©゙doubtnut

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL ENGLISH)

SAMPLE PAPER - 2

Part I

1. The moment of inertia of a disc of mass M and radius R about an axis which is tangential to the circumference of the disc and parallel to the diameter is
A. $\frac{5}{4} M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $\frac{4}{5} M R^{2}$
D. $\frac{2}{3} M R^{2}$

Answer: A

- Watch Video Solution

2. A swimmer's speed in the direction of flow of river is $16 \mathrm{kmh}^{-1}$. Against the direction of flow of river, the swimmer's speed is $8 \mathrm{~km} h^{-1}$. The swimmer's speed in still water and the velocity of flow of the river respectively are
A. $12 k m h^{-1}, 4 k m h^{-1}$
B. $4 k m h^{-1}, 12 k m h^{-1}$
C. $24 k m h^{-1}, 16 k m h^{-1}$
D. $16 k m h^{-1}, 24 k m h^{-1}$

- Watch Video Solution

3. Shear modulus is zero for
A. solids
B. liquids
C. gases
D. liquid and gases

Answer: C

4. If the length and time period of an oscillating pendulum have errors of 1% and 2% respectively. The error in the estimation of ' g ' is
A. 0.01
B. 0.02
C. 0.03
D. 0.05

Answer: D

D Watch Video Solution

5. A system of binary stars of masses m_{A} and m_{B} are moving is a circular orbits of radius r_{A}.and r_{B} respectively. If T_{A} and T_{B}
are the time periods of masses m_{A} and m_{B} respectively then,
A. $T_{A}=T_{B}$
B. if $m_{A}>m_{B}$ than $T_{A}>T_{B}$
C. If $r_{B}>r_{A}$ than $T_{B}>T_{A}$
D. $\frac{T_{A}}{T_{B}}=\left(\frac{r_{A}}{r_{B}}\right)^{3 / 2}$

Answer: A

- Watch Video Solution

6. The temperature of a wire is doubled. The Young's modulus of elasticity
A. will also double
B. will become four times
C. will remain same
D. will decrease

Answer: D

D Watch Video Solution

7. A small sphere of radius 2 cm falls from rest in a viscous liquid. Heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
A. 2^{2}
B. 2^{3}
C. 2^{4}
D. 2^{5}

- Watch Video Solution

8. The equations of two waves acting in perpendicular direction
are given as
$x=a \cos (\omega t+\delta)$ and $y=a \cos (\omega t+\alpha)$ where $\delta=\alpha+\pi / 2$
the resultant wave represents
A. a parabola
B. a circle
C. an ellipse -
D. a straight line

Answer: D

9. Two vibrating tuning forks produce progressive waves given be $y_{1}=4 \sin 500 \pi t$ and $y_{2}=2 \sin 506 \pi t$ where t is in seconds number of beats produced per minute is \qquad
A. 60
B. 3
C. 369
D. 180

Answer: D

(D) Watch Video Solution

10. If the temperature of the wire is increased, then the Young's modulus will
A. remains the same
B. decrease
C. increase rapidly
D. increase by very small amount

Answer: B

- Watch Video Solution

11. A light string passing over a smooth light pulley connects two blocks of masses m_{1} and m_{2} (vertically). If the acceleration of the system is $\mathrm{g} / 8$ then the ratio of the masses is
A. $8: 1$
B. 9:7
C. $4: 3$
D. $5: 3$

Answer: B

- Watch Video Solution

12. A perfect gas is contained in a cylinder kept in vacuum. If the cylinder suddenly bursts, then the temperature of the gas .
A. is increased
B. becomes OK
C. remains unchanged
D. is decreased

Answer: C

- Watch Video Solution

13. The sample of gas expands from v_{1} to v_{2} The amount of workdone by the gas is greatest, when the expansion is,
A. adiabatic
B. isobaric
C. isothermal
D. equal in all cases

Answer: C

14. The magnitude of the vector is
A. $|\vec{A}|=A x^{2}+A y^{2}+A z^{2}$
B. $|\vec{A}|=\left(A x^{2}+A y^{2}+A z^{2}\right)^{\frac{1}{2}}$
C. $\left(A_{1}+A_{2}+A_{3}\right)^{2}$
D. $A_{1} \cos \theta+A_{2} \cos \theta+A_{1} A_{2} \cos \theta$

Answer: B

- Watch Video Solution

15. Two soap bubbles of radii in the ratio of $2: 1$. What is the ratio of excess pressure inside them?
A. $1: 2$
B. 1: 4
C. 2:1
D. $4: 1$

Answer: A

- Watch Video Solution

Part li

1. The position of an object moving along x axis is given by $x=a+b t^{2}$ here $\mathrm{a}=8.5 \mathrm{~m}, b=2.5 m s^{-2}$ and t is time in
second. Calculate the velocity at $\mathrm{t}=0$ and $\mathrm{t}=2 \mathrm{~s}$ and also calculate average velocity between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.
2. Two vectors are given as
$\vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k}$. Find the resultant vector $\vec{\tau}=\vec{r} \times \vec{F}$.

D Watch Video Solution

3. A ball is thrawn downward from a height of 30 m with a velocity of $10 \mathrm{~ms}^{-1}$. Determine the velocity with which the ball strikes the ground by using law of conservation of energy.

D Watch Video Solution

4. At what height, the value of g is same as at a depth of $\frac{R}{2}$?
5. Write any three applications of viscosity.

- Watch Video Solution

6. An object is in uniform motion along a straight line, what will be position time graph for the motion of object, if
(i) both x_{0} positive v negative $|\vec{v}|$ is constant
(ii) $x_{0}=$ negative v negative is $|\vec{v}|$ constant
(iii) $x_{0}=$ negative, $\mathrm{v}=$ positive $|\vec{v}|$ is constant
(iv) both x_{0} and v are positive $|\mathrm{v}|$ is constant.

- Watch Video Solution

7. A sphere contracts in volume by 0.01% when taken to the bottom of sea 1 km deep. Find the bulk modulus of the material
of the sphere.

D Watch Video Solution

8. State the second law of thermodynamics in therms of entropy.

D Watch Video Solution

9. what is an epoch ?
(D) Watch Video Solution

Part lii

1. What is the relation between torque and angular momentum ?

- Watch Video Solution

2. Discuss the properties of scalar and vector

D Watch Video Solution

3. A block of mass m slides down the plane inclined at an angle 60° with an acceleration $\mathrm{g} / 2$. Find the co-efficient of kinetic friction.
4. Write a note on work done by a variable force.

(D) Watch Video Solution

5. Why do we have seasons on Earth?

(D) Watch Video Solution

6. Obtain an expression for the excess of pressure inside a liquid drop

- Watch Video Solution

7. Consider the Earth as a homogenous sphere of radius R and a straight hole is bored in it through its centre. Show that a
particle dropped into the hole will execute a simple harmonic motion such that its time period is $T=2 \pi \sqrt{\frac{R}{g}}$

- Watch Video Solution

8. Which of the following functions represent SHM :
$\sin \omega t+2 \cos \omega t$

- Watch Video Solution

9. Obtain an expression for the excess of pressure inside a (i) liquid drop (ii) liquid bubble (iii) air bubble.

- Watch Video Solution

1. Explain in detail the idea of weightlessness using lift as an example.

- Watch Video Solution

2. How will you determine the velocity of sound using resonance air column apparatus ?

- Watch Video Solution

3. Briefly explain the origin of friction show that in an inclined plane angle of friction is equal to angle of repose
4. Show that the minimum speed at dle lowest point as $\sqrt{5 g r}$ in a vertical circle executed by the object.
A.
B.
C.
D.

Answer:

D Watch Video Solution

5. What are the characteristics of stationery waves? Give the laws of transverse vibrations in a stretched string.
6. Give an expression for work done in an isothermal process.

- Watch Video Solution

7. Convert a velocity of $72 \mathrm{~km} \mathrm{~h} h^{1-}$ into $m s^{-1}$ with the help of dimensional analysis.

D Watch Video Solution

8. Convert

$$
\begin{aligned}
& 3 \mathrm{~ms}^{-2} \text { to km h } h^{-2} \text { (ii) } \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \text { to } \\
& \mathrm{cm}^{3} g^{-1} s^{-2}
\end{aligned}
$$

9. (i) A uniform sphere of mass 200 g rotates on a horizontal surface without shipping. If centre of the sphere moves with a velocity $2.00 \mathrm{~cm} / \mathrm{s}$ then its kinetic energy is?
(ii) Derive the expression for kinetic energy in rotating object and also derive the relation between rotational kinetic energy and angular momentum.

D Watch Video Solution

10. What is a sonometer? Give its construction and working.

Explain how to determine the frequency of tuning fork using sonometer.

- Watch Video Solution

