^{2}}{d \sqrt{c}}$
The percentage errors of measurement in a, b,
c and d are $1 \%, 3 \%, 4 \%$ and 2% respectively.

What is the percentage errors in the quantity

P?

D Watch Video Solution
12. A boy recalls the relation for relativistic mass (m) in terms of rest mass $\left(m_{0}\right)$ velocity
of particle v , but forgets to put the constant c (velocity of light). He writes $\mathrm{m}=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ correct the equation by putting the missing ' c '.

- Watch Video Solution

13. Name the technique used in locating.
(a) an under water obstacle
(b) position of an aeroplane in space.

D Watch Video Solution

14. Deduce dimensional formulae of -
(i) Boltzmann's constant (ii) mechanical equivalent of heat.

D Watch Video Solution

15. Give examples of dimensional constants and dimensionless constants.

D Watch Video Solution

1. The vernier scale of a travelling microscope
has 50 divisions which coincide with 49 main
scale divisions. If each main scale division is 0.5
mm . Calculate the minimum inaccuracy in the measurement of distance.
2. If the unit of force is 100 N , unit of length is

10 m and unit of time is 100 s . What is the unit of Mass in this system of units?

- Watch Video Solution

3. State the principle of homogeneity. Test the dimensional homogeneity of equations -
(i) $s=u t+\frac{1}{2} a t^{2}$ (ii) $S_{n}=u+\frac{a}{2}(2 n-1)$

- Watch Video Solution

4. In Vander Waal's gas equation $\left(P+\frac{2}{V^{2}}\right)$
$(V-b)=R T$. Determine the dimensions of a and
b.

- Watch Video Solution

5. Magnitude of force experienced by an object
moving with speed v is given by $\mathrm{F}=k v^{2}$. Find dimensions of k

D Watch Video Solution
6. A book with printing error contains four different formulae for displacement. Choose the correct formula/formulae
(a) $\mathrm{y}=\mathrm{a} \sin \frac{2 \pi}{T} t$ (b) $\mathrm{y}=\mathrm{a} \sin \mathrm{vt}$ (c) $\mathrm{y}=$ $\frac{a}{T} \sin \left(\frac{t}{a}\right)$
(d) $\mathrm{y}=\frac{a}{T}\left(\frac{\sin (2 \pi)}{T} t+\frac{\cos (2 \pi)}{T} t\right)$

- Watch Video Solution

7. Determine the number of light years in one metre.
8. The mass of a box measured by a grocer's
balance is 2.3 kg . Two gold pieces 20.15 g and 20.17 g are added to the box.
(i) What is the total mass of the box?
(ii) The difference in masses of the pieces to correct significant figures.

D Watch Video Solution
9. 5.74 g of a substance occupies $1.2 \mathrm{~cm}^{3}$

Express its density to correct significant figures.

D Watch Video Solution

10. If displacement of a body $s=(200 \pm 5) \mathrm{m}$
and time taken by it $\mathrm{t}=(20 \pm 0.2) \mathrm{s}$, then find
the percentage error in the calculation of velocity.
11. If the error in measurement of mass of a body be 3% and in the measurement of miss of a body be 3% and in the measurement of velocity he 2%. What will be maximum possible error in calculation of kinetic energy?

D Watch Video Solution

12. The length of a rod as measured in an experiment was found to be $2.48 \mathrm{~m}, 2.46 \mathrm{~m}$,
$2.49 \mathrm{~m}, 2.50 \mathrm{~m}$ and 2.48 m . Find the average
length, absolute error and percentage error.

Express the result with error limit.

D Watch Video Solution
13. A physical quantity is measured as $Q=$
(2.1 ± 0.5) units. Calculate the percentage error in (1) $Q^{2}(2) 2 Q$

- Watch Video Solution

14. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72". Calculate the diameter of Jupiter.

- Watch Video Solution

15. A laser light beamed at the Moon takes
2.56 s and to return after reflection at the

Moon's surface. What will be the radius of
lunar orbit?
16. Convert
$3 \mathrm{~ms}^{-2}$ to km h^{-2}
(ii) $G=6.67 \times 10^{-11}$

N
$m^{2} k g^{-2}$ to $\mathrm{cm}^{3} g^{-1} s^{-2}$

D Watch Video Solution

17. A calorie is a unit of heat or energy and it equals 4.2 J where $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-2}$. Suppose we employ a system of units in which unit of mass is $\alpha \mathrm{kg}$. unit of length is $\beta \mathrm{m}$, unit of time
is γ. What will be magnitude of calorie in terms of this new system?

D Watch Video Solution

18. The escape velocity v of a body depends upon (i) the acceleration due to gravity of the planet and (ii) the radius of the planet R.

Establish dimensionally the relationship between v, g and R .

- Watch Video Solution

19. The frequency of vibration of a string depends on, (i) tension in the string (ii) mass per unit length of string, (iii) vibrating length of the string. Establish dimension the relation for frequency.

- Watch Video Solution

20. One mole of an ideal gas at STP occupies
22.4 L. What is the ratio of molar volume to atomic volume of a mole of hydrogen? Why is
the ratio so large? Take size of hydrogen molecule to be 1 Å.

- Watch Video Solution

