

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL ENGLISH)

SAMPLE PAPER - 2

Part I

1. The moment of inertia of a disc of mass M and radius R about an axis which is tangential to the circumference of the disc and parallel to the diameter is

A.
$$rac{5}{4}MR^2$$

B. $rac{3}{2}MR^2$

C.
$$\frac{4}{5}MR^2$$

D. $\frac{2}{3}MR^2$

Answer: A

Watch Video Solution

2. A swimmer's speed in the direction of flow of river is $16kmh^{-1}$. Against the direction of flow of river, the swimmer's speed is 8 km h^{-1} . The swimmer's speed in still water and the velocity of flow of the river respectively are

A.
$$12kmh^{-1}, 4kmh^{-1}$$

B.
$$4kmh^{-1}, 12kmh^{-1}$$

C. $24kmh^{-1}$, $16kmh^{-1}$

D. $16kmh^{-1}$, $24kmh^{-1}$

Answer: A

Watch Video Solution]
3. Shear modulus is zero for	
A. solids	
B. liquids	

C. gases

D. liquid and gases

Answer: C

4. If the length and time period of an oscillating pendulum have errors of 1% and 2% respectively. The error in the estimation of 'g' is

A. 0.01

B. 0.02

C. 0.03

D. 0.05

Answer: D

Watch Video Solution

5. A system of binary stars of masses m_A and m_B are moving is a circular orbits of radius r_A .and r_B respectively. If T_A and T_B are the time periods of masses m_A and m_B respectively then,

A.
$$T_A = T_B$$

B. if $m_A > m_B$ than $T_A > T_B$

C. If
$$r_B > r_A$$
 than $T_B > T_A$

D.
$$rac{T_A}{T_B} = \left(rac{r_A}{r_B}
ight)^{3/2}$$

Answer: A

6. The temperature of a wire is doubled. The Young's modulus

of elasticity

A. will also double

B. will become four times

C. will remain same

D. will decrease

Answer: D

7. A small sphere of radius 2 cm falls from rest in a viscous liquid. Heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to

A. 2^2

 $\mathsf{B}.\,2^3$

 $C. 2^4$

 $\mathsf{D}.\,2^5$

Answer: D

8. The equations of two waves acting in perpendicular direction

are given as
$$x=a\cos(\omega t+\delta)$$
 and $y=a\cos(\omega t+lpha)$ where $\delta=lpha+\pi/2$

the resultant wave represents

A. a parabola

B. a circle

C. an ellipse \cdot

D. a straight line

Answer: D

9. Two vibrating tuning forks produce progressive waves given be $y_1 = 4 \sin 500 \pi t$ and $y_2 = 2 \sin 506 \pi t$ where t is in seconds number of beats produced per minute is

A. 60

B. 3

C. 369

D. 180

Answer: D

10. If the temperature of the wire is increased, then the Young's

modulus will

A. remains the same

B. decrease

C. increase rapidly

D. increase by very small amount

Answer: B

11. A light string passing over a smooth light pulley connects two blocks of masses m_1 and m_2 (vertically). If the acceleration of the system is g/8 then the ratio of the masses is A.8:1

B.9:7

C.4:3

D. 5:3

Answer: B

Watch Video Solution

12. A perfect gas is contained in a cylinder kept in vacuum. If the

cylinder suddenly bursts, then the temperature of the gas .

A. is increased

B. becomes OK

C. remains unchanged

D. is decreased

Answer: C

13. The sample of gas expands from v_1 to v_2 The amount of workdone by the gas is greatest, when the expansion is,

A. adiabatic

B. isobaric

C. isothermal

D. equal in all cases

Answer: C

14. The magnitude of the vector is

A.
$$\left|\overrightarrow{A}\right| = Ax^2 + Ay^2 + Az^2$$

B. $\left|\overrightarrow{A}\right| = \left(Ax^2 + Ay^2 + Az^2\right)^{rac{1}{2}}$
C. $\left(A_1 + A_2 + A_3\right)^2$

D. $A_1\cos heta+A_2\cos heta+A_1A_2\cos heta$

Answer: B

Watch Video Solution

15. Two soap bubbles of radii in the ratio of 2 : 1. What is the

ratio of excess pressure inside them?

B.1:4

C.2:1

D.4:1

Answer: A

Part li

1. The position of an object moving along x axis is given by $x = a + bt^2$ here a= 8.5 m, $b = 2.5ms^{-2}$ and t is time in second. Calculate the velocity at t = 0 and t = 2 s and also calculate average velocity between t = 2 s and t = 4 s.

2. Two vectors are given as $\overrightarrow{r} = 2\hat{i} + 3\hat{j} + 5\hat{k}$ and $\overrightarrow{F} = 3\hat{i} - 2\hat{j} + 4\hat{k}$. Find the resultant vector $\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}$.

Watch Video Solution

3. A ball is thrawn downward from a height of 30m with a velocity of $10ms^{-1}$. Determine the velocity with which the ball strikes the ground by using law of conservation of energy.

Watch Video Solution

4. At what height, the value of g is same as at a depth of $rac{R}{2}$?

Watch Video Solution

5. Write any three applications of viscosity.

6. An object is in uniform motion along a straight line, what will be position time graph for the motion of object, if (i) both x_0 positive v negative $\left| \overrightarrow{v} \right|$ is constant (ii) x_0 = negative v negative is $\left| \overrightarrow{v} \right|$ constant (iii) x_0 = negative , v = positive $\left| \overrightarrow{v} \right|$ is constant (iv) both x_0 and v are positive |v| is constant .

7. A sphere contracts in volume by 0.01 % when taken to the bottom of sea 1 km deep. Find the bulk modulus of the material

of the sphere.
Vatch Video Solution
8. State the second law of thermodynamics in therms of
entropy.
Vatch Video Solution
9. what is an epoch ?

1. What is the relation between torque and angular momentum

friction.

Watch Video Solution

4. Write a note on work done by a variable force.

Vatch Video Solution
5. Why do we have seasons on Earth?
Vatch Video Solution
6. Obtain an expression for the excess of pressure inside a liquid drop

7. Consider the Earth as a homogenous sphere of radius R and

a straight hole is bored in it through its centre. Show that a

particle dropped into the hole will execute a simple harmonic

motion such that its time period is $T=2\pi\sqrt{}$

9. Obtain an expression for the excess of pressure inside a (i)

liquid drop (ii) liquid bubble (iii) air bubble.

Watch Video Solution

1. Explain in detail the idea of weightlessness using lift as an example.

Vatch Video Solution
2. How will you determine the velocity of sound using
resonance air column apparatus ?
O Watch Video Solution

3. Briefly explain the origin of friction show that in an inclined

plane angle of friction is equal to angle of repose

4. Show that the minimum speed at dle lowest point as $\sqrt{5gr}$

in a vertical circle executed by the object.

A. B. C.

Answer:

D.

5. What are the characteristics of stationery waves? Give the

laws of transverse vibrations in a stretched string.

6. Give an expression for work done in an isothermal process.

3
$$ms^{-2}$$
to km h^{-2} (ii) G = $6.67 imes 10^{-11}$ N m^2kg^{-2} to $cm^3g^{-1}s^{-2}$

Watch Video Solution

9. (i) A uniform sphere of mass 200 g rotates on a horizontal surface without shipping. If centre of the sphere moves with a velocity 2.00 cm/s then its kinetic energy is?

(ii) Derive the expression for kinetic energy in rotating object and also derive the relation between rotational kinetic energy and angular momentum.

10. What is a sonometer? Give its construction and working.

Explain how to determine the frequency of tuning fork using

sonometer.

