©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

PROPERTIES OF MATTER

In Text Solved Examples

1. With in the elastic limit, the stretching strain
produced in wires A, B and C due to stress is
shown in the figure. assume the load applied
are the same and discussed the elastic property of material. Write down the elastic modulus in ascending order.

- Watch Video Solution

2. A wire 10 m long has a cross-sectional area
$1.25 \times 10^{-4} \mathrm{~m}^{2}$. It is subjected to a load of 5 kg . If Young's modulus of the material is
$4 \times 10^{10} \mathrm{Nm}^{-2}, \quad$ calculate the elongation
produced in the wire. Take $g=10 \mathrm{~ms}^{-2}$
3. A metallic cube of side 100 cm is subjected to a uniform force acting normal to the whole surface of the cube. The pressure is 10^{6} pascal.

If the volume change by $1.5 \times 10^{-5} \mathrm{~m}^{3}$, calculate the bulk modulus of the material .

D Watch Video Solution

4. A metal cube of side 0.20 m is subjected to a
shearing force of 4000 N . The top surface is
displaced through 0.50 cm with respect to the bottom. Calculate the shear modulus of elasticity of the metal.

D Watch Video Solution

5. A wire of length 2 m with the area of cross
section $10^{-6} m^{2}$ is used to suspend a load of

980 N. Calculate (i) The stress developed in the wire (ii) the strain and (iii) the energy stored.

Given $Y=12 \times 10^{10} \mathrm{Nm}^{-2}$.

- Watch Video Solution

6. A solid sphere has a radius of 1.5 cm and a mass of 0.038 kg . Calculate the specific gravity or relative density of the sphere.

D Watch Video Solution

7. Two piston of a hydraulic lift have diameters of 60 cm and 5 cm . What is the force exerted by the larger piston when 50 N is placed on the smaller piston?
8. A cube of wood floating in water supports a 300 g mass at the centre of its top face. When the mass is removed, the cube rises by 3 cm . Determine the volume of the cube.

D Watch Video Solution

9. Calculate the speed of sound in a steel rod
whose Young's modulus $Y=2 \times 10^{11} \mathrm{Nm}^{-2}$
and $\rho=7800 \mathrm{kgm}^{-3}$

- Watch Video Solution

10. Let $2.4 \times 10^{-4} J$ of work is done to increase the area of a film of soap bubble from $50 \mathrm{~cm}^{2}$ to $100 \mathrm{~cm}^{2}$. Calculate the value of surface tension of soap solution.

- Watch Video Solution

11. If excess pressure is balanced by a column of oil (with specific gravity 0.8) 4 mm high,
where $R=2.0 \mathrm{~cm}$, Find the surface tension of the soap bubble.

D Watch Video Solution

12. Water rises in a capillary tube to a height of 2.0 cm . In another capillary tube whose radiuus is one third of it, how much the water will rise?

D Watch Video Solution
13. The angle of contact of mercury with soda
lime glass is 140°. A capillary tube of radius 1.0
mm is dipped in a trough containing mercury.
By what amount does the mercury dip down in
the tube relative to the liquid surface outside?
Surface tension of mercury $=0.465 \mathrm{Nm}^{-1}$
Density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

14. In a normal adult, the average speed of the blood through the aorta (radius $r=0.8 \mathrm{~cm}$) is
$0.33 m s^{-1}$. From the aorta, the blood goes
into major arteries, which are 30 in number,
each of radius 0.4 cm . Calculate the speed of the blood through the arteries.

D Watch Video Solution

Textual Evaluation Solved Multiple Choice

Questions

1. Consider two wires X and Y. The radius of wire X is 3 times the radius of Y. If they are stretched by the same load then the stress on Y is
A. equal to that on X
B. thrice that on X
C. nine times that on X
D. Half that on X

Answer: C

2. If a wire is stretched to double of its original length, then the strain in the wire is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

3. The following diagram represents

A. wire 1
B. wire 2

C. wire 3

D. all of them have same thickness

Answer: A

- Watch Video Solution

4. For a given material, the rigidity modulus is
$\left(\frac{1}{3}\right)^{r d}$ of Young's modulus. Its Poisson's ratio is
A. 0
B. 0.25
C. 0.3
D. 0.5

Answer: D

D Watch Video Solution

5. A small sphere of radius 2 cm falls from rest in a viscous liquid. Heat is produced due to
viscous force. The rate of production of heat
when the sphere attains its terminal velocity is

proportional to

A. 2^{2}
B. 2^{3}
C. 2^{4}
D. 2^{5}

Answer: D
(Watch Video Solution
6. Two wires are made of the same material and have the same volume. The area of cross
sections of the first and the second wires are A
and 2 A respectively. If the length of the first
wire is increased by Δl on applying a force F ,
how much force is needed to stretch the second wire by the same amount?
A. 2
B. 4
C. 8

D. 16

Answer: B

D Watch Video Solution

7. With an increase in temperature, the viscosity of liquid and gas, respectively will
A. increase and increase
B. increase and decrease
C. decrease and increase
D. decrease and decrease

Answer: C

D Watch Video Solution

8. The Young's modulus for a perfect rigid
body is
A. 0
B. 1
C. 0.5

D. Infinity

Answer: D

D Watch Video Solution

9. Which of the following is not a scalar ?

A. viscosity

B. surface tension

C. pressure
D. stress

Answer: D

D Watch Video Solution

10. If the temperature of the wire is increased,
then the Young's modulus will
A. remain the same
B. decrease
C. increase rapidly
D. increase by very a small amount

Answer: B

D Watch Video Solution

11. Copper of fixed volume V is drawn into a
wire of length I. When this wire is subjected to
a constant force F , the extension produced in
the wire is Δl. If Y represents the Young's modulus, then which of the following graphs is a straight line?
A. Δl versus V
B. Δl versus Y
C. Δl versus F
D. Δl versus $\frac{1}{l}$

Answer: C

- Watch Video Solution

12. A certain number of spherical drops of a
liquid of radius R coalesce to form a single drop of radius R and volume V. If T is the surface tension of the liquid, then
A. energy $=4 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released
B. energy $=3 V T\left(\frac{1}{r}+\frac{1}{R}\right)$ is absorbed
C. energy $=3 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released
D. energy is neither released nor absorbed

Answer: C

D Watch Video Solution

13. The following four wires are made of the same material. Which of these will have the
largest extension when the same tension is

applied ?

A. length $=200 \mathrm{~cm}$, diameter $=0.5 \mathrm{~mm}$
B. length $=200 \mathrm{~cm}$, diameter $=1 \mathrm{~mm}$
C. length $=200 \mathrm{~cm}$, diameter $=2 \mathrm{~mm}$
D. length $=200 \mathrm{~cm}$, diameter $=3 \mathrm{~m}$

Answer: A

D Watch Video Solution

14. The wettability of a surface by a liquid depends primarily on
A. viscosity
B. surface tension
C. density
D. angle of contact between the surface
and the liquid

Answer: D
15. In a horizontal pipe of non-uniform cross section, water flows with a velocity of $1 \mathrm{~ms}^{-1}$ at a point where the diameter of the pipe is 20
cm . The velocity of water $\left(1.5 \mathrm{~ms}^{-1}\right)$ at a point where the diameter of the pipe is (in cm)
A. 8
B. 16
C. 24
D. 32

Answer: B

D Watch Video Solution

Textual Evaluation Solved Short Answer
Questions

1. Define stress and strain.

D Watch Video Solution
2. State Hooke's law of elasticity.

3. Define Poisson's ratio.

- Watch Video Solution

4. Explain elasticity using intermolecular
forces.

- Watch Video Solution

5. Which one of these is more elastic, steel or rubber? Why ?

- Watch Video Solution

6. A spring balance shows wrong readings after using for a long time. Why ?

- Watch Video Solution

7. What is effect of temperature on elasticity ?

- Watch Video Solution

8. Write down the expression for the elastic potential energy of a stretched wire .

- Watch Video Solution

9. State Pascal's lae in fluids.

- Watch Video Solution

10. State Archimedes principle.

D Watch Video Solution

11. What do you mean by upthrust or buoyancy ?

- Watch Video Solution

12. State law of floatation.
13. Define coefficient of viscosity of a liquid.

D Watch Video Solution
14. Distinguish between streamlined and turbulent flow.
(Watch Video Solution
15. What is Reynold's number ? Give its significance.

D Watch Video Solution
16. Define terminal velocity.

D Watch Video Solution

17. Write down the expression for the Stoke's
force and explain the symbols involved in it.

- Watch Video Solution

18. State Bernoulli's theorem.

D Watch Video Solution
19. What are the energies possessed by a
liquid ? Write down their equations.

D Watch Video Solution

20. Two streamlines cannot cross each other.

Why?

D Watch Video Solution
21. Define surface tension of a liquid. Mention
its S.I. unit and dimension.

- Watch Video Solution

22. How is surface tension related to surface energy?

D Watch Video Solution
23. Define angle of contact for a given pair of solid and liquid.

- Watch Video Solution

24. Distinguish between cohesive and adhesive
forces.

- Watch Video Solution

25. What are the factors affecting the surface tension of a liquid?

D Watch Video Solution
26. What happens to the pressure inside a soap bubble when air is blown into it ?

D Watch Video Solution

27. What do you mean by capillarity or capillary action ?

D Watch Video Solution
28. A drop of oil placed on the surface of water spreads out. But a drop of water place on oil contracts to a spherical shape. Why ?

- Watch Video Solution

29. State the principle and usage of

Venturimeter.

- Watch Video Solution

Textual Evaluation Solved Long Answer

Questions

1. State Hooke's law of elasticity.

D Watch Video Solution

2. Explain the different types of modulus of elasticity.

D Watch Video Solution
3. Derive an expression for the elastic energy stored per unit volume of a wire.

D Watch Video Solution
4. The pressure in a liquid at a given depth below the surface

D Watch Video Solution

5. State and prove Pascal's law in fluids.

D Watch Video Solution

6. State and prove Archimedes principle.

- Watch Video Solution

7. Derive the expression for the terminal
velocity of a sphere moving in a high viscous
fluid using stokes force.

- Watch Video Solution

8. Derive Poiseuille's formula for the volume of a liquid flowing per second through a pipe under streamlined flow.

- Watch Video Solution

9. Obtain an expression for the excess of pressure inside a (i) liquid drop (ii) liquid bubble (iii) air bubble.
10. What is capillarity? Obtain an expression for the surface tension of a liquid by capillary rise method.

D Watch Video Solution

11. Obtain an equation of continuity for a flow of fluid on the basis of conservation of mass.
12. State and prove Bernoulli's theorem for a
flow of incompressible, non-viscous, and streamlined flow or fluid.
(D) Watch Video Solution
13. Explain the construction and working of transformer.

D Watch Video Solution

1. A cappilary of diameter d mm is dipped in water such that the water rises to a height of

30 mm . If the radius of the capillary is made $\left(\frac{2}{3}\right)$ of its previous value, then compute the height up to which water will rise in the new

capillary?

- Watch Video Solution

2. A cylinder of length 1.5 m and diameter 4 cm
is fixed at one end. A tangential force of
$4 \times 10^{5} N$ is applied at the other end. If the rigidity modulus of the cylinder is $6 \times 10^{10} \mathrm{Nm}^{-2}$ then, calculate the twist produce in the cylinder.

- Watch Video Solution

3. A spherical soap bubble A of radius 2 cm is
formed inside another bubble B of radius 4
cm . Show that the radius of a single soap
bubble which maintance the same pressure difference as inside the smaller and outside
the larger soap bubble is lesser than radius of both soap bubbles A and B.

D Watch Video Solution

4. A block of Ag of mass xkg hanging from a string is immersed in a liquid of relative density 0.72 . If the relative density of Ag is 10 and tension in the string is 37.12 N then compute the mass of Ag block.
5. The reading of pressure meter attached with a closed pipe is $5 \times 10^{5} \mathrm{Nm}^{-2}$. On opening the valve of the pipe, the reading of the pressure meter is $4.5 \times 10^{5} \mathrm{Nm}^{-2}$.

Calculate the speed of the water flowing in the pipe.

- Watch Video Solution

Textual Evaluation Solved Conceptual Questions

1. Why coffee runs up into a sugar lump (a small cube of sugar) when one corner of the sugar lump is held in the liquid?

D Watch Video Solution

2. Why two holes are made to empty an oil tin
?

D Watch Video Solution
3. We can cut vegetables easily with a sharp knife as compared to a blunt knife. Why ?

D Watch Video Solution

4. Why the passengers are advised to remove
the ink from their pens while going up to in an aeroplane?

- Watch Video Solution

5. We use straw to suck soft drinks, why ?

- Watch Video Solution

Additional Questions Solved Choose The Correct

Answers

1. The force required to stretch a steel wire
$1 \mathrm{~cm}^{2}$ in cross section to double its length is
(given $Y=2 \times 10^{11} \mathrm{Nm}^{-2}$)
A. (a) $10^{7} N$

$$
\text { B. (b) } 2 \times 10^{7} N
$$

C. (c) $10^{11} N$
D. $(d) 2 \times 10^{11} N$

Answer: B

D Watch Video Solution

2. The fractional change in volume per unit increase in pressure is called
A. Pressure co-efficient
B. Volume co-efficient
C. Bulk modulus
D. Compressiblity

Answer: D

D Watch Video Solution

3. The modulus of rigidity of a liquid is

A. zero
B. 1
C. infinite
D. none of these

Answer: A

- Watch Video Solution

4. The Young's modulus of a wire of length L and radius r is Y. If the length is reduced to $\frac{L}{2}$ and radius to $\frac{r}{2}$, its Youn's modulus will be
A. $\frac{Y}{2}$
B. Y
C. $2 Y$
D. $4 Y$

Answer: B

D Watch Video Solution

5. If a spherical ball contract in volume by 1% under a normal uniform pressure of 200 atmophere, then the compressibility of the
material of the ball is
(1 atmosphere $=10^{5} \mathrm{Nm}^{-2}$)
A. 1×10^{12}
B. 10×10^{12}
C. 100×10^{12}
D. 2×10^{11}

Answer: A
(Watch Video Solution

6. Poisson's ratio cannot have the value

A. 0 and 1
B. -0.5 and 1
C. 0 and 0.5
D. -1 and 1

Answer: C

7. Poisson's ratio cannot have the value

A. 0.1
B. 0.2
C. 0.5
D. 0.7

Answer: D

- Watch Video Solution

8. The bulk modulus for an incompressible
fluid is
A. zero
B. 1
C. ∞
D. between 0 and 1

Answer: C
(Watch Video Solution

9. The breaking stress of a wire depends upon

A. length of the wire
B. material of the wire
C. radius of the wire
D. shape of the cross-section

Answer: B

D Watch Video Solution

10. Shearing stress causes change in

A. length
B. breadth
C. shape

D. volume

Answer: C

11. A certain force increases the length of a
wire by 1 mm . The force required to increases
its length by 2 mm is
A. 2 F
B. 4 F
C. 8 F
D. 16 F

Answer: A

D Watch Video Solution
12. Two wires of same material, having crosssectional areas in the ratio $1: 2$ and lengths in the ratio 1: 4 are stretched by the same force. The ratio of the stresses in the wires will be
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

Answer: B
13. If the tension on a wire is removed at once, then
A. it will break
B. its temperature will reduce
C. there will be no change in its
temperature
D. its temperature will increase

Answer: D

- Watch Video Solution

14. In steel, the Young's modulus and the strain at the breaking point are $2 \times 10^{11} \mathrm{Nm}^{-2}$ and 0.15 respectively. The stress at the breaking point for steel is therefore.

$$
\text { A. } 2 \times 10^{8} \mathrm{Nm}^{-2}
$$

$$
\text { B. } 3 \times 10^{10} \mathrm{Nm}^{-2}
$$

C. $3 \times 10^{12} \mathrm{Nm}^{-2}$

D. none of these

Answer: B

- Watch Video Solution

15. The pressure in a liquid at a given depth below the surface
A. is always exerted downward
B. is the same in all directions
C. equals the total weight of liquids above that depth
D. depends upon the amount of liquid below that depth

Answer: B

D Watch Video Solution

16. The pressure at the bottom of a liquid tank does not depends on
A. acceleration due to gravity
B. density of the liquid
C. height of the liquid
D. area of the liquid surface

Answer: D

D Watch Video Solution
17. The pressure of the Earth's atmosphere at sea level is due to the
A. gravitational attraction of the Earth for the atmosphere
B. evaporation of water from the seas and oceans
C. fact that most living things constantly breathe air

D. heating of the atmosphere by the Sun

Answer: A

18. The operating principle of a hydraulic press
is
A. Pascal's Law
B. Archimedes principle
C. Newton's law of gravitation
D. Boyle's law

Answer: A

D Watch Video Solution
19. A floating body always diplaces its own
A. mass of liquid
B. volume of liquid
C. weight of liquid
D. none of these

Answer: C

(Watch Video Solution
20. The pressure in a water tap at the base of a building is 3×10^{6} dynes $/ \mathrm{cm}^{2}$ and on its top it is 1.6×10^{6} dynes $/ \mathrm{cm}^{2}$. The height of the building approximately
A. 7 m
B. 14 m
C. 70 m
D. 140 m

Answer: B
21. The weight of a body in air is 100 N . How
much will it weight in water, if it displaces 400 cc of water?
A. 96 N
B. 94 N
C. 98 N
D. none of these

Answer: D
22. A body is floating in a liquid with $\frac{1}{5}$ of its volume outside the liquid. If the relative density of the body is 0.9 , that of the liquid is
A. 0.9×5
B. $0.9 \times \frac{5}{4}$
C. $0.9 \times \frac{4}{5}$
D. 0.9×4

Answer: B

D Watch Video Solution

23. A boat having length 3 m and breadth 2 m
is floating on a lake. It sinks by 1 cm when a man gets on it. The mass of the man is
A. 60 kg
B. 55 kg
C. 65 kg

D. 70 kg

Answer: A

D Watch Video Solution

24. A bird weighs 2 kg and is inside an airtight
cage of 1 kg . If its starts to fly, then what is the weight of the bird and cage assembly?
A. 3 kg
B. 2 kg

C. 1 kg

D. none of these

Answer: A

D Watch Video Solution

25. Two light balls are suspended as shown in
the figure. When a stream of air passes
through the space between them, the distance between the balls will
A. increase
B. decrease
C. remain the same
D. may increase or decrease depending on
the speed of air

Answer: B

- Watch Video Solution

26. The rate of leak from a hole in a tank is
A. independent of its height from the bottom
B. more if situated near the bottom
C. more if situated near its top
D. more at midway between top and
bottom

Answer: B
27. When a fluid passes through the constricted part of a pipe, its.
A. velocity and pressure decreases
B. velocity and pressure increase
C. velocity decreases and pressure
increases
D. velocity increases and pressure
decreases

Answer: D

- Watch Video Solution

28. Bernoulli's principle does not explain
A. curved path of a spinning ball
B. surviving of a fish in a lake
C. working of a paint sprayer

D. automatic blowing off the roofs of

 house during blizzard in hilly areasAnswer: B

D Watch Video Solution

29. An ideal liquid flows through a horizontal tube of variable diameter. The pressure is lowest where the
A. velocity is hightest

B. velocity is lowest

C. diameter is largest
D. none of these

Answer: A

D Watch Video Solution

30. Bernoulli's equation is applicable in the case of
A. streamlined flow of compressible fluids

B. streamlined flow of incompressible fluids

C. turbulent flow of compressible fluids
D. turbulent flow of incompressible fluids

Answer: B

D Watch Video Solution
31. Bernoulli theorem is based on conservation of
A. mass

B. momentum

C. energy
D. all of the above

Answer: C

- Watch Video Solution

32. Bernoulli's theorem is applicable to

A. flow of liquids

B. viscosity

C. surface tension

D. static fluid pressure

Answer: A

D Watch Video Solution

33. The working of an atomiser depends on
A. Bernoulli's principle
B. Boyle's law
C. Archimedes principle
D. Pascal's law

Answer: A

D Watch Video Solution
34. Dynamic lift' is related to
A. Bernoulli's principle
B. Archimedes principle

C. Equation of continuity

D. Pascal's law

Answer: A

- Watch Video Solution

35. A gale blows over a house. The force due to
the gale on the roof is
A. in the downward direction
B. zero

C. in the upward direction

D. horizontal

Answer: C

- Watch Video Solution

36. If a stream of air is blown under one of the pans of a physical balance in equilibrium, then
the pan will
A. go up
B. go down
C. not be affected
D. go up or down depending on the

velocity of the stream

Answer: B

D Watch Video Solution
37. Water venturimeter works on the principle
of
A. Newton's third law of motion
B. Stokes's formula
C. Bernoulli's theorem
D. Hook's law

Answer: C

D Watch Video Solution
38. Aeroplanes are made to run on runway before take - off because it
A. decreases friction
B. decrease viscous drag of air
C. decreases atmospheric pressure
D. provides required life to the aeroplane

Answer: D

- Watch Video Solution

39. When the terminal velocity is reached, the acceleration of a body moving through a viscous medium is
A. zero
B. positive
C. negative
D. either (b) or (c) depending upon other

factors

Answer: A
(Watch Video Solution
40. If a raindrop with a mass of 0.05 g falls with constant velocity, the retarding force of atmospheric friction is (neglect density of air)
A. zero
B. 49 dynes
C. 490 dynes
D. none of these

Answer: B
41. If temperature rises, the coefficient of viscosity of a liquid
A. decreases
B. increase
C. remain unchanged
D. increases for some liquids and decreases
for others

Answer: A

- Watch Video Solution

42. The velocity of a rain drop attains constant value because of
A. surface tension
B. upthrust of air
C. viscous force exerted by air
D. air currents

Answer: C
43. With an increase in temperature, the viscosity of liquid and gas, respectively will
A. a gas decreases and a liquid increases
B. a gas increases and a liquid decreases
C. both gases and liquid decreases
D. both gases and liquid increase

Answer: B
44. Two small spheres of radii r and $2 r$ fall through a viscous liquid with the same constant speed. The viscous forces experienced by them are in the ratio
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

- Watch Video Solution

45. Viscosity is the property of liquids by virtue of which they
A. oppose the relative motion of its parts
B. push neighbouring molecules
C. attract other molecules
D. become conducting

Answer: A
46. Streamlined flow is more likely for liquids with
A. (a) high density and low viscosity
B. (b) low density and high viscosity
C. (c) high density and high viscosity
D. (d) low density and low viscosity

Answer: B

47. The dimensional formula of coefficient of
viscosity is
A. $M^{0} L^{-1} T^{-1}$
B. $M^{0} L^{2} T^{-1}$
C. $M L^{2} T^{-1}$
D. $M L^{-1} T^{-1}$

Answer: D

- Watch Video Solution

48. A good lubricant should have

A. high viscosity
B. low viscosity
C. moderate viscosity
D. high density

Answer: A
49. If a liquid wets a solid surface, the angle of contact is
A. 0°
B. 90°
C. less than 90°
D. greater than 90°

Answer: C

D Watch Video Solution
50. When some detergent is added to water, the surface tension
A. remain unaffected
B. increases
C. decreases
D. may increase or decrease

Answer: C

D Watch Video Solution

51. Rain drops are spherical because of

A. gravitational force
B. surface tension
C. low viscosity of water

D. air resistance

Answer: B

52. At critical temperature the surface tension

 of a liquidA. is zero
B. is the same as that at any other
temperature
C. is infinity
D. cannot be determined

Answer: A
53. A liquid will not wet the surface of a solid if
the angle of contact is
A. acute
B. obtuse
C. zero
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

54. The surface tensions of soap solution is
$25 \times 10^{-3} \mathrm{Nm}^{-1}$. The excess pressure inside a soap bubble of diameter 1 cm is
A. 5 Pa
B. 10 Pa
C. 20 Pa
D. None of the above

Answer: C

55. Surface tension does not depends on
A. (a) nature of the liquid
B. (b) temperature of the liquid
C. (c) atmospheric pressure

D. (d) presence of impurities

Answer: C

D Watch Video Solution

56. Meniscus of mercury in a capillary is
A. concave
B. convex
C. plane
D. cylindrical

Answer: B

D Watch Video Solution
57. The potential energy of a molecule on the surface of a liquid compared to that of a molecules inside the liquid is \qquad
A. (a) smaller
B. (b) the same
C. (c) greater
D. (d) zero

Answer: C

58. At which of the following temperatures,
the value of surface tension of water is minimum?
A. $4^{\circ} C$
B. $25^{\circ} \mathrm{C}$
C. $50^{\circ} \mathrm{C}$
D. 75°

Answer: D

D Watch Video Solution
59. If the surface tension of water is $0.06 \mathrm{Nm}^{-1}$, then the capillary rise in a tube of diameter 1 mm is (angle of contact $=0^{\circ}$)
A. 1.22 cm
B. 2.44 cm
C. 3.12 cm
D. 3.86 cm

Answer: B
60. The surface tension phenomenon is the result of the tendency of a system to
A. conserve energy
B. conserve volume
C. keep potential energy minimum
D. keep surface area minimum

Answer: C

Additional Questions Solved 2 Mark Questions

1. What is meant by 'Mean positions of atoms' ?
(D) Watch Video Solution
2. What is meant by 'Evaporation'?

D Watch Video Solution
3. Give the physical states of matter.

D Watch Video Solution

4. Define elasticity? Give its example.

- Watch Video Solution

5. Define deforming force?

D
 Watch Video Solution

6. Define 'Plasticity' ?

- Watch Video Solution

7. Explain the classification of longitudinal stress?

- Watch Video Solution

8. Define longitudinal strain.

D Watch Video Solution

9. What is meant by the term elastic limit?

D Watch Video Solution

10. What is meant by " tensile stress "?

- Watch Video Solution

11. Define compressibility.
12. Define Relative density or specific gravity.

D Watch Video Solution

13. Define atmospheric pressure what is its
value?

D Watch Video Solution

14. Explain hydrostatic paradox with suitable example.

- Watch Video Solution

15. Give three examples of floating bodies.

- Watch Video Solution

16. Define 'Viscosity' ?

- Watch Video Solution

17. Define tube of flow.

- Watch Video Solution

18. Write any three applications of viscosity.

D Watch Video Solution

19. What is meant by 'Molecular range' ?

- Watch Video Solution

20. Define the term sphere of influence.

- Watch Video Solution

Additional Questions Solved Numerical
Questions

1. Two steel wires of lengths 1 m and 2 m have
diameters 1 mm and 2 mm respectively. If they
are stretched by force of 40 N and 80 N respectively, find the ratio of their elongations.
2. A wire of length 2 m and cross-sectional area
$2 \times 10^{-6} \mathrm{~m}^{2}$ is made of a material of Young's
modulus $2 \times 10^{11} \mathrm{Nm}^{-2}$. What is the work done in stretching it through 0.1 mm .

D Watch Video Solution

3. A wire is stretched by 0.01 m when it is
stretched by certain force. Another wire of the
same material but double the length and
double the diameter is stretched by the same force. What is the elongation in metres ?

D Watch Video Solution

4. Two wires of same material and same diameter have lengths in the ratio $2: 5$. They are stretched by same force. Calculate the ratio of workdone in stretching them.
5. The approximate depth of an ocean is

2700 m . The compressibility of water is
$45.4 \times 10^{-11} \mathrm{~Pa}$ and density of water is 10^{3}
kg. What fractional compression of water will be obtained the bottom of the ocean?

D Watch Video Solution

6. An iceberg of density $900 \mathrm{kgm}^{-3}$ is floating in water of density $1000 \mathrm{kgm}^{-3}$. What is the
percentage of volume of iceberg outside the water?

D Watch Video Solution

7. A cubical copper block has eahc side 2.0 cm .

It is suspended by a string and submerged in
oil of density $820 \mathrm{kgm}^{-3}$. Calculate the tension in the string.
(density of copper $=8920 \mathrm{kgm}^{-3}$)

D Watch Video Solution

8. By sucking through a straw, a student can
reduce the pressure in his lungs to 750 mm of
Hg (density $=13.6 \mathrm{gcm}^{-2}$). Using the straw, he can drink water from a glass upto a maximum depth of.

- Watch Video Solution

9. A sphere made of a material of specific gravity 8 has a concentric spherical cavity and just sinks in water. Calculate the ratio of the
radius of the cavity to that of the outer radius of the sphere.

D Watch Video Solution

10. A solid floats in liquid A with half its volume immersed and in liquid B with $\frac{2}{3}$ of its volume immersed. The densities of the liquids A and B are in the ratio.
11. An ideal liquid is flowing in a cylindrical tube of internal diameter 4 cm with a velocity of $5 \mathrm{~ms}^{-1}$. If this tube is connected to another tube of internal diameter 2 cm , then the velocity of the liquid in the second tube will be ?

D Watch Video Solution

12. The cylindrical tube of a spray pump has radius R, one end of which has ' n ' fine holes,
each of radius r. If the speed of the liquid in the tube is V, what is the speed of the ejection of the liquid through the holes.

D Watch Video Solution

13. What is the pressure on a swimmer 10 m
below, the surface of a lake?

D Watch Video Solution
14. A square metal plate of 10 cm side moves
parallel to another plate with a velocity of
$10 \mathrm{cms}^{-1}$, both plates immersed in water. If the viscous force is 200 dyne and viscosity of water is 0.01 poise. What is their distance apart?

D Watch Video Solution

15. Find the terminal velocity of a steel ball 2 mm in diameter falling through glycerine.

Relative density of steel is 8 , relative density of glycerine is 1.3 and viscosity of glycerine is 8.3 poise.

- Watch Video Solution

16. The terminal velocity of a copper ball of radius 2 mm falling through a tank of oil at $20^{\circ} \mathrm{C}$ is $6.5 \mathrm{cms}^{-1}$. Compute the viscosity of the oil at $20^{\circ} \mathrm{C}$. Density of oil $=1.5 \times 10^{3} \mathrm{kgm}^{-3}$ density of copper is $8.9 \times 10^{3} \mathrm{kgm}^{-3}$.

Watch Video Solution

17. Water is flowing in a pipe of radius 1.5 cm with an average velocity of $15 \mathrm{cms}^{-1}$. What is the nature flow ? Given coefficient of viscosity of water is $10^{-3} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ and its density is $10^{3} \mathrm{kgm}^{-3}$.

- Watch Video Solution

18. Water is flowing with a speed of $2 m s^{-1}$ in
a horizontal pipe with cross-sectional area
decreasing from $2 \times 10^{-2} m^{2}$ to $0.01 m^{2}$ at pressure $4 \times 10^{4} \mathrm{~Pa}$. What will be the pressure at small cross-section ?

D Watch Video Solution

19. Calculate the height to which water will rise
in capillary tube of 1.5 mm diameter. Surface tension of water is $7.4 \times 10^{-3} \mathrm{Nm}^{-1}$.
