

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL ENGLISH)

SAMPLE PAPER - 18 (UNSOLVED)

Part I

1. Identify the unit vector in the following.

A.
$$\hat{i}+\hat{j}$$

$$\mathsf{B}.\,\hat{k}-\frac{\jmath}{\sqrt{2}}$$

C.
$$\hat{k}-rac{j}{\sqrt{2}}$$

D.
$$\frac{i+j}{\sqrt{2}}$$

Answer: D

Watch Video Solution

2. Which one of the following physical quantities cannot be represented by a scalar?

- A. mass
- B. length
- C. momentum
- D. magnitude of acceleration

Answer: C

Watch Video Solution

A. the momentum changes by 'mv'

B. K.E changes by $1/2mv^2$

C. the momentum changes by 2mv

D. K.E changes by mv^2

Answer: C

Watch Video Solution

4. If the internal energy of an ideal gas U and volume V are doubled, then the pressure of the gas:

- A. doubles
- B. remains same
- C. halves
- D. quadruples

Answer: B

Watch Video Solution

5. The potential energy of a system increases, if work is done

A. by the system against a conservative force

B. by the system against a nonconservative force

C. upon the system by a conservative force

D. upon the system by a non-conservative force

Answer: A

6. At what temperature the value of celcius and fahrenheit scale concid.

A.
$$40^{\circ}$$

B.
$$-273^{\circ}$$

$$\mathsf{C.}-40^\circ$$

D.
$$0^{\circ}$$

Answer: C

7. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,

A. L

B. $\frac{L}{2}$

C. 2 L

D. $\frac{L}{\sqrt{2}}$

Answer: D

8. If the mass and radius of the Earth are both doubled, then the accelration due to gravity g

A. ramains same

B.
$$\frac{g}{2}$$

D. 4g

Answer: B

9. The modulus of rigidity of a liquid is

A. zero

B. 1

C. infinite

D. none of these

Answer: A

10. Two wires of same material, having cross-sectional areas in the ratio 1: 2 and lengths in the ratio 1: 4 are stretched by the same force.

The ratio of the stresses in the wires will be

A. 1:2

B. 2:1

C. 1: 4

D. 4:1

Answer: B

11. If the distance between the Earth and Sun were to be doubled from its present value, the number of days in a year would be

A. 64.5

B. 1032

C. 182.5

D. 730

Answer: B

12. Which of the following gases will have least rms speed at a given temperature?

A. Hydrogen

B. Nitrogen

C. Oxygen

D. Carbon-di-oxide

Answer: D

13. A particle is oscillating according to the equation $x=5\cos(0.5\pi t)$ where t is in seconds. The particle moves from the position of equilibrium to the position of maximum displacement in time......

A. 1s

B. 2s

C. 0.5s

D. 4s

Answer: A

Watch Video Solution

14. Bernoulli's equation is an example of conservation of

A. mass

B. momentum

C. energy

D. angular momentum

Answer: C

Watch Video Solution

15. With the rise of temperature, the speed of sound in a gas

A. increases

B. decreases

C. remains same

D. may increase or decrease depending on

the corresponding change in pressure

Answer: A

Watch Video Solution

Part li

1. What is significant figures?

2. What is meant by Cartesian coordinate system?

Watch Video Solution

3. Under what condion will a car skid on a leveled circular road?

4. What does the work - kinetic energy theorem imply?

Watch Video Solution

5. Define couple.

Watch Video Solution

6. If the Earth's pull on the Moon suddenly disappears, what will happen to the Moon?

7. State the law of floatation.

Watch Video Solution

8. State the law of equipartition of energy.

9. A student comes to school by a bicycle whose tire is filled with air at a pressure 240 kPa at 27° C. She travels 8 km to reach the school and the temperature of the bicycle tire increases to 39° C. What is the change in pressure in the tire when the student reaches school?

Watch Video Solution

Part lii

1. What are fundamental units and derived units?

Watch Video Solution

2. Write down the postulates of kinetic theory of gases.

Watch Video Solution

3. Define the following terms: (a) Isothermal process (b) adiabatic process (c) isobaric proces (d) isochoric process.

Watch Video Solution

4. What does the work - kinetic energy theorem imply?

Watch Video Solution

5. Find the moment of inertia of a uniform rod about an axis which is perpendicular to the rod and touches any one end of the rod.

6. State kegler's laws of planetary motion.

Watch Video Solution

7. A capillary tube is dipped first in cold water and then in hot water. Comment on the capillary rise in the second case.

8. A train was moving at the rate of $54kmh^{-1}$ when brakes were applied. It came to rest within a distance of 225 m. Calculate the retardation produced in the train.

Watch Video Solution

9. State the laws of simple pendulum.

1. Explain in detail the various types of errors.

Watch Video Solution

2. Obtain an expression for the time period T of a simple pendulum. [The time period T depend upon (i) mass I of the bob (ii) length m of the pendulum and (iii) acceleration due to gravity g at the place where pendulum is suspended.

Assume the constant $k=2\pi$]

3. Derive the kinematic equations of motion for constant acceleration.

4. Derive an expression for escape speed.

5. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.

Watch Video Solution

6. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?

Watch Video Solution

7. Calculate the temperature at which the rms velocity of a gas triples its value at S.T.P.

$$[T_1=273K]$$

1.4)

8. In an adiabatic expansion of the air the volume is increased by $4\,\%$ what is pereentage change in pressure ? (For air y =

9. Discuss in detail the energy in simple harmonic motion.

10. What are stationary waves? write down the characteristics of stationary waves.

